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1 Supplementary Figures

Supplementary Figure 1: Flashfm, MGflashfm and MGfm, are well-calibrated in EUR-EAS fine-
mapping. Coverage is measured as the probability that all causal variants are captured by the 99%
credible set, estimated over 300 replications. Data are presented as the proportion of replications in
which the 99% credible set contains all causal variants ± SEM, where SEM is the standard proportion
error bound of a 95% confidence interval based on 300 observations. Flashfm-EUR and flashfm-EAS
are multi-trait (single-group) fine-mapping for the indicated group and are well-calibrated in all settings,
as are MGflashfm and MGfm. PAINTOR is not well-calibrated for all settings, while msCAVIAR is not
well-calibrated for unequal sample sizes and for multiple causal variant settings. Within each panel the
three simulation settings are shown as either having equal sample sizes of 10k each or sample sizes of
90k EUR and 10k EAS, and either two causal variants for each trait with one shared (trait 1: AD, trait
2: AC) or non-overlapping causal variants and one trait having a single causal variant (trait 1: AD, trait
2: C); any pair of causal variants have r2 < 0.5.
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Supplementary Figure 2: MGflashfm and MGfm attain the highest power amongst the methods.
Power is measured as the mean proportion of causal variants having PP above a certain threshold (e.g.
0.5 (left) or 0.9 (right)), estimated over 300 replications. The mean power is shown for each method,
as indicated by the top of each bar; the distribution of the power estimates over the 300 replications is
shown by violin plots, where width indicates frequency. There is a general pattern of highest power for
MGflashfm and MGfm, and similarly high powers for the group-specific flashfm and PAINTOR. In all
settings, there are two traits, each with two causal variants, of which one is shared (trait 1: AD, trait 2:
AC); any pair of causal variants have r2 < 0.5. The sample sizes are 90k EUR - 10k AFR, 90k EUR -
10k EAS, and 90k EUR - 40k EAS - 10k AFR.
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Supplementary Figure 3: The flashfm methods have similarly low FDR. FDR is measured as the
mean proportion of non-causal variants having PP above a certain threshold (e.g. 0.5 (left) or 0.9
(right)). The mean FDR is shown for each method, as indicated by the top of each bar; the distribution
of the FDR estimates over the 300 replications is shown by violin plots, where width indicates frequency.
The FDR of MGflashfm, MGfm, and the group-specific flashfm are similarly low at PP threshold 0.9,
but PAINTOR has very high FDR. In all settings, there are two traits, each with two causal variants, of
which one is shared (trait 1: AD, trait 2: AC); any pair of causal variants have r2 < 0.5. The sample
sizes are 90k EUR - 10k AFR, 90k EUR - 10k EAS, and 90k EUR - 40k EAS - 10k AFR.
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Supplementary Figure 4: MGflashfm has the highest accuracy and resolution among calibrated
methods for two traits in two groups. For EUR-EAS simulations, three simulation settings are shown
as either having equal sample sizes of 10k each or sample sizes of 90k EUR and 10k EAS, and either
two causal variants for each trait with one shared (trait 1: AD, trait 2: AC) or non-overlapping causal
variants and one trait having a single causal variant (trait 1: AD, trait 2: C); any pair of causal variants
have r2 < 0.5 and there are 300 replications within each setting. (a) Distribution of the minimum MPP
of causal variants for each trait; the median is given by the centre line, upper and lower quartiles are
the box limits, whiskers are at most 1.5x interquartile range, and width indicates the frequency. This
indicates that MGflashfm is best at prioritising causal variants when the traits share a causal variant or
similar performance to MGfm when no sharing. (b) Comparison of the sizes of 99% credible sets from
MGflashfm and MGfm. This suggests that MGflashfm tends to have better resolution than MGfm.
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Supplementary Figure 5: MGflashfm has the highest accuracy and resolution among calibrated
methods for two traits in three groups. For EUR-EAS-AFR simulations, two simulation settings are
shown as either having equal sample sizes of 10k each or sample sizes of 90k EUR, 40k EAS, and 10k
AFR. There are two causal variants for each trait with one shared (trait 1: AD, trait 2: AC) and any
pair of causal variants have r2 < 0.5; there are 300 replications within each setting. (a) Distribution of
the minimum MPP of causal variants for each trait; the median is given by the centre line, upper and
lower quartiles are the box limits, whiskers are at most 1.5x interquartile range, and width indicates the
frequency. This indicates that MGflashfm is best at prioritising causal variants. (b) Comparison of the
sizes of 99% credible sets from MGflashfm and MGfm. This suggests that MGflashfm tends to have
better resolution than MGfm.
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2 Supplementary Tables

