iScience, Volume 26

Supplemental information

Exploring disease-causing traits for drug

repurposing in critically ill

COVID-19 patients: A causal inference approach

Hannes A. Baukmann, Justin L. Cope, Colin Bannard, Alexander R.E.C. Schwinges, Margaretha R.J. Lamparter, Sarah Groves, Charles N.J. Ravarani, Borko Amulic, Joern E. Klinger, and Marco F. Schmidt

Supplementary information

SI Fig. 1. Screening for UKB traits associated with infectious disease, related STAR to Methods. Bonferroni-corrected statistically significant differences in 64 traits identified using independent two-sample *t*-test and Mann-Whitney U test. Trait measurement distributions of infectious disease cases and healthy controls were compared and the p-values, measuring the likelihood of differences by random chance, are reported with the negative logarithm base 10 (see Methods - Screening for significant traits). Red and green columns indicate traits that are significantly increased in infectious disease cases or healthy controls, respectively.

Collinearity estimates between significant traits

SI Fig. 2. Collinearity estimates between significant traits, related to STAR Methods. Heatmap showing collinearity estimates between the 21 traits significant in regression analysis. Highly collinear traits (absolute collinearity greater than 0.5) are removed as keeping both would include redundant information in downstream analysis.

SI Fig. 3. Neutrophil cell count is independent of sex across cases and controls, related to STAR Methods. T-tests were used to assess differences in neutrophil counts between males and females. No significant differences were observed when considering all cases, or only mild cases or severe cases.

SI Fig. 4. Genetic loci associated with neutrophil cell count, related STAR to Methods. Manhattan plot of UKB participants with measured neutrophil cell counts available (n = 444,109). A number of genomic loci show an association with neutrophil cell count, with chromosome 17 harboring a particularly significant locus. This highlights the increased statistical power of a GWAS when using patients' measured traits, which provides a larger pool of subjects, as opposed to disease status, which is often limiting.

SI Fig. 5. Manhattan plot of neutrophil cell count using only COVID-19 cases and a matching number of controls, related STAR to Methods. With the limited number of subjects available (n = 3,010), the statistically significant genomic loci associated with neutrophil cell count are not identified due to lack of power.

SI Fig. 6. Manhattan plot of neutrophil cell count using a random subset of the filtered population, related STAR to Methods. The random subset (n = 3,010) creates a control sample of the same size as the COVID-19 cohort used in this study, accounting for any of its particular makeup, while highlighting the limited power of smaller sample sizes.

SI Fig. 7. Statistical power calculations, related STAR to Methods. Dots represent variants and their effect size (beta, log Odds Ratio) for neutrophil count as determined by the GWAS (n = 444,109). The lines represent the effect size required to achieve a statistical power of 80% at a *p*-value threshold of 1E-15 in the full GWAS (blue) and the GWAS with a random subset of the same size and the cases and controls for severe COVID-19 (green) (n = 3,010).

SI Fig. 9. Effect of inhibitors on NETs triggered by A23187, related STAR to **Methods.** Neutrophils from healthy donors (n = 3) were incubated with baricitinib (A), palbociclib (B), colchicine (C) or sabuzabulin (D) for 45 minutes at the indicated concentrations, before addition of A23187 (2.5 μ M). Total NET area was quantified using live cell imaging over 4h in the presence of SYTOX green.

SI Tab. 1. Critical illness in COVID-19 regressed on the traits significantly different between infectious disease cases and healthy controls, related to STAR Methods. Significance thresholds are indicated by asterisks, where three asterisks indicate p-values below 0.001/51, two indicate p-values below 0.01/51, and one asterisk indicates p-values below 0.05/51.

