iScience, Volume 26

Supplemental information

Revisiting mitogenome evolution in Medusozoa

with eight new mitochondrial genomes

Min Kang Ling, Nicholas Wei Liang Yap, Iffah Binte Iesa, Zhi Ting Yip, Danwei Huang, and Zheng Bin Randolph Quek

SUPPLEMENTAL MATERIALS

Figure S1. Existing hypotheses of cnidarian phylogenetic relationships as reconstructed from previous nuclear genome analyses, related to Figure 1. Phylogenies based on studies from (A) Dawson¹, (B) Chang et al.² and (C) Kayal et al.³

Figure S2. DNA mapping figures of assembled mitochondrial genomes in the current study, related to STAR Methods. Low quality reads (MAPQ < q30) were excluded. Visualised in Geneious Prime⁴ (v2022.0.1). Scale bar on left denotes maximum coverage and mean coverage (indicated with a marking). (A) OR400200 (Aeguorea sp.), total reads mapped = 291,414, mean read length = 151 bp, mean read coverage \pm SD) = 2817.1 \pm 1922.1; (B) OR400201 (Phyllorhiza punctata), total reads mapped = 117,350, mean read length = 151 bp, mean read coverage ± SD = 1004.5 ± 308.8; (C) OR400202 (Zygocanna sp.), total reads mapped = 6,627, mean read length = 152 bp, mean read coverage \pm SD = 59.9 ± 42.8 ; (D) OR400203 (Acromitus sp.), total reads mapped = 64,673, mean read length = 151 bp, mean read coverage \pm SD = 544.6 \pm 266.2; (E) OR400204 (Phyllorhiza punctata), total reads mapped = 65,620, mean read length = 151 bp, mean read coverage \pm SD = 562.3 \pm 334.8; (F) OR400205 (Acromitus sp.), total reads mapped = 131,286, mean read length = 151 bp, mean read coverage ± SD = 1121.7 ± 350.1; (G) OR400206 (Cassiopea sp.), total reads mapped = 140.616, mean read length = 151 bp, mean read coverage \pm SD = 1192.3 \pm 1217.4. (H) OR400207 (Morbakka sp. chr. 1), total reads mapped = 25,532, mean read length = 151 bp, mean read coverage \pm $SD = 650.6 \pm 727.1$; OR400207 (Morbakka sp. chr. 2), total reads mapped = 15,916, mean read length = 151 bp, mean read coverage $\pm SD = 753.7 \pm 916.5$; OR400207 (Morbakka sp. chr. 3), total reads mapped = 22,530, mean read length = 151 bp, mean read coverage \pm SD = 691.7 ± 748.3 ; OR400207 (Morbakka sp. chr. 4), total reads mapped = 19,096, mean read length = 151 bp, mean read coverage \pm SD = 750.5 ± 831.6 ; OR400207 (Morbakka sp. chr. 5), total reads mapped = 21,582, mean read length = 151 bp, mean read coverage \pm SD = 819.9 ± 823.3 ; OR400207 (Morbakka sp. chr. 6), total reads mapped = 22.995, mean read length = 151 bp, mean read coverage \pm SD = 566.6 \pm 681.3; OR400207 (Morbakka sp. chr. 7), total reads mapped = 15.903, mean read length = 151 bp, mean read coverage \pm SD = 612.9 \pm 859.8; OR400207 (Morbakka sp. chr. 8), total reads mapped = 16,246, mean read length = 151 bp, mean read coverage \pm SD = 706.5 \pm 893.9. Abbreviations: chr. – chromosome; SD – standard deviation.

0.3

Figure S3. Phylogenetic relationships among Cnidaria mitogenomes based on maximum likelihood (ML) analysis, related to Figure 2. Analysis was conducted with RAxML-NG⁵ (v0.8.1). GenBank ascension numbers of mitogenomes are provided in parentheses. Support values correspond to the bootstrap values from the ML phylogeny. Bolded specimens indicate newly assembled mitogenomes from the current study. The ° symbol denotes available mitogenome recorded as circular on GenBank.

Figure S4. Phylogenetic relationships among Cnidaria mitogenomes based on Bayesian (BI) analysis, related to Figure 2. Analysis was conducted with Phylobayes⁶ (v3.3e). GenBank ascension numbers of mitogenomes are provided in parentheses. Support values correspond to the posterior probabilities from BI analysis. Bolded specimens indicate newly assembled mitogenomes from the current study. The ° symbol denotes available mitogenome recorded as circular on GenBank.

