Transition state analogs enhanced by fragment-based structural analysis: Bacterial methylthioadenosine nucleosidases

Di Zhang[#], Brandon E, Burdette[#], Zhengyu Wang, Kumari Karn, Hong-yu Li*, Vern L, Schramm*, Peter C, Tyler, Gary B. Evans, and Shanzhi Wang*

Di Zhang[#] - College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States

Brandon E. Burdette[#] - Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States

Zhengyu Wang - Department of Pharmaceutical Sciences, University of Arkansas for Medical Science, Little Rock, Arkansas 72205, United States

Kumari Karn - Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, **United States**

Hong-yu Li* - Department of Pharmaceutical Sciences, University of Arkansas for Medical Science, Little Rock, Arkansas 72205, United States; hli2@uams.edu

Vern Schramm* - Department of Biochemistry, Albert Einstein College of Medicine, New York, New York 10461, United States; vern.schramm@einsteinmed.org

Peter C. Tyler - Ferrier Research Institute, Victoria University of Wellington, Wellington 5040, New Zealand: Gary B. Evans - Ferrier Research Institute, Victoria University of Wellington, Wellington 5040, New Zealand Shanzhi Wang* - Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States: sxwang2@ualr.edu

[#]These authors contributed equally.

* Corresponding authors: hli2@uams.edu, vern.schramm@einsteinmed.org, sxwang@ualr.edu.

Experimental Procedures.

MTAN structural analysis. Crystal structures of bacterial MTANs were from protein data bank files (PDB) by "methylthioadenosine nucleosidase" and "adenosylhomocysteine nucleosidase" searching and "aminodeoxyfutalosine nucleosidase". The structures were analyzed using PyMOL.

No.	PDB code	Mutation s	Organisms	Ligand bound
1	5CCD	D198N	Helicobacter pylori	S-ADENOSYL-L-HOMOCYSTEINE
2	5CCE	WT	Helicobacter pylori	(2S)-2-AMINO-4-({[(2S,3S,4R,5S)-3,4,5- TRIHYDROXYTETRAHYDROFURAN-2- YL]METHYL}SULFANYL)BUTANOIC ACID ADENINE
3	5JPC	WT	Helicobacter pylori	(1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3- YL)-1,4-ANHYDRO-D-RIBITOL
4	5K1Z	WT	Helicobacter pylori	(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4-{[(4- CHLOROPHENYL)SULFANYL]METHYL}PYRROLIDIN -3-OL
5	5KB3	WT	Helicobacter pylori	(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4-{[(4- CHLOROPHENYL)SULFANYL]METHYL}PYRROLIDIN -3-OL MAGNESIUM ION
6	4WKN	WT	Helicobacter pylori	(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(METHYLSULFANYL)METHYL]PYRROLIDIN-3-OL

Table S1: Summary of MTAN structures for Protein Data Bank (PDB).

