Supporting Information

Development of First-in-Class Dual Sirt2/HDAC6 Inhibitors as Molecular Tools for Dual Inhibition of Tubulin Deacetylation

Laura Sinatra,^{§,#} Anja Vogelmann,^{△,#} Florian Friedrich,[△] Margarita A. Tararina,[□] Emilia Neuwirt,^{I,‡} Arianna Colcerasa,[△] Philipp König,[◊] Lara Toy,[⊥] Talha Z. Yesiloglu,[†] Sebastian Hilscher,^{†,≡} Lena Gaitzsch,[△] Niklas Papenkordt,[△] Shiyang Zhai,[◊] Lin Zhang,[△] Christophe Romier,⁼ Oliver Einsle,[△] Wolfgang Sippl,[†] Mike Schutkowski,[≡] Olaf Gross,^{I,‡,\$}, Gerd Bendas,[◊] David W. Christianson,[□] Finn K. Hansen,^{◊,§} Manfred Jung,[△] Matthias Schiedel,^{⊥,[∓],*}

§ Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany

^A Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany

^a Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States

¹ Institute of Neuropathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany

[‡] CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany

[◊] Department of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany

[⊥] Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany

⁺ Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany

^a Institute of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany

⁼ Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm UMR-S 1258, 1 rue Laurent Fries, F-67400 Illkirch, France

⁼ Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany

^{\$} Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany

[†] Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany

*Correspondence: Prof. Dr. Matthias Schiedel, Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany, Email: <u>matthias.schiedel@tu-braunschweig.de</u>

Table of Contents

S3	Supplementary Figures
S14	Supplementary Tables
S16	NMR Spectra
S95	HPLC Chromatograms
S106	Supplementary References

Supplementary Figures

Figure S1. The dual Sirt2/HDAC6 inhibitor **33** also shows an inhibition of Sirt2-mediated demyristoylation in a biochemical activity assay,[1] which is based on the conversion of a myristoylated peptide substrate (triplicate measurement, see Experimental Section for experimental details). The Sirt2 selective inhibitor **5**,[2] which was previously shown to inhibit Sirt2-mediated demyristoylation,[3] was used as a control.

Figure S2. Results of the MD simulation of the Sirt2-5 crystal structure (PDB ID: 80WZ) for two repeated MD runs (100 ns). a) RMSD plot of protein heavy atoms. b) RMSD plot of ligand heavy atoms. RMSD plot of MD 1 is colored red, for MD run 2 it is colored cyan.

Figure S3. Results of the MD simulation of the HDAC6-**57** crystal structure (PDB ID 8G20) for two repeated MD runs (100 ns). a) RMSD plot of protein heavy atoms. b) RMSD plot of ligand heavy atoms. c) RMSD plot of the zinc ion. d) Distance plot of the coordination of the hydroxamate oxygens O1 (NO⁻) and O2 (CO) to the zinc ion. RMSD plot of MD 1 is colored red, for MD run 2 it is colored cyan.

Figure S4. Results of the MD simulation of the Sirt2-**33** docking complex for two repeated MD runs (100 ns). a) RMSD plot of protein heavy atoms. b) RMSD plot of ligand heavy atoms. RMSD plot of MD 1 is colored red, for MD run 2 it is colored cyan.

Figure S5. Results of the MD simulation of the Sirt2-**32** docking complex for two repeated MD runs (100 ns). a) RMSD plot of protein heavy atoms. b) RMSD plot of ligand heavy atoms. RMSD plot of MD 1 is colored red, for MD run 2 it is colored cyan.

Figure S6. Shown are selected frames of MD simulations of Sirt2 ligand complexes at 0 ns (lime carbon atoms), 50 ns (magenta carbon atoms) and 100 ns (yellow carbon atoms). Ligands are shown as sticks, proteins are shown as white cartoons for clarity. a) Frames of the MD run 1 of Sirt2-5 crystal structure (PDB ID: 80WZ). b) Frames of the MD run 2 of Sirt2-5 crystal structure (PDB ID: 80WZ). c) Frames of the MD run 1 of Sirt2-33 docking complex. d) Frames of the MD run 2 of Sirt2-33 docking complex. e) Frames of the MD run 1 of Sirt2-32 docking complex. f) Frames of the MD run 2 of Sirt2-32 docking complex.