Method 330-variant region 1610-variant region

MGflashfm 106.2 684.3

(91.9, 120.8) (589.9, 717.3)

MGfm 59.8 394.6

(59.1, 58.0) (380.6, 402.9)

PAINTOR 1664.4 1753.1

(757.4, 3824.9) (1262.8, 2864.9)

msCAVIAR 1274.7 >10 hours

(1253.5, 1294.1)

Supplementary Table 1: Computational time of multi-group methods with varying region size.
The median running times (with second and third quartiles) are given in seconds. Running time was
measured over 100 replications in simulations of two traits in two groups. The traits had correlation 0.4
and sample sizes were 90,000 (EUR) and 10,000 (AFR). The APOE region chr19:45000000-45800000
(GRCh37/hg19), consisting of at most 1610 variants or a subset of at most 330 variants in a group, was
used for all simulations.

Number of groups 2 3 4 5

MGflashfm 684.3 761.7 913.3 1089.5

(589.9, 717.3) (686.1, 842.7) (831.9, 1015.3) (976.5, 1367.2)

MGfm 394.6 452.9 551.3 622.7

(380.6, 402.9) (431.4, 467.5) (533.7, 572.9) (591.8, 890.0)

Supplementary Table 2: Varying number of groups, median MGflashfm and MGfm running times
(with second and third quartiles). Median time was measured over 100 replications in simulations
of 2 traits in 2-5 groups. Traits had correlation 0.4 and sample sizes ranged from 10,000 to 90,000
among groups. The APOE region chr19:45000000-45800000 (GRCh37/hg19), consisting of at most
1610 variants in a group, was used for all simulations.
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Number of Traits 2 3 4

Computational Time 684.3 1024.9 1214.2

(589.9, 717.3) (920.1, 1190.3) (1111.6, 1337.9)

Supplementary Table 3: Computational time for MGflashfm with varying number of traits. The
median MGflashfm running time (with second and third quartiles) is given in seconds. Running time was
measured over 300 replications in simulations of 2, 3, and 4 traits in two groups. The traits had correlation
0.4 and sample sizes were 90,000 (EUR) and 10,000 (AFR). The APOE region chr19:45000000-45800000
(GRCh37/hg19), consisting of at most 1610 variants in a group, was used for all simulations. As MGfm
is for single traits, its speed is not considered here.

Method T1: T1: T2: T2:

Pr(cvs in CS99≥1) Pr(cvs in CS99=2) Pr(cv in CS99≥1) Pr(cvs in CS99=2)

MGflashfm 1.0 0.960 1.0 0.970

(0.933, 0.987) (0.946, 0.994)

MGfm 1.0 0.955 1.0 0.960

(0.926, 0.984) (0.933, 0.987)

flashfm-AFR 1.0 0.965 1.0 0.970

(0.940, 0.990) (0.946, 0.994)

flashfm-EUR 0.995 0 1.0 0

(0.985,1.0)

Supplementary Table 4: Calibration is retained by MGflashfm and MGfm upon exclusion of a
causal variant in a group. Two traits, each with two causal variants, were simulated in two groups.
The causal variants for trait 1 are labeled as A, D and those for trait 2 are A, C, to indicate that one
causal variant is shared between the traits. The A variant has MAF<0.01 in EUR and MAF>0.01 in
AFR, and this is the variant that is removed from the EUR group. There are 200 replications.
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3 Supplementary Methods

The MGflashfm framework builds on that of flashfm[1] for multi-trait fine-mapping, which leverages

information between traits to improve precision when there are shared causal variant(s) between traits.

Multi-group fine-mapping has potential to further improve precision of fine-mapping due to differences

in linkage disequilibrium (LD) between diverse population groups. For simplicity, we first consider the

context of single-trait fine-mapping, then extend to multi-group multi-trait fine-mapping.

