Supplementary Information for

A robotic sensory system with high spatiotemporal resolution for texture recognition

Ningning Bai^{1,2,5}, Yiheng Xue^{3,5}, Shuiqing Chen³, Lin Shi¹, Junli Shi¹, Yuan Zhang¹, Xingyu Hou¹,

Yu Cheng¹, Kaixi Huang¹, Weidong Wang², Jin Zhang³, Yuan Liu⁴, Chuan Fei Guo^{1,*}

¹Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

²School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China

³Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

⁴Department of Physics and TcSUH, University of Houston, Houston TX 77204, USA

⁵These authors contributed equally: Ningning Bai, Yiheng Xue

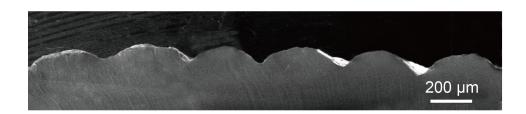
*To whom correspondence should be addressed. E-mail: guocf@sustech.edu.cn

The file includes:

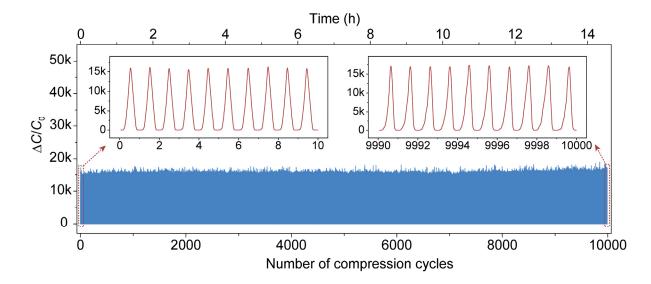
Supplementary Table 1. Information of the 20 textiles used in this work.

- Supplementary Table 2. Top ten important extracted signal features.
- Supplementary Table 3. Comparison of our sensing system based on the slip-sensor with reported sensory systems in terms of acquisition system and recognition accuracy.
- Supplementary Fig. 1. SEM image showing the cross section of a human fingerprint replica.
- Supplementary Fig. 2. Change in capacitance over 10,000 loading-release cycles under a peak pressure of 100 kPa, with a total test time of ~14.5 h.
- Supplementary Fig. 3 Hysteresis curve of the slip-sensor during a loading-unloading cycle.
- Supplementary Fig. 4. The capacitance of the slip-sensor at different pressures.
- Supplementary Fig. 5. Stress-strain curves of PDMS, a soft PVA-H₃PO₄ film, and the PVA-H₃PO₄ film which is used as the ionic layer in our sensor.
- Supplementary Fig. 6. Response to different microstructures of the sensor with fingerprint tip size of $25 \ \mu m$.
- Supplementary Fig. 7. Signals to the microstructures with a spacing of 15 μ m at a sliding rate of 1.0 mm \cdot s⁻¹ under contact pressures of 2, 10, and 20 kPa.
- Supplementary Fig. 8. Signal of the slip-sensor by sliding on fine textures with a spacing of 15 μ m and a height of 6 μ m at a sliding rate of 1 mm·s⁻¹.
- Supplementary Fig. 9. Recognition accuracy of surface structures with different feature spacings by five volunteer subjects.
- Supplementary Fig. 10. Effect of elastic modulus on signal magnitudes.
- Supplementary Fig. 11. SEM images of the 20 textiles under test.
- Supplementary Fig. 12. Schematic design diagram of the digital circuit board.
- Supplementary Fig. 13. Frequency-domain signals of the 20 textiles obtained using wavelet transform.
- Supplementary Fig. 14. Recognition accuracy of the 20 textiles at a high sliding rate of 40 mm \cdot s⁻¹.
- Supplementary Fig. 15. Time-domain signals of the slip-sensor corresponding to different textures under random sliding rates and pressures.
- Supplementary Fig. 16. Change in acceleration of subject A when sliding on 20 textiles, with 200 times of sliding for each textile.
- Supplementary Fig. 17. Change in acceleration of subject B when sliding on 20 textiles, with 100 times of sliding for each textile.
- Supplementary Fig. 18. Change in acceleration of subject C when sliding on 20 textiles, with 100 times of sliding for each textile.

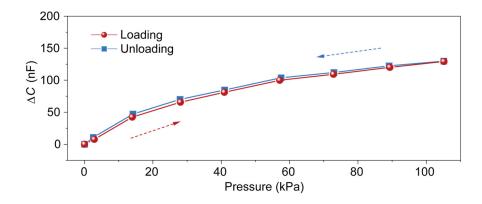
Supplementary Fig. 19. Recognition accuracies of the 20 textiles using a sensor without fingerprint.