Figure S7. Results of the MD simulation of the HDAC6-**33** docking complex for two repeated MD runs (100 ns). a) RMSD plot of protein heavy atoms. b) RMSD plot of ligand heavy atoms. c) RMSD plot of the zinc ion. d) Distance plot of the coordination of the hydroxamate oxygens O1 (NO⁻) and O2 (CO) to the zinc ion. RMSD plot of MD 1 is colored red, for MD run 2 it is colored cyan.

Figure S8. Results of the MD simulation of the HDAC6-**32** docking complex for two repeated MD runs (100 ns). a) RMSD plot of protein heavy atoms. b) RMSD plot of ligand heavy atoms. c) RMSD plot of the zinc ion. d) Distance plot of the coordination of the hydroxamate oxygens O1 (NO⁻) and O2 (CO) to the zinc ion. RMSD plot of MD 1 is colored red, for MD run 2 it is colored cyan.

Figure S9. Shown are selected frames of the MD simulations of HDAC6-ligand complexes at 0 ns (lime carbon atoms), 50 ns (magenta carbon atoms) and 100 ns (yellow carbon atoms). Ligands are shown as sticks, proteins are shown as white cartoons for clarity and the zinc ions are shown as orange spheres. a) Frames of the MD run 1 of the HDAC6-57 crystal structure. b) Frames of the MD run 2 of the HDAC6-57 crystal structure. c) Frames of the MD run 1 of HDAC6-33 docking complex and d) Frames of the MD run 2 of HDAC6-33 docking complex. e) Frames of the MD run 1 of HDAC6-32 docking complex. f) Frames of the MD run 2 of HDAC6-32 docking complex.

Figure S10. Chemical structures of molecular tools used to demonstrate cellular target engagement for the dual Sirt2/HDAC6 inhibitor **33**. A) Sirt2 selective fluorescent probe SirReal-TAMRA (**61**),[3, 4] which was used to demonstrate cellular Sirt2 target engagement for the dual Sirt2/HDAC6 inhibitor **33** *via* a cellular NanoBRET assay. B) HDAC6 selective PROTAC B4 (**62**),[5] which was used to demonstrate cellular HDAC6 target engagement for the dual Sirt2/HDAC6 inhibitor **33** *via* a degradation rescue experiment.

Sirt2-targeted fluorescent probe SirReal-TAMRA (61)

Figure S11. Dual Sirt2/HDAC6 inhibitors **32** and **33** evoke no significant off-target inhibition of class I HDACs at a cellular level, as shown by the investigation of histone H3 hyperacetylation, a marker for cellular inhibition of HDAC1-3. Tests were performed with MCF-7 breast cancer cells, a well-established cell line for the investigation of class I HDAC inhibition.[6-8] A) Representative western blot from whole cell lysates of MCF-7 cells after 24 h treatment with dual Sirt2/HDAC6 inhibitors **32** or **33**, unconjugated Sirt2 inhibitor **4**, unconjugated HDAC6 inhibitor **57**, and the Sirt2/HDAC inhibitor **46**. SAHA was used as a positive control and DMSO as a vehicle control. Compounds were tested at a concentration of 10 μ M. B) Western blot quantification (n = 3). C) Effects of **33** on histone H3 acetylation at compound concentrations of 10 μ M and 20 μ M. Representative western blot from whole cell lysates of MCF-7 breast cancer cells after 24 h treatment with the dual Sirt2/HDAC6 inhibitors **33**. D) Western blot quantification (n = 3).

Supplementary Tables

Table S1. Dual Sirt2/HDAC6 inhibitor **33** tested by means of biochemical *in vitro* deacylation assays (see Experimental Section for more experimental details).[9-11] IC₅₀ values [μ M, mean \pm SD] or percentual inhibition at a given concentration of the dual Sirt2/HDAC6 inhibitor. Nicotinamide (NA) and panobinostat (Pano) were used as reference compounds for sirtuin and Zn²⁺-dependent HDAC inhibition, respectively.