We first focus on derivations for the two group setting, which easily extends to more than two groups.

Assume that for a single quantitative trait, we have N j, j = 1,2 measurements of the trait within group

j. Also, within each group, the traits are transformed to meet conditional normality and homogeneity

assumptions, conditional on covariates. Later, as in flashfm, we relax this so that a subset of individuals

may have missing measurements for some of the traits. Here, we find an expression for the multi-group

ABF of causal variant models and show that the information from single group analyses could be used

to evaluate the multi-group ABF.

To find expressions of the log(ABF) for each of the joint and marginal models we use the approxima-

tion based on the Bayesian information criterion (BIC) from the null and causal models (BIC0 and BIC1,

respectively)[2]. The log(ABF) approximation (BIC0 −BIC1)/2, is expressed in terms of log likelihoods

as

log(ABF) .
= l1 − l0 −m log(N)/2, (1)

where m is the number of causal variants in the model and l1 and l0 are the log likelihoods of the

causal and null models, evaluated at the maximum likelihood estimates. In flashfm[1], we show that the

log(ABF) for a single trait j model of m j variants, denoted by M j, is

log(ABF j) = −N
2

log
(
(y j −XM j β̂ j)

T (y j −XM j β̂ j)

yT
j y j

)
−

k j

2
log(N)

= −N
2

log
(

V̂M j

V̂j

)
−

k j

2
log(N), (2)

where Vj is the variance of trait j and V̂M j is the residual variance from model M j. The flashfm[1]
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multi-trait BF for M traits is then shown to be:

log(ABFM) =
M

∑
j=1

log(ABF j)+DM,

where

DM =−N
2


log

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 h12
g2

· · · h1M
gM

h21
g1

1 · · · h2M
gM

... hi2
g2

. . .
...

hM1
g1

hM2
g2

· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
− log

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 C12
V2

· · · C1M
VM

C21
V1

1 · · · C2M
VM

... Ci2
V2

. . .
...

CM1
V1

CM2
V2

· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣


. (3)

Let N = N1 +N2, and denote a group 1 model of m1 variants by M1 and, likewise, M2 is a m2-variant

model for group 2. Using (1) and the fact that the groups are independent, we find that the joint Bayes

factor for models M1 and M2 for groups 1 and 2, having m1 and m2 variants, respectively, is given by

BF(1,2)
M1,M2

= BF(1)
M1

×
(

N1

N

)m1
2

×BF(2)
M2

×
(

N2

N

)m2
2

(4)

A natural joint prior probability for a m1-variant group 1 model with a m2-variant group 2 model is

p(1,2)m1,m2 = pm1 pm2 , where pm1 and pm2 are prior probabilities of a m1-variant group 1 model and m2-variant

group 2 model, respectively; this considers the full joint model search space. Assuming that the groups

share at least one causal variant, we add the restriction that the joint prior is only non-zero when the

models overlap.

In particular, denoting the size (number of variants) in a model M(k) for group k by |M(k)|, we have

Pr(|M(1)|= m1, |M(2)|= m2)

= Pr(|M(1)|= m1, |M(2)|= m2,M(1)∩M(2) ̸=∅)+Pr(|M(1)|= m1, |M(2)|= m2,M(1)∩M(2) =∅).

However, we set the prior to 0 when M(1)∩M(2) = ∅, so we introduce a correction factor τm1,m2 such

that

Pr(|M(1)|= m1, |M(2)|= m2) = Pr(|M(1)|= m1, |M(2)|= m2,M(1)∩M(2) ̸=∅)τm1,m2 ,
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so that the total joint prior probability of a m1-variant group 1 model with a m2-variant group 2 model

in the reduced search space is anchored to remain the same as in the full model search space.