Figure S5. Comparison of gene order of Medusozoa mitochondrial genes with reference to the Bayesian (BI) phylogeny, using complete cnidarian mitogenomes, related to Figure 3. For mitogenomes with multiple chromosomes, vertical lines denote breaks between each chromosomal fragment. Complete mitochondrial genes are indicated in colour, while pseudogenes (as indicated on GenBank) are coloured but outlined with dotted lines. Missing genes are represented by uncoloured boxes outlined with dotted lines. Mitochondrial rearrangements indicated using black arrows: (A) Ancestral medusozoan gene order (AMGO); (B) fragmentation of mitochondrial genome, loss of trnW; (C) loss of trnW, rnl, polB and orf314, (D) inverse transposition of rnl and loss of polB and orf314; (E) loss of gene pair polB-orf314, and duplication, transposition and inversion of cox1; (F) inversion of rnl and transposition of trnW; (G) transposition of trnM; (H) fragmentation and duplication of cox1; (I) transposition of rnl, rns, cox1, atp6 and nad1. Asterisks (*) denote the phylogenetic positions of specimens assembled in current study: Scyphozoa – Acromitus sp., Cassiopea sp., Phyllorhiza punctata; Hydrozoa – Zygocanna sp., Aequorea sp.; Cubozoa – Morbakka sp.

Figure S6. Results from the TreeRex analysis of the Bayesian (BI) Medusozoa phylogeny, related to Figure 4. Where applicable, inferred mitochondrial genome rearrangements are listed at the corresponding nodes. Gene order rearrangements are as follows: I – inversion; T - transposition; iT – inverse transposition; TDRL – tandem duplication random loss. Genes undergoing rearrangements are indicated in parentheses. Labels at nodes denote the inferred gene order for the common ancestor as listed in the BI TreeRex analysis output (see Supplementary Data S2).

Table S2. Sampling localities of the eight medusozoan specimens used for mitogenome assembly in the current study, deposited in Lee Kong Chian Natural History Museum (LKCNHM), related to STAR Methods. Abbreviations: ID – Identity; No. – Number.

Morphological ID	Accession No.	LKCNHM Catalogue No.	Locality	Coordinates
Aequorea sp.	OR400200	ZRC.CNI.1440	Offshore of People Association campsite	01°18'N, 103°57'E
Phyllorhiza punctata	OR400201	ZRC.CNI.1437	St. John's Island	01°12'N, 103°51'E
Zygocanna sp.	OR400202	ZRC.CNI.1433	Chek Jawa, Pulau Ubin	01°24'N, 103°59'E
Acromitus sp.	OR400203	ZRC.CNI.1396	OBS Camp 1, Pulau Ubin	01°25'N, 103°55'E
Phyllorhiza punctata	OR400204	ZRC.CNI.1439	Pulau Jong	01°12'N, 103°47'E
Acromitus sp.	OR400205	ZRC.CNI.1436	Terumbu Raya	01°12'N, 103°44'E
Cassiopea sp.	OR400206	ZRC.CNI.3022/3*	St. John's Island	01°12'N, 103°51'E
Morbakka sp.	OR400207 – OR400214	ZRC.CNI.1418	ONE 15 Marina Sentosa Cove	01°14'N, 103°50'E

Table S3. List of medusozoan mitochondrial sequences assembled in the current study (Morphological ID), as well as the reference medusozoan mitochondrial genome sequences obtained from GenBank used for identifying assembled mitochondrial chromosomes (Blast Reference ID) and annotating identified mitochondrial genes (Mt Gene Alignment Reference ID), related to STAR Methods. The corresponding accession numbers for all reference mitogenomes used have also been provided. For the Cassiopea sp. used in the current study (*), subsamples of the specimen used for mitogenome reconstruction were preserved in ethanol (ZRC.CNI.3022) and formalin (ZRC.CNI.3023). Abbreviations: ID – Identity; Mt – Mitochondrial; No. – Number.

