1	SUPPLEMENTARY INFORMATION
2	RNA m ⁶ A Methylation Modulates Airway Inflammation in Allergic Asthma via
3	PTX3-dependent Macrophage Homeostasis
4	
5	Authors: Xiao Han ^{1,2#} *, Lijuan Liu ^{3#} , Saihua Huang ^{1,2#} , Wenfeng Xiao ^{1,2#} , Yajing
6	Gao ^{1,2#} , WeiTao Zhou ³ , Caiyan Zhang ⁴ , Hongmei Zheng ³ , Lan Yang ^{1,2} , Xueru Xie ^{1,2} ,
7	Qiuyan Liang ^{1,2} , Zikun Tu ^{1,2} , Hongmiao Yu ^{1,2} , Jinrong Fu ⁵ , Libo Wang ³ , Xiaobo Zhang ³ ,
8	Liling Qian ^{3,6} *, Yufeng Zhou ^{1,2} *
9	# These authors contributed equally to this work.
10	* Corresponding author: Yufeng Zhou, M.D., Ph.D., 399 Wanyuan Rd, Minhang,
11	Shanghai 201102, China, e-mail: <u>yfzhou1@fudan.edu.cn</u> . TEL: 86-21-64932907; Or
12	Liling Qian, M.D., Ph.D., e-mail: <u>llqian@126.com</u> . TEL: 86-21-52971002; Or Xiao
13	Han, Ph.D., e-mail: <u>sqhx12@126.com</u> . TEL: 86-21-64932897.
14	
15	
16	
17	
18	
19	

Supplementary Figure 1 Generation of *Mettl3* KO mice. (a) Schematic diagram of
the targeting strategy for *Mettl3* depletion in the myeloid compartment, using a LoxP
targeting system and homologous recombination. (b) Gel image of PCR products
amplified using genotyping primers to identify *Mettl3*^{fl/fl}Lyz2^{Cre/+} (KO) mice. W, widetype (WT); H, ddH₂O; 122, *Mettl3*^{fl/-}Lyz2^{Cre/+} heterozygote (HE); 123, *Mettl3*^{fl/fl}Lyz2^{Cre/+}
(KO).

Supplementary Figure 2 Depletion of neutrophils does not reduce the differences
in airway inflammation between *Mettl3* KO and WT mice. (a) Western blot showing
reduced METTL3 protein levels in neutrophils purified from the bone marrow of the
experimental mice (n=3 animals). (b) The percentage of neutrophils from the bone

32	marrow was detected in <i>Mettl3</i> KO and WT mice (n=3 animals). (c) Representative
33	images of Gr1 expression in lung tissues using IHC. Scale bars: 200 $\mu m.$ Every 72 h
34	during CRE treatment, mice were i.p. injected with 200 μ g anti-Ly6G mAb or isotype
35	control mAb, (d) Flow cytometry analysis of the efficiency of neutrophils depletion in
36	BALF (n=3 animals). (e) Total and differential BALF cell numbers, and (f)
37	histopathological changes in the lung tissues were examined (n=5 animals). Scale bars:
38	200 μm and 100 $\mu m,$ respectively. (g) Calculated inflammation and PAS scores (n=5
39	animals for WT groups and n=6 animals for KO groups). Statistical analysis of the data
40	was performed using two-sided unpaired t test with Welch's correction (d) or not (a, b),
41	1-way ANOVA (e left, g), and 2-way ANOVA (e right) followed by either Tukey's or
42	Sidak's multiple comparison tests. Data are presented as means \pm SEM from one of
43	three independent experiments. * $P < 0.05$, ** $P < 0.01$, **** $P < 0.0001$; n.s = not
44	significant.
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Supplementary Figure 3 Expression of m⁶A modification-associated genes in 62 childhood allergic asthma patients. (a) Heatmap profiling the expression of m⁶A 63 modulators in PBMCs of human asthma patients from the GEO database (GSE27876, 64 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27876). (b) RT-qPCR 65 analysis of m⁶A 'writer' (METTL14), 'eraser' (FTO and ALKBH5), and 'reader' 66 (YTHDF3) expression in PBMCs from 55 childhood allergic asthma patients and 50 67 healthy controls. The detailed minimum, median, maximum, 25th, 75th percentile (box), 68 and 5th and 95th percentile (whiskers) of box plots were provided in the Source data 69 70 file. (c) The METTL3 protein levels were determined in monocyte-derived macrophages from children with allergic asthma and healthy controls by Western blot 71 (n=3 patients). Statistical analysis of the data was performed using Mann-Whitney test 72 (b left), or two-sided unpaired t test with Welch's correction (b right) or not (c). Data 73 are presented as means \pm SEM. **P* < 0.05, ***P* < 0.01, ****P* < 0.001, *****P* < 0.0001. 74 75