7	4WKO	WT	Helicobacter pylori	(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4-{[(4- HYDROXYBUTYL)SULFANYL]METHYL}PYRROLIDI N-3-OL	
8	4WKP	WT	Helicobacter pylori	(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4-(2-{[2-(2- HYDROXYETHOXY)ETHYL]SULFANYL}ETHYL)PYR ROLIDIN-3-OL SULFATE ION	
9	4YNB	WT	Helicobacter pylori	GLYCEROL	
				(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4-[(PYRAZIN-2- YLSULFANYL)METHYL]PYRROLIDIN-3-OL DI(HYDROXYETHYL)ETHER	
10	4Y08	WT	Helicobacter pylori	ZINC ION {[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN-7- YL)METHYL](HEXYL)AMINO}METHANOL	
11	40Y3	D198N	Helicobacter pylori	CHLORIDE ION	
10		DIOON			
12	4254	D198N	Helicobacter pylori	5'-DEOXY-5'-METHYLTHIOADENOSINE	
13	40JT	WT	Helicobacter pylori	(2S)-2-AMINO-4-({[(2S,3S,4R,5S)-3,4,5- TRIHYDROXYTETRAHYDROFURAN-2- YL]METHYL}SULFANYL)BUTANOIC ACID	
14	4BMX	WT	Helicobacter pylori	2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL ADENINE	
15	4BMY	D199A	Helicobacter pylori	SULFATE ION	
		2.00/1	Treneesaeter pyten		
16	4BMZ	D199N	Helicobacter pylori	5'-DEOXY-5'-METHYLTHIOADENOSINE	
16 17	4BMZ 4BN0	D199N E14Q	Helicobacter pylori Helicobacter pylori	5'-DEOXY-5'-METHYLTHIOADENOSINE	
16 17 18	4BMZ 4BN0 4FFS	D199N E14Q WT	Helicobacter pylori Helicobacter pylori Helicobacter pylori	5'-DEOXY-5'-METHYLTHIOADENOSINE N/A CHLORIDE ION	
16 17 18	4BMZ 4BN0 4FFS	D199N E14Q WT	Helicobacter pylori Helicobacter pylori Helicobacter pylori	5'-DEOXY-5'-METHYLTHIOADENOSINE N/A CHLORIDE ION (3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL	
16 17 18 19	4BMZ 4BN0 4FFS 3NM4	D199N E14Q WT WT	Helicobacter pylori Helicobacter pylori Helicobacter pylori Helicobacter pylori	5'-DEOXY-5'-METHYLTHIOADENOSINE N/A CHLORIDE ION (3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL 1,2-ETHANEDIOL 2-AMINO-2-HYDROXYMETHYL-PROPANE-1 3-DIOL	
16 17 18 19 20	4BMZ 4BN0 4FFS 3NM4 3NM5	D199N E14Q WT WT WT	Helicobacter pylori Helicobacter pylori Helicobacter pylori Helicobacter pylori Helicobacter pylori Helicobacter pylori	5'-DEOXY-5'-METHYLTHIOADENOSINE N/A CHLORIDE ION (3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL 1,2-ETHANEDIOL 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL (1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3- YL)-1,4-ANHYDRO-D-RIBITOL	
16 17 18 19 20 21	4BMZ 4BN0 4FFS 3NM4 3NM5 3NM6	D199N E14Q WT WT WT	Helicobacter pylori	5'-DEOXY-5'-METHYLTHIOADENOSINEN/ACHLORIDE ION(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4-[(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL(1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3-YL)-1,4-ANHYDRO-D-RIBITOL1,2-ETHANEDIOL	
16 17 18 19 20 21	4BMZ 4BN0 4FFS 3NM4 3NM5 3NM6	D199N E14Q WT WT WT WT	Helicobacter pylori	5'-DEOXY-5'-METHYLTHIOADENOSINEN/ACHLORIDE ION(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL(1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3- YL)-1,4-ANHYDRO-D-RIBITOL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL(1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3- YL)-1,4-ANHYDRO-D-RIBITOL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL	
16 17 18 19 20 21	4BMZ 4BN0 4FFS 3NM4 3NM5 3NM6	D199N E14Q WT WT WT	Helicobacter pylori	5'-DEOXY-5'-METHYLTHIOADENOSINEN/ACHLORIDE ION(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL(1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3- YL)-1,4-ANHYDRO-D-RIBITOL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOLADENINE	
16 17 18 19 20 21 22	4BMZ 4BN0 4FFS 3NM4 3NM5 3NM6 4YML	D199N E14Q WT WT WT WT	Helicobacter pylori Escherichia coli	5'-DEOXY-5'-METHYLTHIOADENOSINEN/ACHLORIDE ION(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4-[(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL(1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3-YL)-1,4-ANHYDRO-D-RIBITOL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOLADENINEPHOSPHATE ION	
16 17 18 19 20 21 22	4BMZ 4BN0 4FFS 3NM4 3NM5 3NM6 4YML	D199N E14Q WT WT WT WT	Helicobacter pylori Escherichia coli	5'-DEOXY-5'-METHYLTHIOADENOSINEN/ACHLORIDE ION(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL(1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3- YL)-1,4-ANHYDRO-D-RIBITOL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOLADENINEPHOSPHATE ION(3S,4R)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(METHYLSULFANYL)METHYL]PYRROLIDIN-3-OL	
16 17 18 19 20 21 22 22	4BMZ 4BN0 4FFS 3NM4 3NM5 3NM6 4YML	D199N E14Q WT WT WT WT WT	Helicobacter pylori Escherichia coli Escherichia coli	5'-DEOXY-5'-METHYLTHIOADENOSINEN/ACHLORIDE ION(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4-[(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL(1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3-YL)-1,4-ANHYDRO-D-RIBITOL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOLADENINEPHOSPHATE ION(3S,4R)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4-[(METHYLSULFANYL)METHYL]PYRROLIDIN-3-OLTETRAETHYLENE GLYCOL	
16 17 18 19 20 21 22 23	4BMZ 4BN0 4FFS 3NM4 3NM5 3NM6 4YML 4WKC	D199N E14Q WT WT WT WT WT	Helicobacter pylori Escherichia coli Escherichia coli	5'-DEOXY-5'-METHYLTHIOADENOSINEN/ACHLORIDE ION(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4-[(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL(1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3-YL)-1,4-ANHYDRO-D-RIBITOL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL1,2-ETHANEDIOL2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOLADENINEPHOSPHATE ION(3S,4R)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4-[(METHYLSULFANYL)METHYL]PYRROLIDIN-3-OLTETRAETHYLENE GLYCOL(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4-[(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL	
16 17 18 19 20 21 22 23 23	4BMZ 4BN0 4FFS 3NM4 3NM5 3NM6 4YML 4WKC 3DF9	D199N E14Q WT WT WT WT WT	Helicobacter pylori Escherichia coli Escherichia coli Escherichia coli	5'-DEOXY-5'-METHYLTHIOADENOSINE N/A CHLORIDE ION (3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL 1,2-ETHANEDIOL 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL (1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3- YL)-1,4-ANHYDRO-D-RIBITOL 1,2-ETHANEDIOL 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL ADENINE PHOSPHATE ION (3S,4R)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(METHYLSULFANYL)METHYL]PYRROLIDIN-3-OL TETRAETHYLENE GLYCOL (3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL (3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4- [(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL	
16 17 18 19 20 21 22 23 23 24 24	4BMZ 4BN0 4FFS 3NM4 3NM5 3NM6 4YML 4WKC 3DF9 3DF9	D199N E14Q WT WT WT WT WT WT E12Q	Helicobacter pylori Escherichia coli Escherichia coli Escherichia coli Escherichia coli	5'-DEOXY-5'-METHYLTHIOADENOSINE N/A CHLORIDE ION (3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(BUTYLSULFANYL)METHYL]PROLIDIN-3-OL 1,2-ETHANEDIOL 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL (1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3- YL)-1,4-ANHYDRO-D-RIBITOL 1,2-ETHANEDIOL 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL ADENINE PHOSPHATE ION (3S,4R)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(METHYLSULFANYL)METHYL]PYRROLIDIN-3-OL TETRAETHYLENE GLYCOL (3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2- D]PYRIMIDIN- 7-YL)METHYL]-4- [(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL (3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4- [(BENZYLSULFANYL)METHYL]PYRROLIDIN-3-OL 5-S-METHYL-5-THIO-ALPHA-D-RIBOFURANOSE	