Cmpd	Sirt5 ^[a]	Sirt6 ^[a]	HDAC4 ^[b]	HDAC5 ^[b]	HDAC7 ^[b]	HDAC8 ^[c]	HDAC9 ^[b]	HDAC10 ^[b]
33	> 500 μM (-1% @ 500 μM, -2% @ 200 μM)	> 500 μM (10% @ 500 μM, 0% @ 200 μM)	> 20 μM (7% @ 20 μM, 4% @ 6 μM)	> 6 μM (57% @ 20 μM, 18% @ 6 μM)	> 6 μM (57% @ 20 μM, 29% @ 6 μM)	$\begin{array}{c} 2.94 \pm 0.45 \\ \mu M \end{array}$	> 20 μM (37% @ 20 μM, 17% @ 6 μM)	> 6 μM (64% @ 20 μM, 27% @ 6 μM)
NA	$140\pm17~\mu M$	$590\pm73~\mu M$	n.t. ^[d]	n.t. ^[d]	n.t. ^[d]	n.t. ^[d]	n.t. ^[d]	n.t. ^[d]
Pano	n.t. ^[d]	n.t. ^[d]	$\begin{array}{c} 0.303 \pm 0.038 \\ \mu M \end{array}$	$\begin{array}{c} 0.0423 \pm 0.0116 \\ \mu M \end{array}$	$1.25\pm0.91~\mu M$	$\begin{array}{c} 0.51 \pm 0.05 \\ \mu M \end{array}$	$1.65\pm0.83~\mu M$	$\begin{array}{c} 0.00262 \pm 0.00002 \\ \mu M \end{array}$

[a] Test performed in duplicate; [b] Tests performed in triplicate (n = 2); [c] Tests performed in triplicate; [d] n.t. = not tested

Table S2. Crystallographic data collection and refinement statistics for the Sirt2- and HDAC6-inhibitor complexes.

Data Collection			
Inhibitor	5	55	57
Protein	Sirt2	HDAC6	HDAC6
Space group	$P2_{1}$	P21	P1
<i>a, b, c</i> (Å)	35.81, 73.46, 55.33	55.66, 48.39, 74.52	48.24, 55.54, 74.40
α, β, γ (deg)	90.00, 95.34, 90.00	90, 106.18, 90	73, 89.90, 82.82
Wavelength (Å)	0.9677	0.97918	0.97934
Resolution (Å)	55.09 - 1.65 (1.68 - 1.65)	71.57 – 1.87 (1.91 – 1.87)	29.05 - 1.77 (1.81 - 1.77)
Total/unique no. of	227 570/33 034	11/ /80/31 171	187 535/60 137
reflections	227,370/33,334	114,400/51,1/1	187,555/09,157
$R_{\rm merge}{}^{a,b}$	0.096 (1.016)	0.280 (1.308)	0.131 (0.552)
$R_{\rm pim}{}^{a,c}$	0.040 (0.411)	0.237 (1.164)	0.121 (0.352)
$\text{CC}_{1/2}^{a,d}$	0.998 (0.741)	0.974 (0.389)	0.986 (0.649)
$I/\sigma(I)^{a}$	11.3 (2.0)	7.6 (1.1)	5.4 (1.5)
Redundancy ^{<i>a</i>}	6.7 (7.0)	3.7 (2.9)	2.7 (2.6)
Completeness $(\%)^a$	98.7 (99.1)	98.3 (91.1)	96.1 (89.2)
Refinement			
No. of reflections used in	22.002 (2.120)	21.044 (2.002)	
refinement/test set	33,902 (3,429)	31,044 (2,903)	69,115 (6,516)
$R_{ m work}^{e}$	0.168 (0.234)	0.204 (0.400)	0.192 (0.270)
$R_{\rm free}^{f}$	0.197 (0.250)	0.254 (0.424)	0.229 (0.344)
Number of Atoms ^g			2439
protein	2439	2780	5506
ligand	80	30	83
solvent	230	209	400
Average <i>B</i> Factors (Å ²)			
protein	26.5	26	15
ligand	32.1	34	20
solvent	31.0	31	19
RMS Deviations			
bonds (Å)	0.007	0.006	0.010
angles (deg)	0.94	0.79	0.99
Ramachandran plot (%) ^h			
favored	97.26	97.2	96.9
allowed	2.74	2.8	3.1
outliers	0	0	0
PDB accession code	80WZ	8G1Z	8G20

^a Values in parentheses refer to the highest-resolution shell of the data.

