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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The manuscript by Bai et al. reports an artificial sensory system mimicking the biological 

sensory system for texture recognition. This system uses a specially designed iontronic sensor 

that can detect both static pressure and dynamic stimuli up to 400 Hz, which can otherwise be 

measured using two different sensors. The authors introduce the concept “spatiotemporal 

resolution” for high-performance recognition, and they show that the iontronic sensor can 

exhibit a superhigh spatial resolution of around 10 microns, and a high frequency resolution 

of at least 0.1 Hz at a frequency of 400 Hz. Based on the high sensing performance of the 

sensor, the authors build a portable sensory system, and integrate the system with a prosthetic 

hand for real-time texture recognition, with the results to be displayed in a user’s visual 

interface. The system achieves a high recognition accuracy of 98.5% in classifying 20 

commercial textiles, and an accuracy of ~97% in classifying fruits and other stuff. The authors 

show that the results are much higher than the classification accuracies by human subjects. 

Overall, this manuscript is of high novelty and will be of interest to audiences from many fields. 

I therefore strongly recommend publication of the manuscript in Nature Communications. 

A few minor points for the authors to address: 

1. The authors should provide the initial value of capacitance (C0, capacitance before applying 

any load). This is because the sensitivity value relies strongly on C0. 

2. The Young’s moduli of the ionic materials (7.5 MPa) and other materials are questionable. 

Young’s modulus should be the slope of the stress-strain curve starting from the origin. Please 

correct the problem. 

3. I suggest that the authors provide the data for the onset the slip, that is, the signal from the 

static friction to kinetic friction. The data might provide audiences with additional information 

(such as friction coefficient) for object recognition, although it is out of the scope of this work. 

4. It seems to me that the spatial resolution of the sensor is determined by the size of the 

fingerprint tip. But why not further reduce this size to achieve a higher spatial resolution? Is 

that technically unavailable? 

5. The frequency resolution is determined to be 0.1 Hz. The true frequency-resolution should 

be even higher because the authors tried only frequency difference of 0.1 Hz. Sometimes 

people use the FWHM of the peaks as the resolution. 

6. There is a problem in the format of references (Ref. 19 and 20) in page 5. Please correct it. 

7. In figure 1a, I suggest that the authors change the expression “rough or fine” to “rough or 

smooth”. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors propose a artificial sensory system that can respond to both static and dynamic 

stimuli with high spatial resolution and high frequency resolution. By leveraging machine 

learning analytics, high-precision discrimination of textile surface textures have been 
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demonstrated for robotic applications. Although the sensor in this paper shows a great 

advantage in sensitivity, response relaxation time, and corresponding frequency range 

compared to other capacitive sensors, the novelty of its system level application is not 

particularly obvious compared to current state-of-art works, which needs to be strengthened. 

Thus, I suggest major revision with the following comments properly considered: 

 

1. For the sensor structure, the periodic domes are designed with a diameter of 200 um and a 

height of 55 um. The choice of this parameter or the related optimization data/discussion are 

suggested to be mentioned in the text. 

2. Typos and errors, e.g., “diamater” in “...with a diamater of 200 μm and a height of 55 μm,”. 

The authors need to check through the main text again carefully. 

3. For the spatiotemporal resolution test of the slip sensor, the authors fixed the sliding rate 

to 1.0 mm s-1. However, the contact force/pressure may also affect signal amplitude during 

sliding, which needs to be mentioned or discussed in the text. 

4. In Fig. 4, the authors demonstrated that the developed artificial sensory system can achieve 

high-accuracy textile recognition with a given sliding rate. However, in practical applications, 

the sliding rate is not always well maintained. What is the performance of this perception 

system at a relatively random sliding rate, e.g., to simulate the relatively random touch done 

by a human hand? 

5. In Fig. 2, the authors demonstrated that the proposed sensor achieved the static and 

pressure detection simultaneously, and mimic the SA and FA of biological sensory system. 

However, for the textile recognition shown in Fig. 4 and Fig. 5, the authors only use the 

dynamic signal as the input of perception model. Actually, some works have proved that the 

fusion of static and dynamic features can obtain better texture recognition performance, i.e., 

Nano letters 19.5 (2019): 3305-3312. Such data is suggested to be added to make the story of 

the whole article seem more complete. 