26	1Z5O	D197N	Escherichia coli	5'-DEOXY-5'-METHYLTHIOADENOSINE		
27	1Z5P	WT	Escherichia coli	3,6,9,12,15,18,21,24-OCTAOXAHEXACOSAN-1-OL		
				GLYCEROL		
				ISOPROPYL ALCOHOL		
28	1Y6Q	WT	Escherichia coli	CHLORIDE ION		
				(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-		
				D]PYRIMIDIN- 7-YL)METHYL]-4-		
	4)/00		F acherichie eeli	[(METHYLSULFANYL)METHYLJPYRROLIDIN-3-OL		
29	116R	VVI	Escherichia coli	(35,4R)-2-(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN-7-		
				YL)-5-[(METHYLSULFANYL)METHYL]PYRROLIDINE- 3,4-DIOL		
30	1NC1	WT	Escherichia coli	2-(4-AMINO-PYRROLO[2,3-D]PYRIMIDIN-7-YL)-5- METHYLSULFANYLMETHYL-TETRAHYDRO-FURAN-		
21	11000		Ecoboriobio coli			
51	INC 3	VVI		YL)-1,4-ANHYDRO-D-RIBITOL		
32	1JYS	WI	Escherichia coli			
33	6AYM	VV I	Campylobacter jejuni			
34	6AYO	VVI	Campylobacter jejuni	(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN- 7-YL)METHYL]-4-PROPYLPYRROLIDIN-3-OL		
				1,2-ETHANEDIOL		
				2-[BIS-(2-HYDROXY-ETHYL)-AMINO]-2-		
				HYDROXYMETHYL-PROPANE-1,3-DIOL		
35	6AYQ	VV I	Campylobacter jejuni			
				(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN-		
36	6AYR	WT	Campylobacter ieiuni			
00	0/1111			(3R.4S)-1-[(4-AMINO-5H-PYRROLO[3.2-		
				D]PYRIMIDIN- 7-YL)METHYL]-4-		
				[(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL		
37	6AYS	WT	Campylobacter jejuni	1,2-ETHANEDIOL		
				(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-		
				D]PYRIMIDIN- 7-YL)METHYL]-4-		
20	GAVT		Compulaboatariaiuni			
30	OATI	VVI	Campyiobacter jejuni			
				(3R,43)-1-[(4-AMINO-3H-FTRROLO[3,2- DIPVRIMIDIN_7.VI)METHVI 1.4.[(PVRA7IN-2-		
				YLSULFANYL)METHYLIPYRROLIDIN-3-OL		
39	6IF8	WT	Aeromonas	ADENINE		
40		ME	hydrophila			
40	5B7G	VVI	Aeromonas hydrophila	GLYCEROL;		
				ADENINE		
41	5B7N	VVI	Aeromonas hydrophila			
40						
42	5B7P	VVI	Aeromonas hydrophila	5'-DEOXY-5'-METHYLTHIOADENOSINE		
43	5B7Q	WT	Aeromonas hydrophila	5'-DEOXYADENOSINE		
44	4F1W	WT	Salmonella enterica	1,2-ETHANEDIOL;		
				TETRAETHYLENE GLYCOL;		
				TRIETHYLENE GLYCOL;		
				DI(HYDROXYETHYL)ETHER;		
				ADENINE		
·	<u></u>					