 ${}^{b}R_{merge} = \sum |I_h - \langle I_h \rangle| / \sum \langle I_h \rangle$; I_h = intensity measure for reflection h; $\langle I_h \rangle$ = average intensity for reflection h calculated from replicate data.

^{*c*} $R_{pim} = \sum (1/(n-1)^{1/2} |I_h - \langle I_h \rangle) / \sum \langle I_h \rangle; n =$ number of observations (redundancy).

 d CC_{1/2} = $\sigma_{\tau}^{2}/(\sigma_{\tau}^{2} + \sigma_{\varepsilon}^{2})$, where σ_{τ}^{2} is the true measurement error variance and σ_{ε}^{2} is the independent measurement error variance.

 $e R_{work} = \sum ||F_o| - |F_c|| / \sum |F_o|$ for reflections contained in the working set. $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively.

 ${}^{f}R_{free} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|$ for reflections contained in the test set held aside during refinement.

^g Per asymmetric unit.

^{*h*} Assessed by MolProbity.

NMR spectra

NMR spectra for compounds 21-22, 25-40, 42-46 and 55-60 can be found on the following pages.

¹H NMR (400 MHz, DMSO-*d*₆) for compound **21**

110 100 f1 (ppm) S18

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 f1 (ppm)

	1	

¹H NMR (400 MHz, DMSO-*d*₆) for compound **22**

¹³C NMR (151 MHz, DMSO-*d*₆) for compound **29**

¹H NMR (400 MHz, DMSO-*d*₆) for compound **31**

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 f1 (ppm) s36

¹⁹F NMR (377 MHz, DMSO-*d*₆) for compound **31**

										1 . 1 .	I . I .			I · I ·		I . I .	· · · ·			
100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240	-260	-280	-300
									f	1 (ppn	n)									S40

¹H NMR (600 MHz, DMSO-*d*₆) for compound **33**

¹³ C NMR (151 MHz, DMSO- <i>d</i> ₆) for co	mpound 33 (zoomed-in view 2)				
$\begin{pmatrix} 171.71\\ 171.70\\ 171.70\\ \hline 166.98\\ 166.98\\ 166.81\\ 166.81\\ 163.85\\ 163.85 \end{pmatrix}$	158.56 158.31 158.19 158.07 157.83 156.90	142.58 142.55 141.77 141.77 141.25	—134.72	131.66 131.36 131.36 129.61 127.19 126.33 126.33 126.33 126.33 124.32 124.32	118.41 116.45 116.09 114.94 1114.53 112.60 112.46

							1													
100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240	-260	-280	-300
									f1	. (ppm)									S45

******	<u> </u>	

¹H NMR (400 MHz, DMSO-*d*₆) for compound **36**

¹H NMR (400 MHz, DMSO- d_6) for compound **39**

¹³C N

NMR (101 MHz, DMSO- <i>d</i> ₆) for compound 42 102:20 121:88 112:20 12:20 102:20 12:20 10:20 102:20 102:20 102:20 102:20 102:20 102:20 102:20 102:20 102:20 102:20 102:20 102:20 102:20 102:20 10:20	144.28 143.83 129.55 129.55 128.78 128.78 128.48 128.52 127.52	60.71 50.65 50.65 50.65 50.65 50.65 47.69 31.72 31.72 31.72 31.72 22.29 11.22.26 11.22.20 11.22.20 11.22.04 11.2

200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) S59

¹H NMR (400 MHz, DMSO-*d*₆) for compound **44**

00000000000000000000000000000000000000	m
0.000000000000000000000000000000000000	3.2
	Ņ

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) 565

			1941/14.401111/14.4014/14.4014			4414444		100000000000000000000000000000000000000		/\64844_\4444_			h ^{ad} yunluy (1) 11 11 11 11 11 11 11 11 11 11 11 11 1		W1411W44444
172	168	164	160	156	152	148	144 f1 (p	140 opm)	136	132	128	124	120	116	112 567