Let S = {(i, j) : |M(1)
i |= m1, |M(2)

j |= m2} and n be the number of SNPs in the region, then, we find

τm1,m2 as follows

∑
(i, j)∈S

pm1 pm2 = ∑
(i, j)∈S

pm1 pm21{M(1)
i ∩M(2)

j ̸=∅}τm1,m2(
n

m1

)(
n

m2

)
pm1 pm2 =

[(
n

m1

)(
n

m2

)
−
(

n
m1

)(
n−m1

m2

)]
pm1 pm2τm1,m2 ,

so that

τm1,m2 =

( n
m2

)( n
m2

)
−
(n−m1

m2

) (5)

So the joint prior probability is

p(1,2)m1,m2 = pm1 pm21{M(1)∩M(2) ̸=∅}τm1,m2 , (6)

where τm1,m2 is the correction factor (5)

It follows from (4) and (6) that the joint posterior probability PP(1,2)
M1,M2

for a particular model con-

figuration {M1,M2} may be found from only the PP(1)
M1

, PP(2)
M2

of each model within their respective

single-group fine-mapping model PPs, as follows:

PP(1,2)
M1,M2

= pm1 pm2BF(1)
M1

(
N1

N

)m1
2

BF(2)
M2

(
N2

N

)m2
2

1{M(1)∩M(2) ̸=∅}τm1,m2

= PP(1)
M1

(
N1

N

)m1
2

PP(2)
M2

(
N2

N

)m2
2

1{M(1)∩M(2) ̸=∅}τm1,m2 (7)

Let C be a set of variants that compose a a multi-group model. This encompasses all group 1 - group

2 models that share at least one variant and C is the collection of all variants in these models. So, the
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multi-group PP for set C is given by

PPC = ∑
i j:M(1)

i
⋃

M(2)
j =C,

M(1)
i ∩M(2)

j ̸=∅

PP(1,2)
i j (8)

Finally, for variant s, multi-group MPPs (marginal posterior probability - probability that the variant

appears in a model) are found from

MPPs = ∑
c:s∈c

PPC.

This framework allows us to first evaluate evidence for multi-variant models within each group,

accounting for group-specific LD. Then, evaluate joint evidence for a particular model configuration

{Mi,M j}, of model Mi for group 1 with model M j for group 2, having already accounted for LD within

each group.

Now, assume that we have measurements of M quantitative traits within each group. We consider

the same framework as above, but instead of making use of the single-trait fine-mapping model PPs

from each group, we consider the multi-trait fine-mapping model PPs from flashfm applied to multiple

traits within each group/study. This multi-group multi-trait fine-mapping approach is summarised by the

following steps:

1. For each group, consider only variants that are present for all traits in that group, but do not

intersect variants over groups;

2. Single-trait fine-mapping of each trait, within each group to obtain model PPs for each trait in

each group;

3. Multi-trait fine-mapping (flashfm) within each group to leverage information between traits and

obtain trait-adjusted model PPs for each trait in each group;

4. For each trait, use the above-described framework with PP(1)
M1

and PP(2)
M2

as found from multi-trait

fine-mapping in groups 1 and 2, respectively.

This framework is extended to 3 groups, using similar arguments to the detailed 2-group setting

previously described. Let N = N1 +N2 +N3 and we have
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BF(1,2,3)
M1,M2,M3

= BF(1)
M1

×
(

N1

N

)m1
2

×BF(2)
M2

×
(

N2

N

)m2
2

×BF(3)
M3

×
(

N3

N

)m3
2

(9)

We assume that there is a shared causal variant between at least two of the three group models, which

leads to a correction factor of

τm1,m2,m3 =

( n
m2

)( n
m3

)( n
m2

)( n
m3

)
−
(n−m1

m2

)(n−m1−m2
m3

) ; m1 ≥ m2 ≥ m3 ≥ 0. (10)

So that the multi-group PP for a particular model configuration is

PP(1,2,3)
M1,M2,M3

= PP(1)
M1

(
N1

N

)m1
2

PP(2)
M2

(
N2

N

)m2
2

PP(3)
M3

(
N3

N

)m3
2

1{M1 ∩M2 ̸=∅ or M1 ∩M3 ̸=∅ or M2 ∩M3 ̸=∅}τm1,m2,m3

and the multi-group PP for a set C of variants is given by

PPC = ∑
h,i, j:M(1)

h
⋃

M(2)
i

⋃
M(3)

j =C,

(h,i, j)∈S

PP(1,2,3)
h,i, j , (11)

where S = {(h, i, j) : M(1)
h ∩M(2)

i ̸=∅ or M(1)
h ∩M(3)

j ̸=∅ or M(2)
i ∩M(3)

j ̸=∅}
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