45	4F2P	WT	Salmonella enterica	ACETATE ION;		
				GLYCEROL;		
				1,2-ETHANEDIOL;		
				(3R.4S)-1-I(4-AMINO-5H-PYRROLO[3.2-D]PYRIMIDIN-		
				7-YL)METHYL]-4-({[2-(2-		
				HYDROXYETHOXY)ETHYL]SULFANYL}METHYL)PY		
				RROLIDIN-3-OL		
46	4F2W	WT	Salmonella enterica	CHLORIDE ION;		
				1,2-ETHANEDIOL;		
				(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN-		
				7-YL)METHYL]-4-		
				[(METHYLSULFANYL)METHYL]PYRROLIDIN-3-OL		
47	4F3C	WT	Salmonella enterica	1,2-ETHANEDIOL;		
				(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN-		
				7-YL)METHYL]-4-		
10	45014	14/7	0 1 11 1 1	[(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL		
48	4F3K	VVI	Salmonella enterica			
40	21.00	\// T	Arabidanaia thaliana			
49	3163	VVI	Alabiuopsis illallalla	S-ADENOSYL-L-HOMOCYSTEINE: ADENINE		
50	20511	W/T	Arahidonsis thaliana	N/A		
51	2000 2016	WT	Arabidopsis thaliana	2-(4-AMINO-PYRROLO[2 3-D]PYRIMIDIN-7-YL)-5-		
01	2010			METHYLSULFANYLMETHYL-TETRAHYDRO-FURAN-		
				3,4-DIOL;		
				1,2-ETHANEDIOL		
52	2QTT	WT	Arabidopsis thaliana	(1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3-		
				YL)-1,4-ANHYDRO-D-RIBITOL;		
				1,2-ETHANEDIOL;		
				ADENINE		
53	2H8G	WT	Arabidopsis thaliana	ADENINE		
54	4WKB	WT	Vibrio cholerae	(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN-		
55	47.24	A112DA/15	Vibrio cholorao			
55	4724	31/R158G		(3K,43)-1-[(4-AMINO-31-F TKKOLO[3,2-D]F TKIMIDIN- 7-YI)MFTHYI 1-4-		
		51/11/500		(METHYLSULEANYL)METHYLIPYRROLIDIN-3-OL		
				TRIETHYLENE GLYCOL		
56	3DP9	WT	Vibrio cholerae	IODIDE ION;		
				(3R,4S)-1-[(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN-		
				7-YL)METHYL]-4-		
				[(BUTYLSULFANYL)METHYL]PYRROLIDIN-3-OL		
57	3MMS	A23T/V39	Streptococcus	GLYCEROL;		
		A/V64D/A	pneumoniae	9H-PURINE-6,8-DIAMINE		
E0	1700	1841 WT	Chrombosser			
ວຽ	1205	VVI	Streptococcus			
			pneumoniae			
59	4GMH	WT	Staphylococcus			
			aureus			
60	4KN5	WT	Weissella	GLYCEROL		
			paramesenteroides	1,2-ETHANEDIOL		
61	4G41	WT	Streptococcus	s∮'-DEOXY-5'-METHYLTHIOADENOSINE		