- 10
- 76

Supplementary Figure 4 Overexpressed METTL3 enhances M1 and inhibits M2 macrophage activation in BMDMs. Overexpression of *Mettl3* in BMDMs with *Mettl3* UV or Ctrl LV. M1 (right)-and M2 (left)-associated markers were quantified by RTqPCR in macrophages stimulated with LPS or IL-4 (n=3 cells), respectively. Statistical analysis of the data was performed using two-sided unpaired t test. Data are presented as means \pm SEM from one of three independent experiments. **P* < 0.05, ***P* < 0.01, ****P* < 0.001.

Supplementary Figure 5 METTL3 inhibits M2 macrophage activation via the
PI3K/AKT and JAK/STAT6 signaling pathways. (a) Knockdown of *METTL3* in
human THP1-derived macrophages using siRNAs pools (200 nM) (n=3 cells), (b)
Overexpression of *METTL3* in THP1-derived macrophages with *METTL3* LV or Ctrl

105	LV (n=4 cells). M1 and M2-associated markers were quantified by RT-qPCR in
106	macrophages stimulated with LPS or IL-4, respectively. NC, negative control. (c)
107	ELISA showing the levels of TNF and IL-10 secretion in THP1-derived macrophages
108	with <i>METTL3</i> knockdown (top) ($n=3$ cells) or overexpression (bottom) ($n=3$ cells for
109	control group and n=4 cells for overexpression group). (d) Western blot analysis of the
110	levels of AKT phosphorylation (p-AKT), AKT, STAT6, and p-STAT6 in THP1-derived
111	macrophages with METTL3 knockdown (top) or overexpression (bottom), following
112	IL-4 stimulation (n=3 cells). (e) RT-qPCR detected M2-associated markers expression
113	in BMDMs from WT and <i>Mettl3</i> KO mice treated with the AKT inhibitor GSK690693
114	(100 nM), or the STAT6 inhibitor AS1517499 (100 nM) (n=4 cells). Statistical analysis
115	of the data was performed using two-sided unpaired t test (a-c), and 2-way ANOVA (d-
116	e) followed by either Tukey's or Sidak's multiple comparison tests. Data are presented
117	as means \pm SEM from one of three independent experiments. * $P < 0.05$, ** $P < 0.01$,
118	*** <i>P</i> < 0.001, **** <i>P</i> < 0.0001; n.s = not significant.
119	
120	
121	
122	
123	
124	
125	
126	
127	
128	
129	
130	
131	
132	
133	

Supplementary Figure 6 METTL3 promotes M1 macrophage activation through the NF-KB signaling pathway. (a) BMDMs from WT and Mettl3 KO mice (n=3 animals), (b) human THP1-derived macrophages transfected with *METTL3* or control siRNAs (200 nM, left), and METTL3-overexpressing (METTL3 LV, right) THP1-derived macrophages (n=3 cells), stimulated by LPS. Levels of P65 phosphorylation (p-P65) and total P65 were examined by Western blot. Statistical analysis of the data was performed using 2-way ANOVA followed by Sidak's multiple comparison tests. Data are presented as means \pm SEM from one of three independent experiments. **P <0.01, ****P* < 0.001, *****P* < 0.0001.

- ____

Supplementary Figure 7 Identification m⁶A levels in METTL3-deficient **macrophages.** (a) m⁶A-seq showed significantly increased (red) or decreased (green) m⁶A peaks (\geq 1.5-fold change, P < 0.05) in human THP1-derived macrophages transfected with METTL3 siRNA pools, compared to control (NC) cells. (b) Relative amount of SELECT qPCR products targeting the AGA¹⁴⁰⁶CA site on PTX3 3'UTR using the total RNA of THP1-derived macrophages transfected with METTL3 or control siRNA (n=3 cells). Statistical analysis of the data was performed using two-sided unpaired t test (b). Data are presented as means \pm SEM from one of three independent experiments. n.s = not significant.