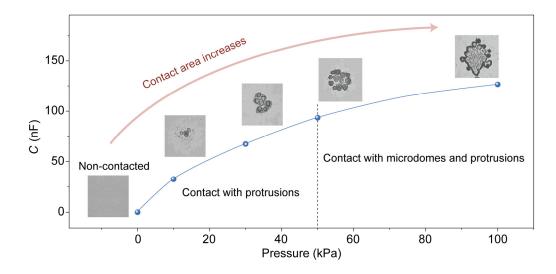

Supplementary Fig. 20. The signal-to-noise ratio (SNR) and effective number of bits (ENOB) of the signal output of the slip-sensor.

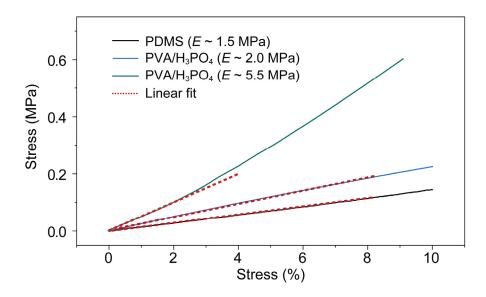
Supplementary Fig. 21. Schematic for the preparation of the slip-sensor.

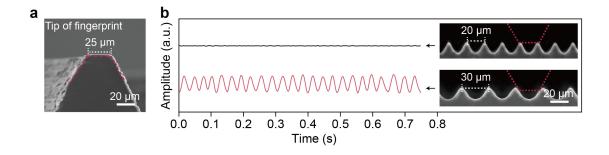

The supplementary note: recognition of microstructures by human subjects.

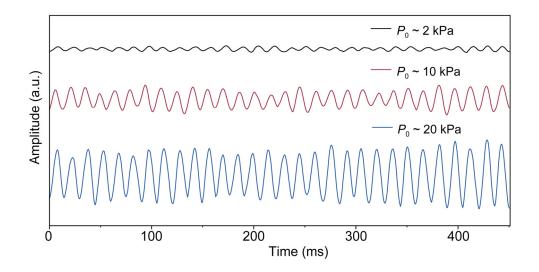
Number	Name and source	Туре	Components							
1	Blended double coat fabric	Blended fabric	40% Rayon, 46% Terylene, 14% Nylon							
2	Pure wool fine grain coat	Pure wool	100% Wool							
3	Khaki trench coat fabric	Pure cotton	100% Cotton							
4	Blended linen fabric	Blended fabric	80% Linen, 20% Cotton							
5	Polyester imitation cotton cloth	Blended fabric	70% Terylene, 30% Rayon							
6	Twill cloth	Pure cotton	100% Cotton							
7	Laser phantom color down jacket	Pure fabric	100% Terylene							
8	Waterproof jacquard trench coat	Pure fabric	100% Nylon							
9	Cross print plain fabric	Blended fabric	50% Cotton, 50% Terylene							
10	Net yarn embroidery	Pure fabric	100% Polyester							
11	Super lightweight nylon fabric	Pure fabric	100% Nylon							
12	Seersucker	Pure fabric	100% Terylene							
13	Striped blended cloth	Blended fabric	75% Cotton, 25% Spandex							
14	Corduroy	Pure cotton	100% Cotton							
15	Jacquard fabric	Blended fabric	65% Polyester, 33% Viscose, 2% Lycra							
16	SUSTANS	Blended fabric	Novel bio-elastic short fiber							
17	Super imitation cotton	Blended fabric	70% Polyester, 30% Cotton							
18	Wool blended fabric	Blended fabric	55% Nylon, 25% Cotton, 20% Wool							
19	Stretch blend cloth	Blended fabric	65% Spandex, 35% Polyester							
20	Twill	Pure fabric	100% Polyester							

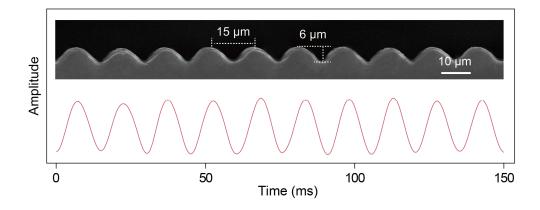

Supplementary Table 1. Information of the 20 textiles used in this work.