			pyogenes	
62	5DK6	WT	Colwellia	GLYCINE
			psychrerythraea	ADENINE
63	3EEI	WT	Neisseria meningitidis	(3S,4R)-2-(4-AMINO-5H-PYRROLO[3,2-D]PYRIMIDIN-7- YL)-5-[(METHYLSULFANYL)METHYL]PYRROLIDINE- 3,4-DIOL
64	4QEZ	WT	Bacillus anthracis	2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL
				ADENINE
65	4PR3	WT	Brucella melitensis	PHOSPHATE ION
				GLYCEROL
				ADENINE

66	4JWT	WT	Sulfurimonas	1,2-ETHANEDIOL	
			denitrificans	ADENINE	
67	4L0M	WT	Borreliella burgdorferi	ADENINE	
68	3BL6	WT	Staphylococcus	(1S)-1-(7-AMINO-1H-PYRAZOLO[4,3-D]PYRIMIDIN-3-	
			aureus	YL)-1,4-ANHYDRO-D-RIBITOL	
69	5UE1	WT	Aliivibrio fischeri	CHLORIDE ION	
				CALCIUM ION	
				1,2-ETHANEDIOL	
				9-DEAZAADENINE	
				2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL	
70	4G89	WT	Klebsiella pneumoniae	SULFATE ION;	
				S-ADENOSYL-L-HOMOCYSTEINE;	
				ADENINE	
71	4QAQ	WT	Chlamydia	SULFATE ION	
			trachomatis		
72	4QFB	WT	Chlamydia	N/A	
			trachomatis		
73	4QAR	WT	Chlamydia trachomatis	SULFATEION	
				ADENINE	
74	4QAT	D161N	Chlamydia	5'-DEOXY-5'-METHYLTHIOADENOSINE	
75	4100		trachomatis		
75	4JOS	VVI	Francisella philomiragia		
				ADENINE	

Protein purification. *Hp*MTAN and *Sa*MTAN were purified using the same protocol as previously described.^{1,2} Briefly, *Hp*MTAN in pET28, bearing an N-terminal 6 x His tag was chemically transformed into BL21 (DE3) cells that were grown overnight on a kanamycin-containing (50 mg/mL) nutrient agar plate. Subsequently, single colonies were picked to grow in LB broth media at 37 °C until the O.D. at 600 nm reached 0.6. Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to reach a final concentration of 0.5 mM, and cells were incubated for an additional 4 hours before harvesting by centrifugation. The cell pellet was suspended in cold buffer containing 20 mM Hepes (pH 7.5), 100 mM NaCl, 0.1 mM PMSF, 50 µg/mL of lysozyme and a few crystals of DNAse I and RNAse A. Resuspended cells were stirred for ~ 30 min on ice, then treated with sonication (6 intervals, 1 min/interval) followed by centrifugation at 14,000 rpm, at 4 °C, for 1hr. Additional PMSF was added twice with intervals of ~ 30 min. The supernatant of centrifugation was loaded onto a Co-NTA column preequilibrated with 20 mM Hepes (pH 7.5), *Hp*MTAN was eluted from the column and fractions with purity

over 90% were dialyzed with 20 mM Hepes (pH 7.5) and 100 mM NaCl.

Inhibitor synthesis and analysis. Synthesis of inhibitors has been described previously.³ Briefly, the condensation reactions of an imidazo-[1,2-a]-pyridine derivative with a pyrrolidine nucleoside were performed using the Mannich reaction, shown below, where R are fragment derivatives. The structure and purity of the synthesized inhibitors were originally evaluated using NMR, HPLC, and MS, and the samples here were reanalyzed by the same methods to assure purity.^{3,4} All inhibitors were found to be >98% as originally described, by the methods below.

