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ERGODIC PROPERTY OF THE BROWNIAN MOTION PROCESS

By G. KALLIANPUR AND H. RoOBBINS*
THE INSTITUTE FOR ADVANCED STUDY AND UNIVERSITY OF NORTH CAROLINA

Communicated by J. von Neumann, April 16, 1953

1. Imtroduction—In a previous paper (“‘On the Equidistribution of
Sums of Independent Random Variables,” to appear elsewhere; an abstract
will appear in Bull. Am. Math. Soc., 59, (May, 1953) ; we shall refer to this
paper as [1]) we considered some properties of the sequence S, of partial
sums of independent and identically distributed random variables or
random vectors in two dimensions. Here we show in Theorems 1—4
that the results of [1] carry over to the Brownian motion process in one
and two dimensions.

2. The Two-Dimensional Case.—Let X (t) denote the Brownian motion
(Wiener) process on the line: X(0) = 0, X(¢) is continuous for all ¢ with
probability 1, and for any £y < #; < ... < {, the random variables X (¢;) —
X(t—),j = 1, ..., n, are independent and normally distributed with zero
means and variances {; — t;;. Let V({) = (X(¢), Y (¢)) denote the Brown-
ian motion process in the plane, the two components of V(¢) being inde-
pendent one-dimensional Brownian motion processes. Suppose that
f(x, v), g(x, ) are real valued functions which are bounded and summable
inthe plane —o» < x < @, —o <y < «,and setf = S S f(x, y) dxdy,
Z = J Sg(x, y) dxdy, where here and in the sequel an integral sign
without limits denotes integration over (— ®, «). We shall prove the
following two theorems for plane Brownian motion. The corresponding
results for the one-dimensional case involve no essentially new arguments
and will be stated without proof at the end of the paper.

THEOREM 1. If f # O then for every u,

27 T
Tli_I;IlﬂD Pr [ng—T j). fV@)) dt < u] = G(u), 2.1)

where G(u) = 1 — e foru> 0, = 0 for u < 0.
THEOREM 2. If g # O then

i LoSV@)dt _ f.
roe JoTg(V@)dt g

Proofs of Theorems 1 and 2: Assume f > 0 and g % 0 and define

in probability. (2.2)

2. = ; = Wa(f) = 2 AV,

fl

with corresponding definitions for Z,(g) and W,(g). For any positive
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integer 7, each component of V(n) is the sum of 7 independent random
variables, each distributed normally with zero mean and unit variance,
since

X(m) = 231 X() — XG — D], Y =j§"1 [Y(G) — Y( — D1.

A theorem in [1] gives ‘
' lim Pr[W,(f) < u] = G(u). (2.3)

We shall later prove as Lemma 1 that
lim E[Z.(f) — Wa()]* = 0. (2.4)
N—>
It follows from (2.4) that Z,(f) — W.,(f) tends to zero in probability,
and hence from (2.3) that Z,(f) has the same limiting distribution, G(u),
as W,(f). This proves (2.1) as T — = through integer values, and the

extention to arbitrary T is immediate, proving Theorem 1.
To prove Theorem 2 we shall later prove as Lemma 2 that

,.li'i E[Za(f)Za(®) — Wa()Wa(®)] = O, (2.5)

and we make use of the fact, proved in [1], that
lim EW(f) = lim EWg(g) = lim EW,(f)W.(g) =
n—> n—>o 7—>©
Jo© udG(u) = my, say. (2.6)
From (2.4)-(2.6) it follows that
lim EZ(f) = lim EZ\(g) = lim EZ.(f)Z.(g) = m.,
N> © W= © o )

and hence lim E[Z,(f) — Z.(g)]* = 0. 2.7
Asin [1], given e > 0 we choose § = 8(e) > O such that § < ¢, G(8) < /s,
and N = N(e) (by (2.1) with f replaced by g) such that

n > N implies Pr[Z,(g) > 61> 1 — G() — Y221 — e

E[Zn(f) - Z”(g)]2’
88

Since Pr[{Z,.(f) - Zn(g)}z < 83] Z 1-

if we choose (by (2.7))K = K(e) such that
n > K implies E[Z,(f) — Z.(g)]’ < &,
then if » > max. (N, K),
Pr(Z,(g) >8]1>1—¢ Pr{Z.f) — Zu@}?< ]2 1 — ¢
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which in turn imply that

Pr [{g—% - 1}2 < ] > PriZ.(g) > 5, v{z,(f) - Z@) <21 -2

Since ¢ was arbitrary this proves (2.2) as T — o« through integer values.
Again, the extension to arbitrary T is immediate. Finally, the restriction
that f 0 can be dropped by a simple argument and theé proof of Theorem

2 is complete.
3. Proof of the Lemmas.—We shall prove Lemma 2 first. We have

Zy(f) = flo ,§ f(V(t)) at, W.(f) = flog 12 f(V( ) dt.
Set D, = E[Z,(f)Z.(g) — Wa(f)Wa(g)]