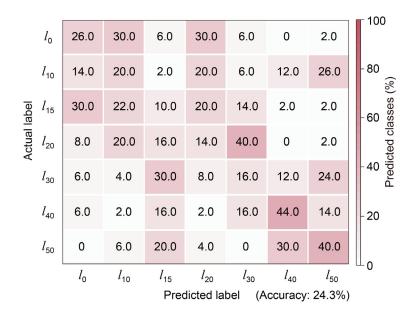

Supplementary Fig. 1. SEM image showing the cross section of a human fingerprint replica.

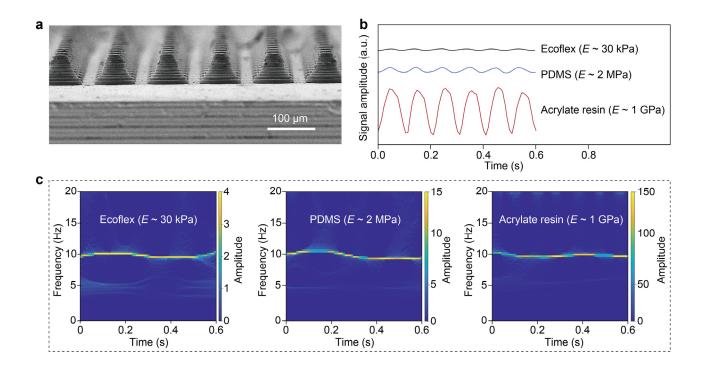

Supplementary Fig. 2. Change in capacitance over 10,000 loading-release cycles under a peak pressure of 100 kPa, with a total test time of ~14.5 h.

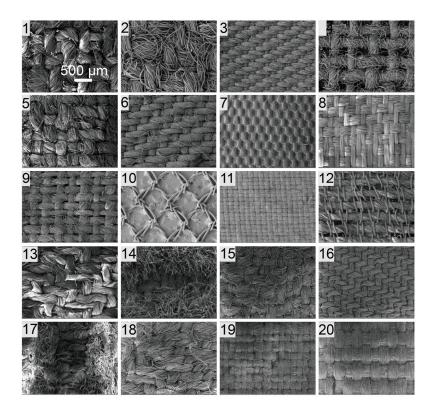

Supplementary Fig. 3 Hysteresis curve of the slip-sensor during a loading-unloading cycle.

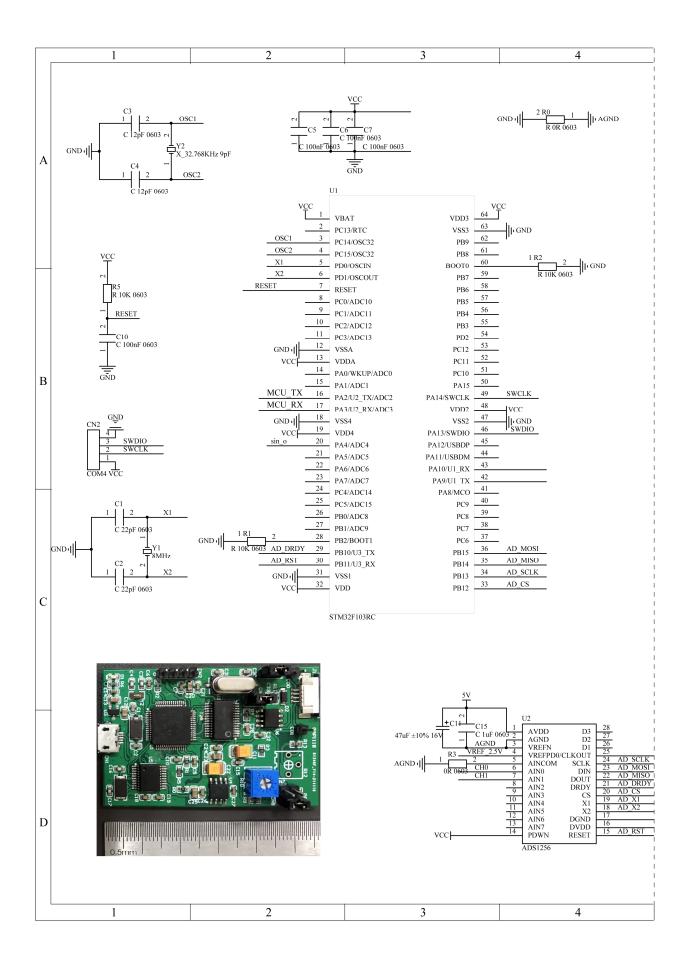

Supplementary Fig. 4. The Capacitance of the slip-sensor at different pressures. The inset pictures show the interfacial contact area under different pressures.

