Supplementary

Table S1 Clinicopathological characteristics of the patients in the developing and validation cohorts

Variables	All patients (n=171)	GC patients		P value
		Developing cohort (n=120)	Validation cohort (n=51)	
Age (years)				0.362
≤70	111 (64.9)	81 (67.5)	30 (58.8)	
>70	60 (35.1)	39 (32.5)	21 (41.2)	
Gender				0.822
Female	40 (23.4)	27 (22.5)	13 (25.5)	
Male	131 (76.6)	93 (77.5)	38 (74.5)	
BMI				0.829
Low	9 (5.3)	7 (5.8)	2 (3.9)	
Normal	125 (73.1)	86 (71.7)	39 (76.5)	
High	37 (21.6)	27 (22.5)	10 (19.6)	
Anemia				0.223
No	91 (53.2)	68 (56.7)	23 (45.1)	
Yes	80 (46.8)	52 (43.3)	28 (54.9)	
Charlson score				0.022*
<2	143 (83.6)	95 (79.2)	48 (94.1)	
≥2	28 (16.4)	25 (20.8)	3 (5.9)	
Location				0.340
Cardia	33 (19.3)	20 (16.7)	13 (25.5)	
Body	38 (22.2)	29 (24.2)	9 (17.6)	
Pylorus	91 (53.2)	63 (52.5)	28 (54.9)	
All	9 (5.3)	8 (6.7)	1 (2.0)	
Tumor size (cm)				0.700
<3	59 (34.5)	43 (35.8)	16 (31.4)	
≥3	112 (65.5)	77 (64.2)	35 (68.6)	
Nerve invasion				0.680
No	122 (71.3)	84 (70.0)	38 (74.5)	
Yes	49 (28.7)	36 (30.0)	13 (25.5)	
Vascular invasion				0.499
No	130 (76.0)	89 (74.2)	41 (80.4)	
Yes	41 (24.0)	31 (25.8)	10 (19.6)	
Stage				0.685
Stage I	25 (14.6)	18 (15.0)	7 (13.7)	
Stage II	50 (29.2)	38 (31.7)	12 (23.5)	
Stage III	92 (53.8)	61 (50.8)	31 (60.8)	
Stage IV	4 (2.3)	3 (2.5)	1 (2.0)	

*, P<0.05.

Table S2 The result of radiomics quality score	in	this study
--	----	------------

ID	Research details	Research purpose	RQS point	
1	Image protocol quality	To ensure the repeatability of the experiment	1.0	
2	Multiple segmentation	To analyze the impact of different segmentation methods on features	1.0	
3	Phantom study	To analyze the impact of different machine types on features	0.0	
4	Imaging at multiple time points	To analyze the impact of temporal heterogeneity, such as organ motion	0.0	
5	Feature reduction or adjustment forTo prevent overfitting multiple testing			
6	Multivariable analysis	To increase the clinical practicality of radiomics	1.0	
7	Biological correlates	To find the connection between radiomics and biological mechanisms	0.0	
8	Cut-off analysis	To reduce the risk of optimistic estimation	1.0	
9	Discrimination statistics	To reflect the predictive performance of the model	2.0	
10	Prospective study	To provide the highest level of evidence for radiomics research	0.0	
11	Calibration statistics	To reflect the stability of the model	2.0	
12	Validation	To increase the credibility of the model	2.0	
13	Comparison to gold standard	To demonstrate the additional value of radiomics	0.0	
14	Cost-effectiveness analysis	To report on the clinical significance of radiomics	2.0	
15	Cost-effectiveness analysis	To increase the clinical significance of radiomics	0.0	
16	Open science and data	To promote knowledge transformation and improve the repeatability of radiomics	3.0	
Total points				