4x? L 1 [k i .
= oy o L BUVOIV )= SV DV ))

472 n
= TEogny .
where
o = S S 060 0, D dud, Ry = {j=1<1<j; k=

Ry 1<u<k}, 6@ u) = E[f(V))(V(u)].
We want to show that D, = 0 as n — o, i.e., that
lim (logn)~%2 Y, az = 0. 3.1
n— o i k=1

To evaluate 6(¢, u) we observe that for #; < £, the random vector V(t;) —
Vi) = (X)) — X(t), Y(t2) — ¥ (1)) has the joint probability density

1 x! +
— 20z — 1) -
omlts — )

Hence for 0 < ¢ < u,

0, u) = ml—_t_) / f f f flx, y)glx + ',y + ')

LA LE

e 2 2« — 1) dxdydx'dy’

= ___1.__ —Q(t u)
- dx%(u — 1) f/ff e, y)g(§, ne dxdyd¢dy,
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where we have set

{x2+y +(x—s“)2+(y—n)2}_

t u —t

Qt, u) =

In what follows C will denote any constant whose numerical value is
immaterial, and F = sup] Sflx, y)l, G = suplg(x, y)l. Then if (I,
u)eR,-, or ER], j+1(j > 2),

6t w)| < — 2t(u _— _/f |, 9| e= "2 dxdy-
w- c
[ e away S2_tff e ldsty < 25 32)

Also, for 0 < ¢t < u,

1
|0(l,“)|Sm/f/flf(x,y)'g(hﬂ)l
o anivisin < s f [ laen

n
We write D, aj as the sum of the following terms:
G k=1

(3.3)

n—1

(a) 22 Qjjs (b) kga Q1 (b”) :23 aj, (o) j§2 Qjy j41y

(c" E Ak 15k (d) Z A jiy d") Z ay, and
k=2 2<j<k—2<n—2 2<k<j-2<m—2
(e) an + a2 + an.

To prove (3.1) it will suffice to show that each of (a), (b), (¢), (d)
is o{(log n)?%}.

Cc
(@) From (3.2), if (¢, u)eR,;, 7> 2, |6(¢, u)| <J —
.. 1 ’+ C
Also, |04, /)| = 2ej f flx, )g(x, y)e~ dxdy <
Ly j— 1
Hence Z a;| < Z = 0(log n). (3.4)
ji=2 i=2
(b) From (3.3), if (¢, u)eRy, k> 3,
C C
—tT k-2
L

Also, |0(l k)l
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n 1 .
Hence 2 aw | < C- Y T3 = 0(log 7). (3.5)
k=3 Rk —
(¢) Again from (3.2),
n—1
‘22 Qj j41 = O(IOg n). (3.6)
J=

d) If (t,u)eR;x.2<j< k—2<mn — 2, then Q(t, ) > 0 and
_ . —-QU,u) __
o(t, u) — 8(j, k) = 2t(u 5 f f flx, g, m) [e7%¢

—-QG@,k)
lds..dn + 5 [t(u 0 ik - J)] f f X

feye@, e %P dx. . .dy = Ty + Ja.

Setting
R, = {lxl <ug, lyl <a, |§'| <a, Inl < a}, R, = complement of R,
let ¢ > 0 be arbitrary and choose a > 0 such that

. S SN 9 mde. . dn < .
We can write ,
= f f+——1 f f—]'+J'
T 4nt(u — 1) ‘RY 4x%(u — t) o =1 1
where

, € Ce
|l < e -G -Dk—j-1

3.7
To obtain a bound for J; we observe that

2 Y oy .
0ty u) — Q<J,k>—x_ifl(___>+<x Do - (u_t_

1.>sz+y<'1 _T>+(x—s“)’+(y—n)2( L
k—7 2 i—1 3 2 k—j—1

1 x2+y2 (x_g-)z_'_(y_n)z
- — A(>0), say.
k_.) 2(j_1)j 2(k-—j—~1)(k_j) (__0) say
Also,
: (x_§)2+(y—7,)2 1 1 _
o, u) — Q(4, k) > 5 <k_j+1_k—j)_

=0+ G-
T2k —Hk—F+ DT
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Hence
e 4 — 1< e—EQ(I,u)—Q(.i.k)l —-1< et — 1, and
|[e~tQtw=0GR) _ 1| < max. [e* — 1,1 —e™4] =¢* — 1.