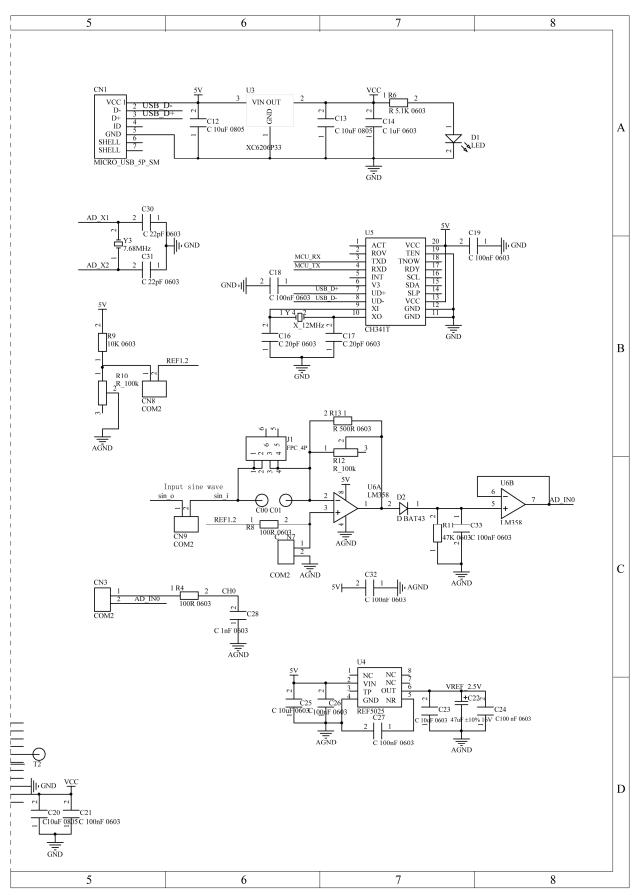

Supplementary Fig. 5. Stress-strain curves of PDMS, a soft PVA-H₃PO₄ film, and the PVA-H₃PO₄ film which is used as the ionic layer in our sensor. The specimens exhibit Young's moduli of 1.5, 2.0, and 5.5 MPa, respectively.


Supplementary Fig. 6. Response to different microstructures of the sensor with fingerprint tip size of 25 μ m. a SEM image of an artificial fingerprint with a ridge tip width of 25 μ m. b Signals of the slip-sensor with a fingerprint tip width of 25 μ m when sliding on surface features with spacings of 20 and 30 μ m at a sliding rate of 1 mm·s⁻¹. Insets are SEM images of the surface structures. Here, "a. u." signifies "arbitrary unit".

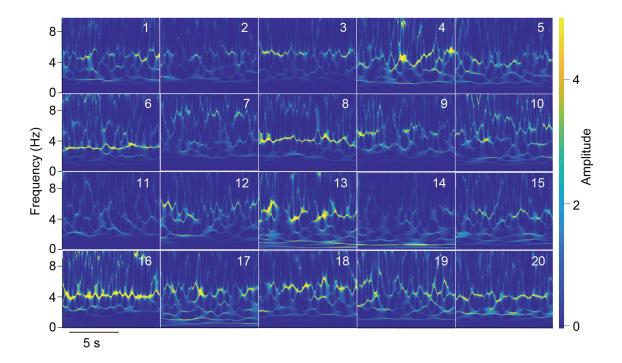

Supplementary Fig. 7. Signals to the microstructures with a spacing of 15 μ m at a sliding rate of 1.0 mm · s⁻¹ under contact pressures of 2, 10, and 20 kPa.


Supplementary Fig. 8. Signal of the slip-sensor by sliding on fine textures with a spacing of 15 μ m and a height of 6 μ m at a sliding rate of 1 mm·s⁻¹. The inset shows an SEM image of the texture.