High-Performance Liquid Chromatography Analysis (HPLC) analysis. HPLC of all inhibitors was performed prior use to assay to assure purity. An Agilent (Santa Clara, Ca) Eclipse XDB-C18 column with an Agilent 1100A HPLC system was used. The column was maintained at 37°C for the duration of HPLC. Elution was performed with a flow rate of 1mL/min using a solvent gradient of 5-95% ethanol with 0.1% v/v formic acid (solvent B), in a water background with 0.1% v/v formic acid (solvent A). Each inhibitor was solubilized in HPLC grade MeOH (Sigma-Aldrich, St Louis, MO) to be approximately 1mM in concentration. With a 15 μ L injection volume, the elution took place over 15 minutes from 5% solvent B to 95% solvent B monitoring at 274nm, with an additional 5 minutes wash at 95% solvent B. Compound 7 had an additional 5 min wash with 95% solvent B due to hydrophobicity. Peaks were analyzed and collected. This peak sample was then run on mass spectrometry for confirmation of the identity of the peak.

Mass Spectrometry (MS) analysis. MS was performed on the collected eluted compound from HPLC testing mentioned above. MS was performed using a Thermo Finnigan LCQ Deca (Waltham, MA). The MS was performed using 20 μ L of the inhibitors previously prepared for HPLC. The injection speed was set to 8 μ L/s. The MS monitored positive ions with a 10 Hz channel sample rate, under atmospheric pressure and was ionized using a corona discharge needle in the nebulizer of the instrument. The detected peaks were analyzed using Xcalibur software (Thermo-Fisher, Waltham, MA). MTDIA and compounds 2-6 were analyzed using positive mode and compound 7 was analyzed using negative mode.

NMR analysis. 0.5 - 1 mg of each inhibitor was dissolved in 750µL of CD3OD (VWR, Radnor, Pa.). ¹H-NMR (400 MHz) was performed using a JEOL ECS NMR Spectrometer (Tokyo, Japan) and data was analyzed using Delta 5.2.1 Software (JEOL). For each experiment, 20,000 scans were used with an X_offset of 7.

Enzymatic assay. At 25 °C or 37 °C, assay solutions contained 50 mM Hepes (pH 7.5), 100 mM NaCl, 0.87 mM MTA, catalase (5 units/mL) and xanthine oxidase (0.5 unit/mL). Reactions were started by adding *Hp*MTAN or *Sa*MTAN to reach a final concentration of 5 nM and monitored by following the increase of absorption at 295 nM. Reaction kinetics were measured at six different inhibitor concentrations (ranging from 0 to 50,000 nM) for the transition state analogue inhibitors. A reaction without enzyme added served as the control to be subtracted during data analysis. The assays were monitored for 2 hours to analyze for slow-onset binding. Inhibitors with slow-onset binding have a two-step inhibition chronologically. Initial inhibition (*K*_i) occurs

by rapid binding followed by the slow onset of more potent inhibition, resulting in a decreased but constant rate (K_i^*) due to slow-onset binding. For PEG2.5, PEG3 and PEG4, a direct assay was performed by monitoring the absorption decrease at 275 nm for conversion of MTA to adenine. Assay solutions contained 50 mM Hepes (pH 7.5), 100 mM NaCl, 0.09 mM MTA, and PEG2.5 or PEG3 or PEG4 (0 – 300 mM).

Kinetics were analyzed using KaleidaGraph (Synergy Software) by fitting data to the following equation, $v/v_0 = (K_m + [S])/(K_m + [S] + (K_m [I])/K_0)$

Here, v_0 and v are the measured steady-state kinetics in the absence and presence of an inhibitor, respectively; [S] and [I] are the concentrations of MTA and a given inhibitor, respectively; K_m is the Michaelis-Menten for MTA.

Table S2: K_m , K_i an K_i *for HpMTAN at 25 °C and 37 °C.

Inhibitor (<i>Hp</i> MTAN)	<i>K</i> i @ 25°C (nM)	Ki [*] @ 25°C (nM)	<i>K_i</i> @ 37°C (nM)
S S S S S S S S S S S S S S	0.6 x 10 ³ 10 ^{3 a} (<i>K</i> _m)	4.1 x10 ³ ± 0.5 x10 ³ (<i>K</i> _m)	
	0.19 ± 0.03^{a}	0.089 ± 0.019ª	1.25 ± 0.16
HO O S OH NH2	0.96 ± 0.16^{a}	0.015 ± 0.004ª	0.09 ± 0.01
	0.34 ± 0.07^{a}	0.11 ± 0.04ª	0.79 ± 0.08
	0.43 ± 0.12^{a}	0.04 ± 0.01^{a}	0.74 ± 0.21
	0.89 ± 0.13ª	0.10 ± 0.01ª	0.31 ± 0.07
	0.26 ± 0.03^{a}	0.05 ± 0.01ª	0.28 ± 0.03
HO_2C	4.2 ± 1.2ª	N/Aª	1.08 ± 0.15
Fragment	<i>К</i> і @ 25°С (mM)	K _i * @ 25°C (nM)	<i>K</i> i @ 37°С (mM)
(PEG2.5)	16±3	N/A	> 100
ноо (PEG3)	2.3 ± 0.2	N/A	13 ± 1
	7.1 ± 3.5	N/A	54 ±19