¹³ C NMR (101 MHz, DMSO- <i>d</i> ₆) for c	ompound 44 (zoomed-in view 2)						
169.65 168.89 167.01 166.84 165.75 164.09	158.21	143.08 142.51 141.84	134.73	131.25 131.25 129.62 128.54 128.12 128.12 128.12 128.12 124.85 124.85	120.89	118.20 116.12 114.93	112.43
$1 \land \land \land \land \land$		\leq 1 $<$				$\langle \langle \langle \rangle \rangle$	

70	50	30	10	-10	-30	-50	-70	-90 - f1 (ppr	110 n)	-130	-150	-170	-190	-210	-230	-250	-270 568
							1										

¹H NMR (400 MHz, DMSO-*d*₆) for compound **45**

¹³C NMR (151 MHz, DMSO- d_6) for compound **45** (zoomed-in view 2)
-80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 f1 (ppm) 80 60 40 20 -20 -40 100 0 -60 S73

---74.12

¹H NMR (400 MHz, DMSO-*d*₆) for compound **46**

/ 134.72 / 131.05 / 129.62

112.43 122.09 124.86 118.11 116.12 112.43	69.74 69.61 69.64 69.64 69.51 68.64 61.01 49.39	37.20 34.07 32.24 31.90 29.10 28.37 26.25 26.25

170	165	160	155	150	145 1 f1 (p	140 13 pm)	35	130	125	120	115	110 577
			Newtryday yn Schwargel y Mew Pry	Allerry 1444 14-14-14-14-14-14-14-14-14-14-14-14-14-1	nyurayteen tang participang ang benefician ang benefician tang participang ang benefician tang benefician tang	onductural/helisy-terminespectry-hered/suck.	1 mpm-444 united and the	Were Wereck W Warde	Mumbel MANN Without	WMMMMMM		Mumme Wardow And Mada
169.58 MMK (101 MMZ 75.1 169.11 169.11 163.01	, 100.01 166.84 MG 165.54 SS4 95 165.54 Ω	- compound 46 (; 158.21 156 93 1	zoomed-in vi	iew 2)	142.51 141.85 141.85 141.58		—134.72	 131.05 129.62 129.09 177.95 	-124.86	—120.88	\sim 118.11 \sim 116.12 \sim 114.93	-112.43

	· · · ·	· · · · ·			· · · ·			· · · ·		· · · ·		· · · ·	· · · ·				
70	50	30	10	-10	-30	-50	-70	-90 f1 (p	-110 pm)	-130	-150	-170	-190	-210	-230	-250	-270 _{S78}

¹H NMR (400 MHz, DMSO-*d*₆) for compound **55**

¹H NMR (600 MHz, DMSO-*d*₆) for compound **56**

-11.16

¹³C NMR (151 MHz, DMSO-*d*₆) for compound **56**

¹H NMR (400 MHz, DMSO-*d*₆) for compound **57**

¹³C NMR (101 MHz, DMSO- d_6) for compound **57** (full view)

180 170

190

160 150 140 130

11 11 06 91	2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
33. 2.2	26.22 26.22
$\gamma \gamma$	

100 90 f1 (ppm) 70

80

50

60

30

40

20

10

0

-10 584

120 110

50.05 47.50 45.31 32.06 32.06 31.67 31.67 31.67 27.05 29.30 29.30 27.05 21.96 19.46 113.92 113.83 113.70 113.80

¹³C NMR (101 MHz, DMSO-*d*₆) for compound **57** (zoomed-in view 1)

-50.05	-47.50 -46.88	45.31	-32.06 -31.67 -30.44 -29.30	-27.20 -27.05	-21.96 -21.84	-19.64 -19.46	-13.92 -13.83 -13.80 -13.70
			$\sim 1 \leq$	\mathbf{Y}	\mathbf{Y}	\mathbf{S}	

 0 39 38 37 36 35 34 33 3	2 31 30 29 28 27 26 25 24 23	22 21 20 19 18 17 16 15 14 1

¹³C NMR (101 MHz, DMSO- d_6) for compound **57** (zoomed-in view 2)