Trait	Estimate	SE	<i>p</i> -value
ВМІ	0.04719	0.007028	1.89163E-11 ***
Reticulocyte count	7.60919	1.496925	3.71103E-07 ***
Reticulocyte percentage	0.37954	0.071004	9.02311E-08 ***
Mean reticulocyte volume	0.00414	0.004666	3.74834E-01
Immature reticulocyte fraction	3.64822	0.610483	2.28739E-09 ***
High light scatter reticulocyte count	22.60823	3.765371	1.92216E-09 ***
High light scatter reticulocyte percentage	1.06815	0.173818	7.98365E-10 ***
Erythrocyte count	-0.01703	0.086263	8.43490E-01
Erythrocyte distribution width	0.16615	0.039526	2.62767E-05 **
Haemoblogin concentration	-0.00891	0.029668	7.63919E-01
Mean corpuscular volume	-0.00217	0.008046	7.87806E-01
Mean corpuscular haemoglobin concentration	0.02570	0.035277	4.66262E-01
Haematocit percentage	-0.00465	0.010271	6.50538E-01
Thrombocyte count	0.00168	0.000604	5.24684E-03
Thrombocyte crit	1.72371	0.730985	1.83706E-02
Mean thrombocyte volume	-0.04106	0.034446	2.33295E-01
Leukocyte count	0.14942	0.019929	6.49568E-14 ***
Basophil count	2.35277	0.795494	3.10016E-03
Eosinophil count	0.23842	0.266235	3.70503E-01
Eosinophil percentage	-0.03716	0.020737	7.31587E-02
Neutrophil count	0.170778	0.025309	1.50164E-11 ***
Neutrophil percentage	0.00943	0.004216	2.52423E-02
Monocyte count	0.33506	0.155611	3.13015E-02
Monocyte percentage	-0.01740	0.012125	1.51270E-01
Lymphocyte count	0.23706	0.055760	2.12451E-05 **

Lymphocyte percentage	-0.00802	0.004870	9.96131E-02
Mean sphered cell volume	0.00048	0.006796	9.44011E-01
Neutrophil count / Lymphocyte count	0.08736	0.028739	2.36929E-03
Alanine aminotransferase	0.00637	0.001440	9.61590E-06 ***
Albumin	-0.00503	0.013993	7.19078E-01
Alkaline phosphatase	0.00507	0.002474	4.03809E-02
Apolipoprotein A	-0.53989	0.145500	2.06757E-04 *
Direct bilirubin	0.00907	0.044307	8.37844E-01
Total bilirubin	-0.02864	0.009055	1.56234E-03
C-reactive protein	0.03173	0.008310	1.34563E-04 **
Cholesterol	-0.01326	0.031792	6.76677E-01
Cystatin C	1.09557	0.195222	2.00061E-08 ***
Gamma glutamyltransferase	0.00315	0.000801	8.30303E-05 **
Glucose	0.13716	0.026707	2.80836E-07 ***
Glycated haemoglobin (HbA1c)	0.03611	0.005021	6.38047E-13 ***
HDL cholesterol	-0.47517	0.106974	8.91739E-06 ***
IGF-1	-0.01185	0.006495	6.81625E-02
LDL direct	-0.01949	0.042154	6.43797E-01
Oestradiol	-0.00038	0.000409	3.57671E-01
Phosphate	0.01507	0.231906	9.48200E-01
Rheumatoid factor	0.00997	0.003762	8.03311E-03
SHBG	-0.00587	0.001616	2.83598E-04 *
Triglycerides	0.24894	0.037066	1.86505E-11 ***
Urate	0.00142	0.000451	1.60977E-03
Urea	0.04115	0.022342	6.54756E-02
Vitamin D	-0.00998	0.001772	1.79162E-08 ***

SI Tab. 2. Collinearity of traits with significant regressions, related to STAR Methods. Collinearity estimates greater than 0.5 between the 21 traits significant in regression analysis. Highly collinear traits are removed as keeping both would include redundant information in downstream analysis. Therefore one trait within a highly collinear pair was filtered out, giving preference to the trait with the higher regression coefficient with COVID-19 status.