Supplementary Figure 8 METTL3 suppresses PTX3 expression in human THP1-derived macrophages. After knockdown of METTL3 in human THP1-derived macrophages using two distinct siRNAs (200 nM, left) or overexpression of METTL3 in THP1-derived macrophages with METTL3 LV (right), followed by IL-4 stimulation. mRNA and protein levels of PTX3 were quantified by RT-qPCR (a) (n=4 cells for knockdown group and n=3 cells for overexpression groups), ELISA (b) (n=6 cells for Ctrl LV group and n=3 cells for other groups), and Western blot (c) (n=3 cells), respectively. Statistical analysis of the data was performed using two-sided unpaired t test (a right, b right, c), or 1-way ANOVA (a left, b left) followed by Tukey's multiple comparison tests. Data are presented as means \pm SEM from one of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001; n.s = not significant.

Supplementary Figure 9 PTX3 promotes M2 macrophage activation through the **PI3K/AKT and JAK/STAT6 signaling pathways.** (a) Knockdown of *PTX3* in human THP1-derived macrophages using two distinct siRNAs (200 nM), following IL-4 stimulation. M2-associated markers were quantified by RT-qPCR (left) (n=3 cells). NC, negative control. ELISA showing the levels of IL-10 secretion (right) (n=4 cells for control group and n=8 cells for knockdown groups). (b) Western blot analysis of AKT and STAT6 phosphorylation in PTX3-knockdown THP1-derived macrophages (n=3 cells). Statistical analysis of the data was performed using two-sided unpaired t test (a right), or 2-way ANOVA (a left, b) followed by either Tukey's or Sidak's multiple comparison tests. Data are presented as means \pm SEM from one of three independent experiments. ***P* < 0.01, ****P* < 0.001, *****P* < 0.0001.

209

210 Supplementary Figure 10 The effect of PTX3 on airway inflammation is dependent on macrophages. Every 72 h during CRE treatment, CLs-liposome (200 211 µl) was i.p. administered in the clodronate group. The shPtx3 lentivirus or shCtrl virus 212 was administered by intratracheal instillation on day 14. (a) Flow cytometry analysis of 213 214 the efficiency of macrophage depletion in BALF from shPtx3-treated mice by clodronate treatment (n=3 animals). (b) Total and (c) differential BALF cell numbers 215 216 from experimental animals were analyzed by flow cytometry (n=5 animals). (d) Histopathological changes in the lung tissues were examined by H&E- and PAS-217 staining. Scale bars: 200 µm and 100 µm, respectively. (e) Calculated inflammation and 218 PAS scores (n=5 animals). Statistical analysis of the data was performed using two-219

220	sided unpaired t test (a), 1-way ANOVA (b, e), and 2-way ANOVA (c) followed by
221	Tukey's multiple comparison tests. Data are presented as means \pm SEM from one of
222	three independent experiments. $*P < 0.05$, $**P < 0.01$, $***P < 0.001$, $***P < 0.0001$;
223	n.s = not significant.
224	
225	
226	
227	
228	
229	
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	

Supplementary Figure 11 METTL3/YTHDF3 axis degrades the PTX3 expression in human THP1-derived macrophages. METTL3 or Ctrl LV-treated THP1-derived macrophages were infected with YTHDF3 siRNAs or control (NC), followed by IL-4 stimulation. RT-qPCR and ELISA assays detected the PTX3 mRNA (n=3 for METTL3 LV+siYTHDF3 group and n=4 cells for other groups) and protein levels (n=4 cells), respectively. Statistical analysis of the data was performed using 1-way ANOVA followed by Tukey's multiple comparison tests. Data are presented as means \pm SEM from one of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, *****P* < 0.0001.

Supplementary Figure 12 METTL3/PTX3/STX17 axis in macrophages controls autophagy maturation. (a) RT-qPCR showing reduced levels of STX17 in PTX3-knockdown THP1-derived macrophages compared to control cells (n=3 cells). (b) Immunoblot analysis of LC3, STX17, and PTX3 levels in control and PTX3-knockdown THP1-derived macrophages treated with rapamycin for 0–6 h (n=3 cells). (c) Analysis of the autophagosome number in Mettl3 KO BMDMs with or without siStx17 knockdown (n=4 cells). Scale bars, 1µm. Statistical analysis of the data was performed using two-sided unpaired t test (a), 1-way ANOVA (c), and 2-way ANOVA (b) followed by either Tukey's or Sidak's multiple comparison tests. Data are presented as means \pm SEM from one of three independent experiments. **P < 0.01, ***P < 0.001, *****P* < 0.0001.