17	11
72.	72.
Ę	÷,

9		
o.	σ.	
4	ς Ω	
പ്	g	
7	5	
	1	

~141.91 ~141.47

√131.64 √131.35

172 170 168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 f1 (ppm)

¹³ C NN	/IR (151 M	1Hz, DMS	<pre>/1/2.16 09 /172.14 09 /165.54 09 /9p-09 /9p-09 /9p-09</pre>	165.47 outpoint	nd 60 (fu 6C 74 14	143.87 In the second se	129.18 128.74 128.46	126.56						$<_{60.59}^{60.65}$	50.14 47.63 46.08	_45.39 _32.00	√ 31.63 → 30.43 → 29.27	27.14 26.97 21.90	10.25 19.59	[14.15 [13.84	13.74 13.72 13.62
200	190	180	170	160	150	140	130	120	110	100 f1 (p	90 pm)	80	70	60	50	40	30	20	10	0	-10 592

¹³ C NMR (151 MHz, 12,14 17,12 17,14 12,14 13 13 13 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	DMSO- d_6) for compound 60 (zoomed-in view 2) 51 52 53 53 53 54 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 56 56 56 56 56 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57	~ 144.29 ~ 143.87	129.49 129.49 128.74 128.74 128.74 128.46 128.46
172 170 1	68 166 164 162 160 158 156 154 152	150 148 146 144 142 140 138 1 f1 (ppm)	136 134 132 130 128 594

Exemplary HPLC Chromatograms

HPLC chromatogram of **21**:

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 2: DAD1 B, Sig=254,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Area %	Name
1	13.581	MM	0.1920	278.93054	2.1242	?
2	14.040	MM	0.0902	1.25999e4	95.9554	?
3	15.077	MM	0.0990	145.69951	1.1096	?
4	15.806	MM	0.1252	82.68288	0.6297	Ass
5	29.578	BBA	0.2791	23.77905	0.1811	?
						?

Totals : 1.31310e4

HPLC chromatogram of 22:

Area Percent Report ______

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	a Dilution	Factor with	ISTDs

Signal 2: DAD1 B, Sig=254,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Area	Name
#	[min]		[min]	[mAU*s]	%	
1	9.448	MM	0.7499	84.63179	1.1922	?
2	11.961	MF	0.1065	18.34994	0.2585	?
3	12.114	FM	0.1009	9.57282	0.1349	?
4	12.258	FM	0.1181	10.90641	0.1536	?
5	13.891	VB	0.0956	6953.65918	97.9557	?
6	15.649	MM	0.1124	13.26255	0.1868	Ass
7	15.999	MM	0.1318	8.39830	0.1183	?
						?
Tota	ls :			7098.78100		

HPLC chromatogram of **31**:

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 2: DAD1 B, Sig=254,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1	15.326	 BV	0.0909	6727.89404	1106.98889	100.0000

Totals : 6727.89404 1106.98889

HPLC chromatogram of **32**:

DAD1 B, Sig=	-254,16 Ref=360	0,100 (LARA\LT	56 CRUDE 2020	-05-19 12-39-51	MZ314RESYN	ITH.D)		
mAU	5		10	1583-15	890 ⁵⁹	20	 25	min
	A 	rea Percent	Report					
Sorted By Multiplier Dilution Use Multiplier &	: : Dilution	Signal 1.0000 1.0000 Factor with	n ISTDs					
Signal 2: DAD1 B	, Sig=254,	16 Ref=360,	100					
Peak RetTime Type # [min] 1 15.031 MM	≥ Width [min] - 0.0987 9	Area [mAU*s] 9505.90430	Height [mAU] 1605.17310	Area % 100.0000				
Totals :	:	9505.90430	1605.17310					

HPLC chromatogram of **33**:

DAD1 B, Sig=2	254,16 Ref=360,100 (MATTH	IIAS\MAZE_MZ325_PREP	2020-06-16 07-10-31\MZ	325 PREP_ACN_3.D))	
mAU = 1400 - 1200 - 1000 - 800 - 400 - 200 -			Red Dr.			
° 1 , , , , , , , , , , , , , , , , , ,	5	10	15	20	25	nin
	Area Perce	nt Report		=		
Sorted By	: Signal					
Multiplier	: 1.0000					
Dilution	: 1.0000					
Use Multiplier & I	Dilution Factor wi	th ISTDs				
Signal 2: DAD1 B,	Sig=254,16 Ref=36	0,100				
Peak RetTime Type # [min] 1 16.530 MM	Width Area [min] [mAU*s] 0.1180 1.20140e4	Height Ar [mAU] - 1696.61670 100.	ea % 0000			
Totals :	1.20140e4	1696.61670				