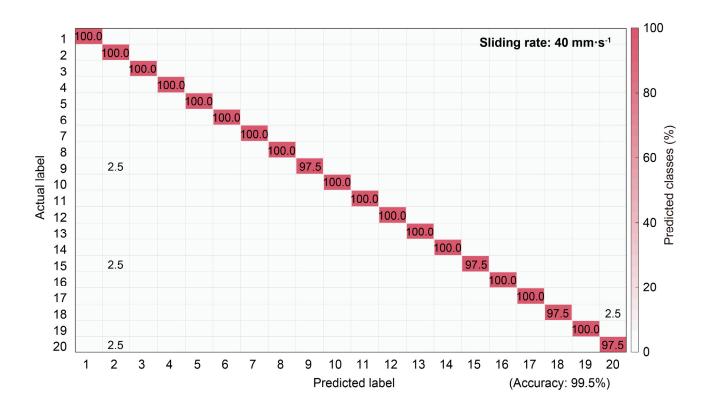

Supplementary Fig. 9. Recognition accuracy of surface structures with different feature spacings by five volunteer subjects. The labels l_0 represents nonstructured surface; and l_{10} , l_{15} , l_{20} , l_{30} , l_{40} , and l_{50} represent the textures with feature spacing of 10, 15, 20, 30, 40, and 50 µm, respectively.

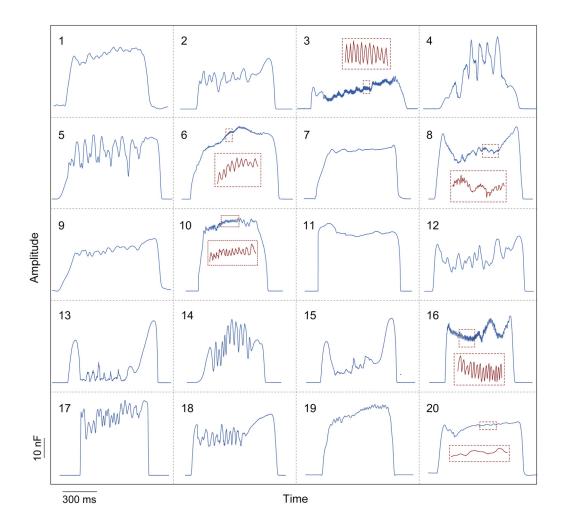


Supplementary Fig. 10. Effect of elastic modulus on signal magnitudes. a SEM image textures made of acrylate resin, and two other samples with the same structure made of Ecoflex and PDMS are also prepared. b Signals of the slip-sensor when the sensor slides over the surfaces of Ecoflex ($E \sim 30$ kPa), PDMS ($E \sim 2$ MPa), and resin ($E \sim 1$ GPa) structures. Sliding rate is 1 mm·s⁻¹. c Frequency-domain signals corresponding to panel (b).