Supplementary Figure 13 Gating strategies used for flow cytometry. (a) Gating
strategy to analyze BALF cells, such as eosinophils and macrophages, in experimental
models. (b) Gating strategy to analyze the efficiency of neutrophils depletion in BALF

285	on Supplementary Figure 2. (c) Gating strategy to analyze the M2 macrophage
286	subpopulation in BALF. (d) Gating strategy to analyze the Th2 cells and Th1 cells in
287	MLNs from mice.
288	
289	
290	
291	
292	
293	
294	
295	
296	
297	
298	
299	
300	
301	
302	
303	
304	
305	
306	

	M2 macrophage a	ctivation-associated	genes with known re	gulatory functions
	STAT6	SOCS1	STAT3	NFIL3
	DUSP6	IRF4	PPARG	SOCS2
	SOCS3	SBNO2	GATA3	SMAD2
	ID3	RGS1	CCL4	CCL13
	CCL17	CCL18	CD206	CD163
	MMP1	MMP12	IL17RB	TGM2
	ALOX15	PTX3	RIPK3	KLF4
308				
309				
310				
311				
312				
313				
314				
315				
316				
317				
318				
319				
320				
321				
322				
323				
324				
325				
326				

307	Supplementary Table 1. The	e M2 macrophage ac	tivation-associated genes.
-----	----------------------------	--------------------	----------------------------

327 Supplementary Table 2. Demographic and respiratory health characteristics of

Characteristic	Normal (N=50)	Asthma(N=55)
Male/Female, no.	30/20	34/21
Age, years	7.20 ± 2.67	8.07±2.64
Asthma duration, years	N/A	1.40 ± 1.09
BMI	17.68 ± 3.44	17.52 ± 2.92
Blood eos ¹ (cells/uL)	N/A	323.64 ± 212.28
Total IgE (ku/L)	Not done	607.85 ± 33.41
C-ACT score ²	Not done	22.29 ± 3.94
FeNO, ppb	Not done	$23.76{\pm}\ 18.00$
%FEV1	Not done	97.23 ± 18.89

328 children with allergic asthma and healthy controls.

Values are presented as mean ±SEM. ^{1.} eos, eosinophil. ^{2.} C-ACT, Childhood Asthma
Control Test.

The diagnosis of childhood asthma is established based on combinations of episodic 331 respiratory symptoms (wheezing, cough and dyspnea), reversible airflow limitation, 332 presence of personal or family history of allergic diseases according to the 2016 edition 333 of the Guidelines for the Diagnosis and Prevention of Childhood Bronchial Asthma of 334 China. A lung function test was performed, and percent predicted forced expiratory 335 volume in 1 second (%FEV1), fraction of exhaled nitric oxide (FeNO) levels, blood 336 337 eosinophil numbers and Childhood Asthma Control Test (C-ACT) scores were recorded. 338 The control group included children of the same age range, who did not suffer from asthma and other allergic diseases. Children with other chronic respiratory conditions, 339 obesity, diabetes, heart disease, immunodeficiency, or any other chronic disease that 340 might impact the main outcomes of this study were excluded. The sex/gender of human 341 participants was determined based on self-reporting. Consent has been obtained for 342 sharing of individual-level data. Patients were not compensated for their participation 343 344 beyond receipt of therapy and associated care.

346 Supplementary Table 3. The primer sequences.

genes	Forward primer(5'-3')	Reverse primer(5'-3')
P1	GTTTGCACAAGGAGTATT	TCATCTGGGGAAGGA
	Т	GAGTG
Identification of	<i>Lyz2</i> -Cre mice	
genes	Forward primer(5'-3')	Reverse primer(5'-3')
Mutant	CCCAGAAATGCCAGATT	CTTGGGCTGCCAGAAT
	ACG	TTCTC
Wildtype	CCCAGAAATGCCAGATT	TTACAGTCGGCCAGG
	ACG	TGAC
Mouse RT-qPCR	analysis	
genes	Forward primer (5'-3')	Reverse primer (5'-3')
Actin (beta)	CATTGCTGACAGGATGC	TGCTGGAAGGTGGAC
	AGAAGG	GTGAGG
Il-10	CGGGAAGACAATAACTG	CGGTTAGCAGTATGT
	CACCC	GTCCAGC
Arg1	CATTGGCTTGCGAGACGT	GCTGAAGGTCTCTTCC
	AGAC	ATCACC
Cd206	GTTCACCTGGAGTGATGG	AGGACATGCCAGGGT
	TTCTC	ACCTTT
Tnf	AAACACAAGATGCTGGG	TTGATGGTGGTGCAT
	ACA	AGAG
Il-6	TACCACTTCACAAGTCGG	CTGCAAGTGCATCAT
	AGGC	GTTGTTC
<i>Il-1β</i>	GCACTACAGGCTCCGAG	CGTTGCTTGGTTCTCC
-	ATG	TGTAC