HPLC chromatogram of 44:

3 LS-97-Prep 2+3						
MN Nucleodur 100-5 C18 ec						
Sample Name:	LS-97-Prep 2+3	Injection Volume:	10,0			
Vial Number:	RE1	Channel:	UV_VIS_1			
Sample Type:	unknown	Wavelength:	254.0			
Control Program:	LS_5-95_15min_254nm	Bandwidth:	2			
Quantif. Method:	Burda	Dilution Factor:	1,0000			
Recording Time:	17.01.2020 16:36	Sample Weight:	1,0000			
Run Time (min):	32,00	Sample Amount:	1,0000			

HPLC chromatogram of **45**:

3 LS-101	Prep2					
MN Nucleodur 100-5 C18 ec						
Sample Name:	LS-101 Prep2	Injection Volume:	3,0			
Vial Number:	GD1	Channel:	UV_VIS_1			
Sample Type:	unknown	Wavelength:	254.0			
Control Program:	LS_5-95_15min_254nm	Bandwidth:	2			
Quantif. Method:	Burda	Dilution Factor:	1,0000			
Recording Time:	22.01.2020 17:09	Sample Weight:	1,0000			
Run Time (min):	32,00	Sample Amount:	1,0000			

2 LS-130	Prep 1 H					
MN Nucleodur 100-5 C18 ec						
Sample Name:	LS-130 Prep 1 H	Injection Volume:	10,0			
Vial Number:	BE7	Channel:	UV_VIS_1			
Sample Type:	unknown	Wavelength:	254.0			
Control Program:	LS_5-95_15min_254nm	Bandwidth:	2			
Quantif. Method:	Burda	Dilution Factor:	1,0000			
Recording Time:	23.06.2020 12:56	Sample Weight:	1,0000			
Run Time (min):	32.00	Sample Amount:	1.0000			

HPLC chromatogram of 55:

Area Percent Report								
·								
Sorted By	:	Signal						
Multiplier	:	1.0000						
Dilution	:	1.0000						
Use Multiplier & Dilution Factor with ISTDs								
Signal 2: DAD1 B, Sig=254,16 Ref=360,100								
Peak RetTime Type	Width	Area	Height	Area				
# [min]	[min]	[mAU*s]	[mAU]	%				
1 9.111 BB	0.1910	9205.39063	751.04425	99.1625				
2 15.732 MM	0.1346	77.74689	9.62935	0.8375				
Totals :		9283.13751	760.67360					

S103

HPLC chromatogram of 56:

Area Percent Report							
Sorted By	:	Signal					
Multiplier	:	1.0000					
Dilution	:	1.0000					
Use Multiplier & D	Dilution	Factor wit	h ISTDs				
Signal 2: DAD1 B, Sig=254,16 Re+=360,100							
Dool Dottimo Tuno	나라 너는 눈	1000	llaight	4000			
Реак кестіше туре	MIUCH	Area	нетвис	Area			
# [min]	[min]	[mAU*s]	[mAU]	%			
1 12.099 MM	0.0968	1.43420e4	2468.31201	100.0000			

Totals : 1.43420e4 2468.31201

HPLC chromatogram of **57**:

Area Percent Report								
·								
Sorted By	:	Signal						
Multiplier	:	1.0000						
Dilution	:	1.0000						
Use Multiplier & Dilution Factor with ISTDs								
Signal 2: DAD1 B, Sig=254,16 Ref=360,100								
Peak RetTime Type	Width	Area	Height	Area				
# [min]	[min]	[mAU*s]	[mAU]	%				
1 15.555 BB	0.1120	6289.54004	873.73260	99.3205				
2 18.055 MM	0.1449	43.02932	4.94885	0.6795				