Therefore

1 .
< - o : : L ,—QG, k) | ,—10W, u)=0Q@1, k) ) __
rrom— f i flf(x e, )| -e e

1|dx...dn<

_412(1—1)(k—1—1)./xaf(e — Dde

A

Since < 1 +'xe for 0 < x < b, we have in R,

- 1<Ae[(’ j (k—jfr;(k_j)]SAe[‘§+2ax]’

and hence

|70 cla) [(. 4 1 _J.)]- {3.8)

|—(J“1)(k—j—'1) F=10j (k—ji—1(
Turning to J,, we have
11 ‘= lj(k—j)—t(u—t)<
tw —t)  jk =7 tw — ik —5) |~
ik — 7) — tw — 1) )
(j—1Djle—j— 1 -7
Slncel—2J—J(k—.7)—Jk+(.7“1)2<J(k“1)—t(u—t)<J(k—
D—G-Dk-1D+2=k+j—1,

i = 3) — tw — O] < max. [k+j— 1,2 — 1] =
E+j—1=@Fk—-j—1D+2G-1)+2

|| <C

Hence

1 1
Jo| < ; ; p . :
R e e R e

1 1
1 1 |
GG Tt G o 6

From (3.7)-(3.9) we obtainfor 2< j< k —2<n — 2,
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1
+ Cle) [( Dk —7 -1

Ce
J < — :
ol < Gha =5

1 1
(G=Dk—j= 1>*] * C[(j Dk -1
1 1
(j—Dk—j—1) + G— 1k —j— 1)2]' (3.10)

Now from [1],

1

2Sj5k§Sn-—2 G-=1DE—-7—1) ~ (log n)?, (3.11)

n 1 ” 1
% 2 G-D¥e—j—1" ,gz i- 1)2 &, g = 0 Uogm),
(3.12)

RR R SR
S G —DE—F—1D" S i—1 a1 m® (log 7).
(3.13)

From (3.4)—(3.6) and (3.10)—(3.13) it follows that

”

Z Qjx

j. k=1

< Ce,

lim sup (log n) 2

n— ®
and since e is arbitrary this proves (3.1) and Lemma 2.

Turning to the proof of Lemma 1, let

Ko = o | [0y - 3 x V(j))] -
o & [ [re - v ] a
Then EK% = (log n)~?- ; él bz,
where

by = J;{' E[f(V®) — f(VONIAV (@) — f(V(R))] dtdu
= S S [o¢ w) — 6@ B} — {6, w) — 6(j, k)}] dtdu

Rjk
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and where we now write

Ef(V(NF(V(w))

L =QU, u
= m/.uff(x, NfE me " ¥ dx. . .dy

for0<t<u. For2Lj<k—2<mn-2

0(t, w) — 0(t, k) = W t) f f F, DFE Wl —

e~ ] dx. . dn + _t [u — - ] f ff(x, f X

0(t, u)

(;, e %P dx  dy = Ty + Ja
In Rjk,
_ _(x—s“)2+(y—n)2<1 _ 1)_
(x =0+ (y —n)? k—u
2 w—-nk-pn="
Hence [e~0 % — g~ B| = (=0 B|,=1069=06.H) _ 1| <1 —
10090001 < 0(, ) — Q(, by < ET T O =,
_k—u
-tk -1

Thus, writing

Jl 41r2t(u - t) f Ra f 4‘n'2t(u - t) f Ra f + Jl,

we have J; <

(J —1)(k—J—1)

r F2 2 2 .
Jlgmﬁ...fux—r) + (v — 1 X
dv. . dn—F "< Cle)

Twu—Ek—H" G- 1k—j— 1
Q k—u < C .
P w—0k—0"(G—Dk—j—1)

Hence we have

| 2| <
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Ce
; +
-Dk—-j—-1)
C(a) c
G-Dk—-j-1* (G-DE-j—1)7
and similarly it can be shown that the right-hand side of (3.14) is an upper
bound for |0( 7, u) — 6(7, k)| . Hence, as in the proof of Lemma 2,

Io(t’ u) - o(t’ k)l S .
(j

)y (3.14)

11m (log n)~? > bp = 0,
2<j<k=2sn—2

and the other sums occurring in EK? can be proved to be of (log 7)?} as
before, completing the proof of Lemma 1.

4. The One-Dimensional Case.—Let f(x) and g(x) be real valued func-
tions which are bounded and summable in the line — » < x < =, and set

[ = JSfxdx, g= Sgxdx.
THEOREM 3. If f 5 O then for every u,

: 1 [T _
Tim Pr [JV‘T' f LOLE u] = H),

‘ff e "2 dy for u > 0,
where  H(u) =

for u < 0.
THEOREM 4. If g # O then

i Lo fX@)ar_J.
rm o JoTgX@®) dt g

* John Simon Guggenheim Memorial Fellow.
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OMNIBUS CHECKING OF THE 61-PLACE TABLE OF DENARY
LOGARITHMS COMPILED BY'PETERS AND STEIN, BY CALLET,
AND BY PARKHURST

By HorACE S. UHLER
YALE UNIVERSITY
Communicated by J. B. Whitehead, March 30, 1953

The first reference is: Zehnstellige Logarithmentafel. Erster Band.
Herausgegeben von Reichsamt faur Landesaufnahme unter wissenschaftlicher
Leitung von Prof. Dr. J. Peters. Berlin 1922. Table 14b, pages 156-162 of
the appendix. The original source for Table 14b is acknowledged on page
xix by the statement that ‘- - -this table contains the 61-place common