347 Identification of *Mettl3*^{flox/flox} mice

Ptx3	CGAAATAGACAATGGAC	CATCTGCGAGTTCTCC
	TTCATCC	AGCATG
Mettl3	CAGTGCTACAGGATGAC	CCGTCCTAATGATGCG
	GGCTT	CTGCAG
Stx17	GCTGCTTCTCAGAGTCTG	TGTCAGTGACCAGATG
	ACTC	GCTCAG
Ccl17	CGAGAGTGCTGCCTGGA	GGTCTGCACAGATGAG
	TTACT	CTTGCC
Ccl22	GTGGAAGACAGTATCTG	AGGCTTGCGGCAGGAT
	CTGCC	TTTGAG
Ifng	CTGCC CAGCAACAGCAAGGCGA	TTTGAG TTTCCGCTTCCTGAGG
Ifng	CTGCC CAGCAACAGCAAGGCGA AAAAGG	TTTGAG TTTCCGCTTCCTGAGG CTGGAT
Ifng Il-17a	CTGCC CAGCAACAGCAAGGCGA AAAAGG CAGACTACCTCAACCGTT	TTTGAG TTTCCGCTTCCTGAGG CTGGAT TCCAGCTTTCCCTCCG
Ifng Il-17a	CTGCC CAGCAACAGCAAGGCGA AAAAGG CAGACTACCTCAACCGTT CCAC	TTTGAG TTTCCGCTTCCTGAGG CTGGAT TCCAGCTTTCCCTCCG CATTGA
Ifng Il-17a Il-4	CTGCC CAGCAACAGCAAGGCGA AAAAGG CAGACTACCTCAACCGTT CCAC	TTTGAG TTTCCGCTTCCTGAGG CTGGAT TCCAGCTTTCCCTCCG CATTGA ATCATCGGCATTTTGAA
Ifng Il-17a Il-4	CTGCC CAGCAACAGCAAGGCGA AAAAGG CAGACTACCTCAACCGTT CCAC ATCATCGGCATTTTGAAC	TTTGAG TTTCCGCTTCCTGAGG CTGGAT TCCAGCTTTCCCTCCG CATTGA ATCATCGGCATTTTGA
Ifng Il-17a Il-4 Il-13	CTGCC CAGCAACAGCAAGGCGA AAAAGG CAGACTACCTCAACCGTC CCAC ATCATCGGCATTTTGAAC GAGGTC AACGGCAGCATGGTATGG	TTTGAG TTTCCGCTTCCTGAGG CTGGAT TCCAGCTTTCCCTCCG CATTGA ATCATCGGCATTTTGA ACGAGGTC TGGGTCCTGTAGATGG

353 Human RT-qPCR analysis

genes	Forward primer (5'-3')	Reverse primer (5'-3')
ACTIN	CACCATTGGCAATGAGC	AGGTCTTTGCGGATGT
	GGTTC	CCACGT
METTL3	CTATCTCCTGGCACTCGC	GCTTGAACCGTGCAAC
	AAGA	CACATC
IL-10	TCTCCGAGATGCCTTCAG	TCAGACAAGGCTTGGC
	CAGA	AACCCA
CD163	CCAGAAGGAACTTGTAG	CAGGCACCAAGCGTTT
	CCACAG	TGAGCT