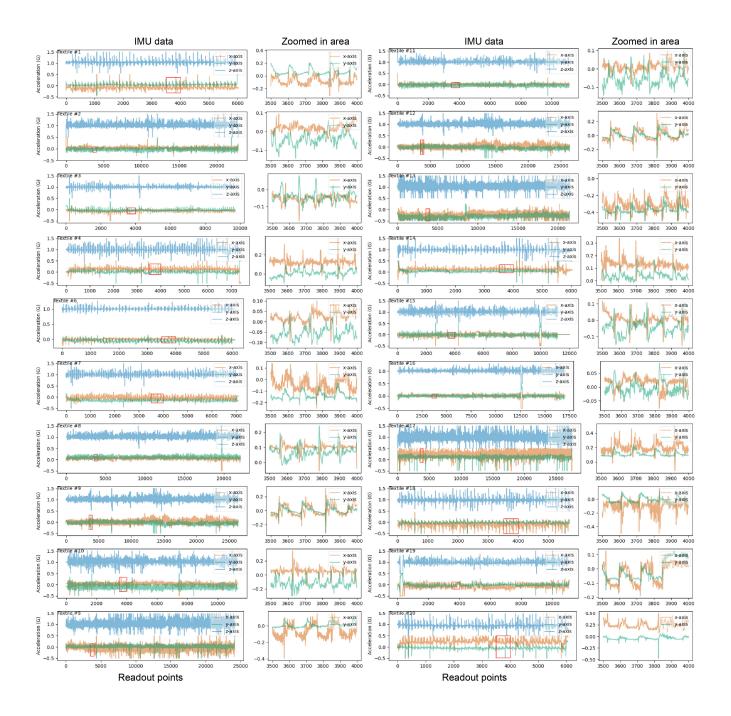


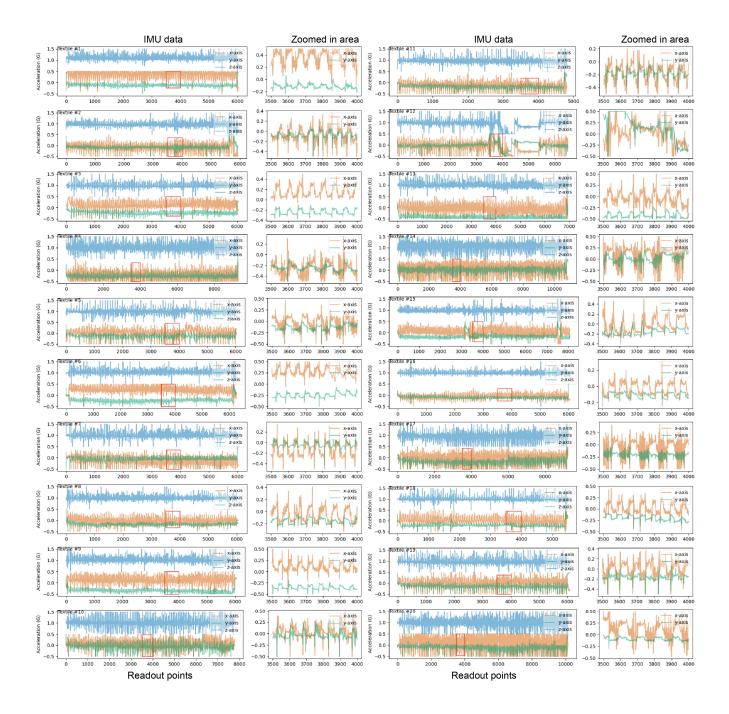
Supplementary Fig. 11. SEM images of the 20 textiles.

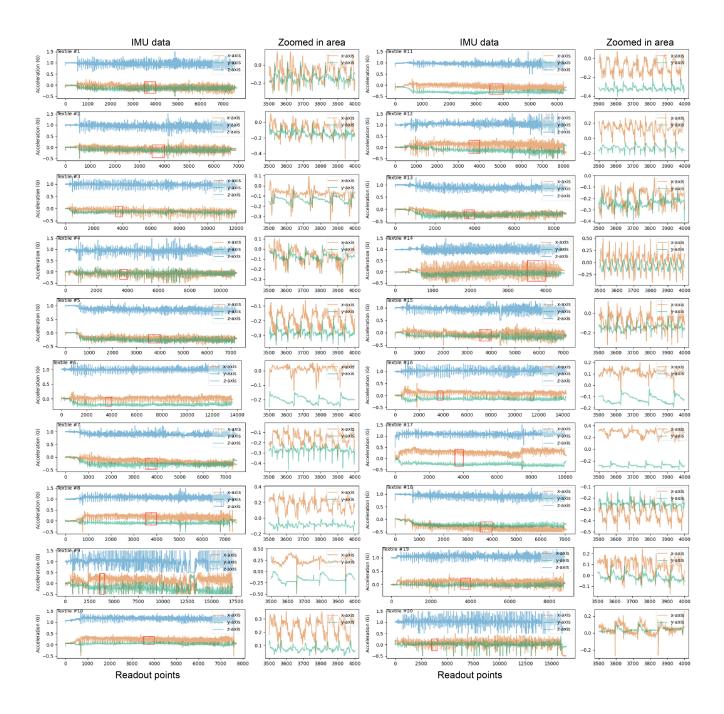

Supplementary Fig. 12. Schematic design diagram of the digital circuit board. The inset is a digital photograph of the circuit board.


Supplementary Fig. 13. Frequency-domain signals of the 20 textiles obtained using wavelet transform. The sliding rate is $2 \text{ mm} \cdot \text{s}^{-1}$.

	Feature Name	Description							
1	Range Count	Count of values							
2	Sequence Length	Length of the feature sequence							
3	Mean Quantile Change	Average change in quantiles							
4	Mean Change	Mean change in feature values							
5	Absolute Quantile Variance	Variance in quantile changes (absolute)							
6	Sequence Complexity	Complexity of the sequence (not normalized)							
7	0.6 Upper Limit Abs Quantile Variance	Variance in quantile changes (absolute, 0.6 upper limit)							
8	0.6 Upper Limit Quantile Variance	Variance in quantile changes (0.6 upper limit)							
9	Quantile Variance	Variance in quantile changes							
10	Fourier Variance	Variance in Fourier-transformed values							