Trait 1	Trait 2	Collinearity estimate	Regression estimate trait 1	Regression estimate trait 2	Trait removed
High light scatter reticulocyte percentage	High light scatter reticulocyte count	0.9738	1.0682	22.6082	Trait 1
Reticulocyte percentage	Reticulocyte count	0.9639	0.3795	7.6092	Trait 1
Apolipoprotein A	HDL cholesterol	0.9181	-0.5399	-0.4752	Trait 2
Reticulocyte percentage	High light scatter reticulocyte percentage	0.8743	0.3795	1.0682	both
Reticulocyte count	High light scatter reticulocyte count	0.8694	7.6092	22.6082	Trait 1
Reticulocyte percentage	High light scatter reticulocyte count	0.8604	0.3795	22.6082	Trait 1
Leukocyte count	Lymphocyte count	0.8391	0.1494	0.2371	Trait 1
Reticulocyte count	High light scatter reticulocyte percentage	0.8244	7.6092	1.0682	both
Immature reticulocyte fraction	High light scatter reticulocyte percentage	0.7328	3.6482	1.0682	Trait 2
Immature reticulocyte fraction	High light scatter reticulocyte count	0.7106	3.6482	22.6082	Trait 1
Glucose	Glycated haemoglobin (HbA1c)	0.6706	0.1372	0.0361	Trait 2
Leukocyte count	Neutrophil count	0.5886	0.1494	0.1708	Trait 1

SI Tab. 3. Drop-one analysis of traits filtered by collinearity analysis, related to STAR Methods. F values and their probabilities Pr(>F) values of traits determined in drop-one analysis. Significance thresholds are indicated by asterisks, where three asterisks indicate *p*-values below 0.001/14, two indicate p-values below 0.01/14, and one asterisk indicates *p*-values below 0.05/14.

Trait	F value	Pr(>F)
ВМІ	0.741657	0.3892078
High light scatter reticulocyte count	1.761507	0.1845500
Erythrocyte distribution width	1.984917	0.1589896
Neutrophil count	9.562278	0.0020067 *
Lymphocyte count	7.840082	0.0051467
Alkaline phosphatase	1.275999	0.2587456
Apolipoprotein A	2.111558	0.1463078
C-reactive protein	0.061001	0.8049391
Cystatin C	3.574881	0.0587677
Gamma glutamyltransferase	2.696038	0.1007155
Glucose	7.641474	0.0057432
SHBG	0.015972	0.8994413
triglycerides	4.532300	0.0333520
Vitamin D	8.091378	0.0044815

SI Tab. 4. Neutrophil cell count propensity scores across cases and controls, related to STAR Methods. Neutrophil cell count [10⁹ cells / liter] across cases and controls in the propensity score deciles (see Methods - Propensity Score Analysis) obtained by splitting individuals into ten groups with a similar propensity for a treatment (neutrophil cell count) controlling for the covariates (age, sex, BMI, C-reactive protein, cystatin C, alanine aminotransferase, and creatinine). The estimates in the table summarize the average neutrophil cell count for each group for both cases and controls.

Decile number	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th	10 th
ctrls	3.70	3.83	4.18	3.98	4.29	4.48	4.50	4.79	4.88	5.23
cases	3.98	4.20	4.26	4.57	4.60	4.53	4.70	4.85	4.92	5.55

SI Tab. 5. Drugs and drug targets with variants significantly associated with neutrophil cell count, related to STAR Methods. Genes and FDA-approved drugs for variants with -log *p*-values greater than 10 for neutrophil cell count. RS ID stands for Reference SNP cluster ID and provides unique standard identifiers for SNPs.