CD206	AGCCAACACCAGCTCCTC	CAAAACGCTCGCGCAT
	AAGA	TGTCCA
YTHDF3	GCTACTTTCAAGCATACC	ACAGGACATCTTCATA
	ACCTC	CGGTTATTG
PTX3	CGAAATAGACAATGGAC	CTCATCTGCGAGTTCT
	TCCATCC	CCAGCA
METTL14	CTGAAAGTGCCGACAGC	CTCTCCTTCATCCAGA
	ATTGG	TACTTACG
FTO	CCAGAACCTGAGGAGAG	CGATGTCTGTGAGGTC
	AATGG	AAACGG
ALKBH5	CCAGCTATGCTTCAGATC	GGTTCTCTTCCTTGTCC
	GCCT	ATCTCC
TNF	CTCTTCTGCCTGCTGCAC	ATGGGCTACAGGCTTG
	TTTG	TCACTC
IL-6	AGACAGCCACTCACCTCT	TTCTGCCAGTGCCTCT
	TCAG	TTGCTG
IL-1β	CCACAGACCTTCCAGGA	GTGCAGTTCAGTGATC
	GAATG	GTACAGG
STX17	TCGTGGGAAACCTTAGA	GCAGCACTGTTGACAT
	AGCGG	GGTCTG

355 SELECT qPCR analysis

genes	Up primer (5'-3')	Down primer (5'-3')
РТХ3	tagccagtaccgtagtgcgtgGAGT	5phos/TTCACAACATTTATGAA
AGA ¹³³³ CT	TTCTTTCTTTGGCTTCAA	ACATACTGAGCTCcagaggctgagt
	GTGGAG	cgctgcat

356

357 Gene-specific m⁶A qPCR analysis

genes	Forward primer (5'-3')	Reverse primer (5'-3')
-------	------------------------	------------------------

PTX3CAGCCACATGGAGGAGCTCAACTGTTTATTCAGTCAGTATGTTTCATATTTGGCCAGTAC

359 Human PTX3 3'UTR dual-luciferase reporter analysis

genes		Forward primer(5'-3')	Reverse primer(5'-3')
<i>PTX3</i> WT	' 3'UTR	CATCGAGAAACTCCACTT	GGCTACTTCAACTGTT
		GAAGCCAAAGAAAGAAA	TATTCAGTATTTGGCC
		С	AGTA
PTX3	Mutant	TAATAGGAACACTTGAG	ACTCTCTCTTTCATTAG
3'UTR		TCTAATGAAAGAGAGAG	ACTCAAGTGTTCCTAT
		Т	ТА

361 Human *METTL3* lentivirus construct

genes	Forward primer (5'-3')	Reverse primer (5'-3')
METTL3-1	AGGGTTCCAAGCTTAAG	
	CGGCCGCGCCACCATGTC	
	GGACACGTGGAGCTCTA	
	TCCAG	
METTL3-2	ATCAGTAGAGAGTGTCG	
	GATCCCTATAAATTCTTA	
	GGTTTAGAGATGATGCC	
	GTCC	

GENES	Sense (5'-3')	Antisense (5'-3')
Human NC	UUCUCCGAACGUGUCACG	ACGUGACACGUUCGGAGAA
siRNA	UTI	TT
Human	GCAGAACAGGACUCGACU	UAGUCGAGUCCUGUUCUGC
METTL3	ATT	TT
siRNA1		
Human	GCUCAACAUACCCGUACU	UAGUACGGGUAUGUUGAGC
METTL3	ATT	TT
siRNA2		
Human	GCACAAAGAGGAAUCCAU	UAUGGAUUCCUCUUUGUGC
PTX3	ATT	TT
siRNA1		
Human	GGGAUAGUGUUCUUAGCA	UUGCUAAGAACACUAUCCC
PTX3	ATT	TT
siRNA2		
Human	AGCAGAGGAAACAGGCGA	UUCGCCUGUUUCCUCUGCU
YTHDF3	ATT	TT
siRNA1		
Human	GCUGGAUUUGGCAAUGAU	UAUCAUUGCCAAAUCCAGC
YTHDF3	ATT	TT
siRNA2		
Mouse	TTCTCCGAACGTGTCACGT	
shCtrl		
Mouse	GAGCTCATGTATGTGAATT	
sh <i>Ptx3</i> -1	TG	
Mouse	GGGACAAGCTGTTCATCAT	
sh <i>Ptx3</i> -2	GC	
Mouse	GAGCCAGCGAUACAGAAA	

369 Supplementary Table 4. The sequences of siRNA and shRNA lentivirus.

shStx17-1	UTT
Mouse	GCUCCAAUAUCCGAGAAA
sh <i>Stx17</i> -2	UTT