Totals : 6332.56936 878.68146

Supplementary References

- 1. Zessin, M.; Meleshin, M.; Hilscher, S.; Schiene-Fischer, C.; Barinka, C.; Jung, M.; Schutkowski, M., Continuous fluorescent sirtuin activity assay based on fatty acylated lysines. *Int. J. Mol. Sci.* **2023**, *24*, 7416.
- Schiedel, M.; Rumpf, T.; Karaman, B.; Lehotzky, A.; Gerhardt, S.; Ovadi, J.; Sippl, W.; Einsle, O.; Jung, M., Structure-based development of an affinity probe for sirtuin 2. *Angew. Chem. Int. Ed.* 2016, *55*, 2252-2256.
- 3. Vogelmann, A.; Schiedel, M.; Wössner, N.; Merz, A.; Herp, D.; Hammelmann, S.; Colcerasa, A.; Komaniecki, G.; Hong, J. Y.; Sum, M., et al., Development of a NanoBRET assay to validate inhibitors of Sirt2-mediated lysine deacetylation and defatty-acylation that block prostate cancer cell migration. *RSC Chem. Biol.* **2022**, *3*, 468-485.
- 4. Swyter, S.; Schiedel, M.; Monaldi, D.; Szunyogh, S.; Lehotzky, A.; Rumpf, T.; Ovadi, J.; Sippl, W.; Jung, M., New chemical tools for probing activity and inhibition of the NAD(+)-dependent lysine deacylase sirtuin 2. *Philos. Trans. R. Soc. B* **2018**, *373*, 20170083.
- Sinatra, L.; Yang, J.; Schliehe-Diecks, J.; Dienstbier, N.; Vogt, M.; Gebing, P.; Bachmann, L. M.; Sonnichsen, M.; Lenz, T.; Stuhler, K., et al., Solid-phase synthesis of cereblon-recruiting selective histone deacetylase 6 degraders (HDAC6 PROTACs) with antileukemic activity. *J. Med. Chem.* 2022, 65, 16860-16878.
- 6. Schäker-Hübner, L.; Haschemi, R.; Buch, T.; Kraft, F. B.; Brumme, B.; Scholer, A.; Jenke, R.; Meiler, J.; Aigner, A.; Bendas, G., et al., Balancing histone deacetylase (HDAC) inhibition and drug-likeness: Biological and physicochemical evaluation of class I selective HDAC inhibitors. *ChemMedChem* **2022**, *17*, e202100755.
- 7. De los Santos, M.; Martinez-Iglesias, O.; Aranda, A., Anti-estrogenic actions of histone deacetylase inhibitors in MCF-7 breast cancer cells. *Endocr. Relat. Cancer* **2007**, *14*, 1021-1028.
- 8. Jawaid, K.; Crane, S. R.; Nowers, J. L.; Lacey, M.; Whitehead, S. A., Long-term genistein treatment of MCF-7 cells decreases acetylated histone 3 expression and alters growth responses to mitogens and histone deacetylase inhibitors. *J. Steroid Biochem. Mol. Biol.* **2010**, *120*, 164-171.
- 9. Kalbas, D.; Liebscher, S.; Nowak, T.; Meleshin, M.; Pannek, M.; Popp, C.; Alhalabi, Z.; Bordusa, F.; Sippl, W.; Steegborn, C., et al., Potent and selective inhibitors of human sirtuin 5. *J. Med. Chem.* **2018**, *61*, 2460-2471.
- Zessin, M.; Kutil, Z.; Meleshin, M.; Novakova, Z.; Ghazy, E.; Kalbas, D.; Marek, M.; Romier, C.; Sippl, W.; Barinka, C., et al., One-atom substitution enables direct and continuous monitoring of histone deacylase activity. *Biochemistry* 2019, *58*, 4777-4789.
- 11. Brosowsky, J.; Lutterbeck, M.; Liebich, A.; Keller, M.; Herp, D.; Vogelmann, A.; Jung, M.; Breit, B., Syntheses of Thailandepsin B pseudo-natural products: Access to new highly potent HDAC inhibitors via late-stage modification. *Chem. - Eur. J.* **2020**, *26*, 16241-16245.