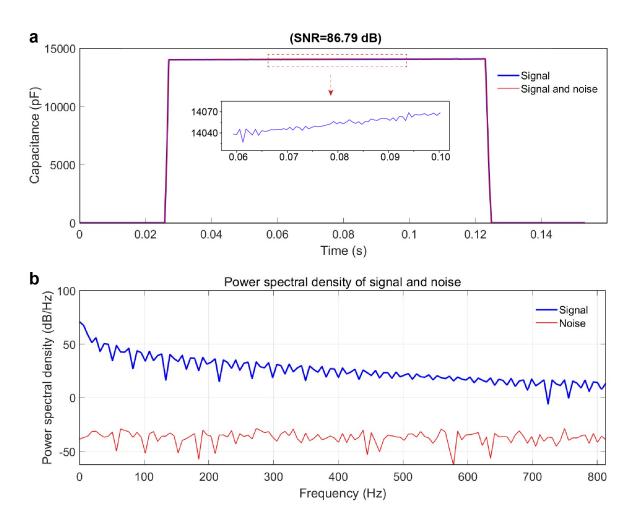

Supplementary Table 2. Top ten important extracted signal features


Supplementary Fig. 14. Recognition accuracy of the 20 textiles using the data collected at a high sliding rate of 40 $\text{mm}\cdot\text{s}^{-1}$.

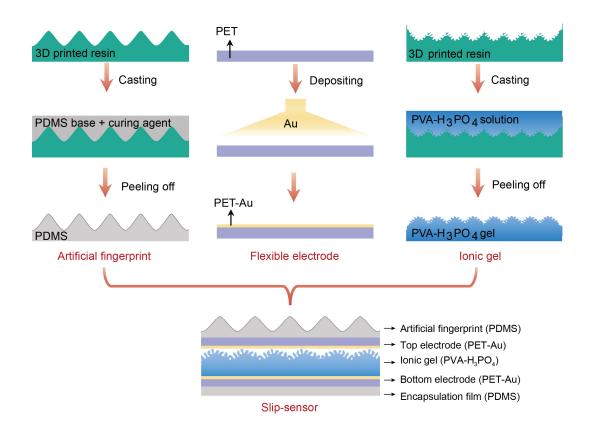

Supplementary Fig. 15. Time-domain signals of the slip-sensor corresponding to different textures under random sliding rates and pressures.

Supplementary Fig. 16. Change in acceleration of subject A when sliding on 20 textiles, with 200 times of sliding for each textile. The chaotic acceleration in the *x*-*y* plane corresponding to multiple sliding for each textile represents that the sliding velocities are variable and random.

Supplementary Fig. 17. Change in acceleration of subject B when sliding on 20 textiles, with 100 times of sliding for each textile. The chaotic acceleration in the *x*-*y* plane corresponding to multiple sliding for each textile represents that the sliding velocities are variable and randon.


Supplementary Fig. 18. Change in acceleration of subject C when sliding on 20 textiles, with 100 times of sliding for each textile. The chaotic acceleration in the *x*-*y* plane corresponding to multiple sliding for each textile represents that the sliding velocities are variable and randon.

Supplementary Table 3. Comparison of our sensing system based on the slip-sensor with reported sensory systems in terms of acquisition system and recognition accuracy.


SA signal mimicking	FA signal mimicking	No. of acquisition systems	No. of recognized objects	Recognition accuracy	Reference			
Piezoresistive sensor	Triboelectric sensor	Two sets	12	99.1%	Nano Lett. 2019, 19, 3305-3312			
Piezoresistive sensor	Piezoelectric sensor	Two sets	20	99.1%	Nat. Electron. 2021, 4, 429-438			
Triboelectric generator	Optical sensor	Two sets	16	94.1%	Nano Lett. 2022, 22, 7275-7283			
Piezoresistive sensor	Triboelectric generator	Two sets	9	94.99%	Nano Energy 2022, 96, 107137			
Piezoresistive sensor	Piezoelectric sensor	Two sets	8	98.95%	npj Flex. Electron. 2022, 6, 45			
Piezoresistive sensor	Triboelectric generator	Two sets	20	98.9%	<i>Matter</i> 2022, 5, 1481-1501			
A single iontro	onic slip-sensor	One set	20	98.6%	Our work			