Specimen No.	Morphological ID	Blast Reference ID	Accession No.	Mt Gene Alignment Reference ID	Accession No.
ZRC.CNI.1440	Aequorea sp.	Aequorea coerulescens	MN066550	Blackfordia virginica	MW376866
				Pelagia noctiluca	JN593332
ZRC.CNI.1437	Phyllorhiza punctata	Phyllorhiza punctata	OM764500	Cassiopea xamachana	JN700936
				Catostylus townsendi	OK299144
				Mastigias papua	OQ695499
				Stomolophus sp.	MK157198
ZRC.CNI.1433	Zygocanna sp.	Zygocanna apapillatus	MW528704	Blackfordia virginica	MW376866
				<i>Eutima</i> sp.	MW066348
ZRC.CNI.1396	Acromitus sp.	Acromitus flagellatus	NC061659	Acromitus flagellates	OM457248
				Catostylus mosaicus	JN700940
				Catostylus townsendi	OK299144
				Phyllorhiza punctata	OR400201
				Phyllorhiza punctata	OR400204
ZRC.CNI.1439	Phyllorhiza punctata	Phyllorhiza punctata	OM764500	Cassiopea xamachana	JN700936
				Catostylus townsendi	OK299144
ZRC.CNI.1436	Acromitus sp.	Acromitus flagellatus	NC061659	Acromitus flagellatus	OM457248
				Cassiopea xamachana	JN700936
				Catostylus mosaicus	JN700940.1
				Catostylus townsendi	OK299144
				Phyllorhiza punctata	OR400201
ZRC.CNI.1418	<i>Morbakka</i> sp.	Alatina alata	KJ452776 – KJ452783	Alatina alata	KJ452776 – KJ452783
		Alatina alata	JN642329 – JN642343	Alatina alata	JN642329 – JN642343
		Carybdea xaymacana	JN700977 – JN700983	Alatina alata	JN642330 – JN642344
		Carukia barnesi	JN700959 – JN700962		
		Chironex fleckeri	JN700963 – JN700968		
		Chiropsalmus quadrumanus	JN700969 – JN700974		
ZRC.CNI.3022/3*	Cassiopea sp.	Cassiopea xamachana	JN700936	Cassiopea andromeda	JN700934
		•		Cassiopea xamachana	JN700936

Mitachandrial Cono	ModelTest-NG Evolutionary Model			
Mitochondrial Gene	RAxML	Phylobayes		
atp6	GTR+I+G4	CAT-Poisson +G4		
atp8	TPM3uf+I+G4	CAT-Poisson +G4		
cob	GTR+I+G4	CAT-Poisson +G4		
cox1	GTR+I+G4	CAT-Poisson +G4		
cox2	GTR+I+G4	CAT-Poisson +G4		
cox3	GTR+I+G4	CAT-Poisson +G4		
nad1	TVM+I+G4	CAT-Poisson +G4		
nad2	GTR+I+G4	CAT-Poisson +G4		
nad3	TVM+G4	CAT-Poisson +G4		
nad4	TVM+I+G4	CAT-Poisson +G4		
nad4L	GTR+I+G4	CAT-Poisson +G4		
nad5	GTR+I+G4	CAT-Poisson +G4		
nad6	TVM+I+G4	CAT-Poisson +G4		
orf314	TPM3uf+I+G4	CAT-Poisson +G4		
polB	TPM3uf+I+G4	CAT-Poisson +G4		
rns	GTR+I+G4	CAT-Poisson +G4		
rnl	GTR+I+G4	CAT-Poisson +G4		
trnM	TPM2uf+G4	CAT-Poisson +G4		
trnW	TVMef+G4	CAT-Poisson +G4		

Table S5. List of evolutionary models used for Maximum Likelihood (ML) and Bayesian (BI) phylogenetic analyses of mitochondrial genes in medusozoan mtDNA, related to STAR Methods. Models for the ML analysis were determined using ModelTest-NG⁷ (v0.2.0) while those for the BI analysis were carried out based on the default settings of Phylobayes⁶ (v3.3e).

SUPPLEMENTAL REFERENCES

- 1. Dawson, M.N., 2004. Some implications of molecular phylogenetics for understanding biodiversity in jellyfishes, with emphasis on Scyphozoa. Hydrobiologia. 530/531, 249–260.
- 2. Chang, E.S., et al., 2015. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Evolution. 112, 14912–14917. <u>https://doi.org/10.1073/pnas.1511468112</u>.
- Kayal, E., et al., 2018. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol. Biol. 18, 1–18. <u>https://doi.org/10.1186/s12862-018-1142-0</u>.
- 4. Kearse, M., et al., 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199.
- Darriba, D., et al., 2019. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Bio. Evol. 37, 291–294. https://doi.org/10.1093/molbev/msz189.
- Lartillot N., Lepage T., Blanquart S., 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288. <u>https://doi.org/10.1093/bioinformatics/btp368</u>.
- Kozlov, A.M., Darriba, D., Flouri, T., Morel, B., Stamatakis, A., 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 35, 4453–4455. <u>https://doi.org/10.1093/bioinformatics/btz305</u>.