RS ID	Chrom:Pos	-log p	Gene	Drug	Chembl ID
rs57968500	17:38145828	516.737	PSMD3	Bortezomib	CHEMBL325041
	17:38145828	516.737	PSMD3	Carfilzomib	CHEMBL451887
rs56030650	17:38131187	459.752	GSDMA	NA	NA
rs3859191	17:38128714	458.236	GSDMA	NA	NA
rs8077456	17:38128765	381.308	GSDMA	NA	NA
rs34003767	17:38194296	346.912	MED24	NA	NA
rs3902025	17:38119254	254.000	GSDMA	NA	NA
rs3894194	17:38121993	243.737	GSDMA	NA	NA
rs4795406	17:38100134	238.452	LRRC3C	NA	NA
rs4795405	17:38088417	206.491	LRRC3C	NA	NA
rs4795399	17:38061439	179.991	GSDMB	NA	NA
rs11078928	17:38064469	179.218	GSDMB	NA	NA
rs7216389	17:38069949	156.388	GSDMB	NA	NA
rs2290400	17:38066240	151.803	GSDMB	NA	NA
rs2305479	17:38062217	149.614	GSDMB	NA	NA
rs907092	17:37922259	148.403	IKZF3	NA	NA
rs60069701	4:75044689	138.183	MTHFD2L	NA	NA
rs870829	17:38068382	136.478	GSDMB	NA	NA
rs9303277	17:37976469	134.933	IKZF3	NA	NA
rs921650	17:38069076	134.841	GSDMB	NA	NA
rs445	7:92408370	123.637	CDK6	Palbociclib	CHEMBL189963
	7:92408370	123.637	CDK6	Ribociclib	CHEMBL3545110
	7:92408370	123.637	CDK6	Fulvestrant	CHEMBL1358
	7:92408370	123.637	CDK6	Abemaciclib	CHEMBL3301610
	7:92408370	123.637	CDK6	Trilaciclib	CHEMBL3894860

	7:92408370	123.637	CDK6	Apremilast	CHEMBL514800
	7:92408370	123.637	CDK6	Dexamethaso ne	CHEMBL384467
rs141144358	17:38251385	123.212	NR1D1	Lithium	CHEMBL2146126
rs2102928	17:38253228	115.612	NR1D1	Lithium	CHEMBL2146126
rs9635726	17:38020141	114.486	IKZF3	NA	NA
rs4247366	17:38179374	103.477	MED24	NA	NA
rs11775560	8:61660163	97.198	CHD7	NA	NA
rs939348	17:38231853	91.093	THRA	Levothyroxine	CHEMBL16244
	17:38231853	91.093	THRA	Liothyronine	CHEMBL1544
	17:38231853	91.093	THRA	Aspirin	CHEMBL25
	17:38231853	91.093	THRA	Lithium	CHEMBL2146126
rs55799208	2:218999982	89.572	CXCR2	Clotrimazole	CHEMBL104
	2:218999982	89.572	CXCR2	Acetylcysteine	CHEMBL600
	2:218999982	89.572	CXCR2	Ibuprofen	CHEMBL521
rs4760	19:44153100	82.772	PLAUR	Filgrastim	CHEMBL1201567
	19:44153100	82.772	PLAUR	Ruxolitinib	CHEMBL1789941
rs1887428	9:4984530	11.004	JAK2	Baricitinib	CHEMBL2105759
	9:4984530	11.004	JAK2	Ruxolitinib	CHEMBL1789941

SI Tab. 6. The Two Sample MR analyzes with varying clumping parameters, related to STAR Methods. With neutrophil cell count as exposure and critically ill COVID-19 status as outcome, results were dependent on the clumping parameters applied, i.e. only significant with lenient clumping parameters The clumping parameter (r^2) gives the squared correlation threshold for clumping, n SNPs is the number of SNPs resulting from the clumping procedure, effect estimate (± standard error) and the p-value result from the MR experiment using the IVW method, and the negative pleiotropy test indicates that results do not show pleiotropy. The asterisk signifies statistical significance with P ≤ 0.05.

Clumping parameter	n SNPs	Effect Estimate	IVW <i>p</i> -value	Pleiotropy test
lenient (r ² = 0.2)	1,581	–0.1114 ± 0.04433	0.01199 *	negative
strict (r ² = 0.01)	567	0.0114 ± 0.06987	0.87095	negative