^aThese are reported values of K_m , K_i or K_i^* from references.^{1,3,4}

Table S3: Km	, K_i and K'	for SaMTAN	at 25 °C a	and 37 °C.
--------------	------------------	------------	------------	------------

Inhibitor (<i>Sa</i> MTAN)	<i>K_i</i> @ 25°C (nM)	<i>K</i> i [*] @ 25°C (nM)	<i>K_i</i> @ 37°С (nM)
STORE	0.9 x 10 ³ ± 0.3 x1 (<i>K</i> _m)	5.1 x $10^3 \pm 1.3 \times 10^3$ (<i>K_m</i>)	
	0.16 ± 0.03	0.054 ± 0.001	7.8 ± 0.1
	0.078 ± 0.015	0.0058 ± 0.0009	0.096 ± 0.016
	0.17 ± 0.02	0.013 ± 0.002	0.51 ± 0.11
	0.077 ± 0.017	0.014 ± 0.002	0.58 ± 0.11
	0.097 ± 0.017	0.022 ± 0.003	0.11 ± 0.034
	0.19 ± 0.06	0.055 ± 0.001	18 ± 5.3
$H \cup_2 C \longrightarrow O \\ H$	2.3 ± 0.3	0.47 ± 0.14	> 20
Fragmen t	<i>K</i> i @ 25°C (mM)	<i>K_i* @</i> 25°C (nM)	<i>K</i> i @ 37°C (mM)
(PEG2.5)	6.2 ± 0.8	N/A	> 100
но осторон (PEG3)	2.6 ± 0.5	N/A	27 ± 8
(PEG4)	2.8 ± 0.3	N/A	41 ± 9

^a These are reported values of *K_m* from references.⁵

Figure S1: Transition state of MTAN reaction and lead inhibitor MTDIA.

Figure S2:Structural alignment of PEG2.5 bound *Ec*MTAN (PDB file 1Z5P) and PEG3 bound SeMTAN(PDB file 4F1W).*Ec*MTAN bound with PEG2.5 is in cyan; SeMTAN bound with PEG3 is in magenta. MTDIAwasmodeledintotheactivesiteofSeMTANingrey.

References

- 1. Wang, S., Haapalainen, A. M., Yan, F., Du, Q., Tyler, P. C., Evans, G. B., Rinaldo-Matthis, A., Brown, R. L., Norris, G. E., Almo, S. C., and Schramm, V. L. (2012) A picomolar transition state analog inhibitor of MTAN as a specific antibiotic for *Helicobacter pylori*, *Biochemistry* 51, 6892-6894.
- Gutierrez, J. A., Luo, M., Singh, V., Li, L., Brown, R. L., Norris, G. E., Evans, G. B., Furneaux, R. H., Tyler, P. C., Painter, G. F., Lenz, D. H., and Schramm, V. L. (2007) Picomolar inhibitors as transition-state probes of 5'- methylthioadenosine nucleosidases, ACS chemical biology 2, 725-734.
- 3. Wang, S., Cameron, S. A., Clinch, K., Evans, G. B., Wu, Z., Schramm, V. L., and Tyler, P. C. (2015) New Antibiotic Candidates against *Helicobacter pylori*, *J Am Chem Soc* 137, 14275-14280.
- 4. Schramm, V. L., Wang, S., Haapalainen, A. M., Evans, G. B., Furneaux, R. H., Clinch, K., Tyler, P. C., and Gulab, S. Treatment of *Helicobacter pylori* infections. U.S. Appl. US20150210701A1, 2015.
- 5. Wang, S., Thomas, K., and Schramm, V. L. (2014) Catalytic site cooperativity in dimeric methylthioadenosine nucleosidase, *Biochemistry* 53, 1527-1535.