	1	97.0	0	0	0	3.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		- 100
	2	0	47.0	3.0	0	10.0	0	0	0	0	0	5.0	0	5.0	0	7.5	2.5	5.0	3.0	0	12.0		
	3	0	0	62.0	0	0	0	2.5	2.5	0	2.5	0	0	0	0	10.0	0	0	0	2.5	18.0		
	4	0	0	0	93.0	0	0	0	0	7.0	0	0	0	0	0	0	0	0	0	0	0		
	5	5.0	2.5	0	0	65.0	2.5	0	0	0	0	0	0	0	0	10.0	0	5.0	5.0	2.5	2.5		- 80
	6	2.5	0	0	0	2.5	68.0	10.0	0	10.0	0	0	0	0	0	0	5.0	0	0	2.0	0		
	7	0	2.5	5.0	5.0	3.0	12.0	12.0	5.0	23.0	0	5.0	7.5	5.0	0	5.0	0	0	0	10.0	0		(%)
_	8	0	2.5	5.0	0	5.0	0	5.0	17.0	0	13.0	10.0	2.5	5.0	0	10.0	5.0	2.5	2.5	5.0	10.0		
abe	9	0	0	0	2.5	0	0	10.0	0	75.0	0	0	10.0	0	0	0	0	0	0	2.5	0		classes
	10	0	0	20.0	0	2.5	5.0	0	2.5	2.5	15.0	2.5	0	0	0	7.5	2.5	10.0	5.0	5.0	20.0		Class
Actual label	11	0	5.0	0	0	2.5	0	10.0	15.0	0	2.5	40.0	5.0	2.5	0	2.5	0	0	0	7.5	7.5		g g
Ă	12	0	0	2.5	0	0	0	7.5	5.0	5.0	0	2.5	70.0	2.5	2.5	0	0	0	0	2.5	0		Dredicted
	13	0	13.0	0	0	0	0	0	0	0	0	2.5	0	82.0	0	0	0	0	0	0	2.5		- 40 ip
	14	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0		Ē
	15	0	2.5	5.0	0	7.5	0	0	2.5	0	0	5.0	0	0	0	65.0	7.5	0	0	2.5	2.5		
	16	0	2.5	10.0	0	0	10.0	0	0	0	0	2.5	0	0	0	2.5	58.0	0	0	2.5	12.0		00
	17	2.5	0	0	0	0	0	0	0	0	2.5	0	0	0	0	0	0	17.0	78.0	0	0		- 20
	18	0	0	2.5	0	2.5	0	0	0	0	2.5	0	0	0	0	0	0	68.0	22.0	0	2.5		
	19	0	5.0	0	0	5.0	2.5	0	10.0	15.0	5.0	5.0	17.0	2.5	0	2.5	2.5	0	5.0	23.0	0		
	20	0	2.5	7.5	0	0	2.5	0	5.0	0	7.5	5.0	0	0	0	2.5	0	2.5	3.0	0	62.0		\bot_0
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	_	-0
	Predicted label											(Acci		: 54.5									

Supplementary Fig. 19. Recognition accuracies of the 20 textiles using the sensor without fingerprint at a sliding rate of 2 mm \cdot s⁻¹.

Supplementary Fig. 20. The signal-to-noise ratio (SNR) and effective number of bits (ENOB) of the signal output of the slip-sensor. (a) Signal and noise of the slip-sensor under a pressure of 50 kPa at a high sampling frequency of 1626 Hz; (b) Power spectral density of the signal and noise. The ENOB value is determined to be 14.12 bits by the equation: ENOB = (SNR-1.76)/6.02.

Supplementary Fig. 21. Schematic for the preparation of the slip-sensor. The fabrication involves in the preparation of the fingerprint, the electrode, and the ionic gel with graded microstructures.

The supplementary note: recognition of microstructure by human subjects

Five volunteer subjects were selected to recognize the fine microstructures with spacings of 10, 15, 20, 30, 40, and 50 µm together with a nonstructured surface. During the training and testing, the subjects were asked to wear eyeshades to avoid visual interference. Two copies of each sample were prepared, one set for training and other set for testing. Considering that subjects cannot remember the characteristics of identified samples for a long time, they were allowed to touch a sample from the training set searched for a match from the test set. Each identified sample were tested for 10 times by each subject, with a total of 350 tests in total by the 5 subjects. The recognition accuracy of each subject for the identified sample was determined by dividing the number of correct reports for each sample by the total number of reports for the sample. Finally, the average recognition accuracy of the five subjects for each sample was output to the confusion matrix as the final recognition result.