6. Many recent works have shown the possibility of simulating SA and FA for texture 

recognition under flexible sensory platform for HMI and robotic applications. A comparison 

table is needed to compare this work with other state-of-art works to further highlight the 

novelty of this paper. 

7. Some recent interesting works can be referred in introduction to broaden the view of 

readers, e.g., Science Advances 8.31 (2022): eabq2521; ACS Nano, vol. 17, no.5, 4985-4998, 

2023; ACS Nano, vol. 17, no.2, 1355-1371, 2023; Adv. Energy Mat., vol. 13, no.1, 2203040, 

2023; Nat. Commun., vol. 13, 5224, 2022.; Applied Physics Rev, vol. 7, no. 3, 031305, 2020. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors present a novel sensor based on tunable electric double layers (EDLs) that have a 

nanoscale charge separation which translates mechanical stimuli into capacitive signals. The 

sensor responds to static and dynamic stimuli and shows impressive performance i.e. 

sensitivity up to 519 kPa–1, spatial resolution down to ~15 μm in spacing and 6 μm in height, 

frequency vibrations measurement sensitivity up to 400 Hz, frequency-resolution of 0.1 Hz, 
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total response-relaxation time of ~2.4 ms. The fingerprint has a bio-mimetic structure and 

geometry. The authors presents results on the recognition of 20 different commercial textiles 

with high accuracy and a portable system with a robotic hand which integrates the sensor, a 

PCB for interfacing with a PC and for real-time graphic interface for surface classification. 

Strong points: 

Novel iontronic sensor which measures both static and dynamic pressure/mechanical stimuli 

with low (for a capacitive sensor) response-relaxation time, high frequency bandwidth and 

frequency resolution. 

Weak points: 

Missing relevant information on the experimental setup (see other comments). 

The machine learning approach looks overestimated: Fig. 4.e shows that, with a proper 

transformation, different clusters are almost separated, a simpler algorithm (e.g. SVM) could 

perform the task. The authors should compare the classification results with a reference 

algorithm in the state of the art. 

The comparison with the human capabilities in textile recognition by touch exploration is not 

meaningful, I expect that an artificial system overcomes human performance in many different 

ways. In the proposed results, the artificial system applies the stimulus in a very controlled 

way which oversimplifies the task. This part of the paper is not meaningful and should be 

removed. 

Presentation in some points is obscure, more details and a clear presentation must be supplied 

in many parts. 

In the last part, the paper presents a touch-based object recognition experiment. This part 

should be revised as the task performed is the recognition of surface objects by sliding the 

sensor on the surface itself. 

The read-out electronic circuit of the portable system must be clearly presented. 

 

The claim in the Introduction “the selection of low-viscosity ionic material together with the 

microstructural design allow the sensor to rapidly respond to high-frequency vibrations” is not 

sufficiently motivated/demonstrated in the paper. I see two different points here: 1) the 

fingerprint arrangement which is biomimetic and improves the spatial resolution; 2) the ionic-

material as insulating layer of the sensing capacitor which allows to achieve high frequency. 

The authors should better explain these two points. 

Which are the advantages of using ionic-material with respect to other materials? 

The advantages of the “microstructured surface with two-levels of structures” (see page 5) 

should be better discussed and demonstrated. The measurement of the static capacitance 

versus normal mechanical stimulus should be reported. The way the microstructured surface 

affects the capacitance value upon loading should be introduced. 

The authors must explain the reason why “the hierachical microstructures of the ionic layer 

help improve the sensitivity and reduce the response-relaxation time of sensors.” Page 6, top. 

The section structure with the thickness of the sensor various layers must be reported. 

Due to the total response-relaxation time of ~2.4 which is very impressive for a capacitive 

sensor, the corresponding maximum frequency that can be measured by the sensor is 416 Hz 

which overcomes capacitive sensors at the state of the art. 

The authors should explain how the measurement setup of Fig. 2.d, if the measurements was 
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static or dynamic, they should report the values of C and C0, it is not clear to me how they 

computed the sensitivity. 

Fig. S2 should report the input stimulus versus time; 1000 cycles is not a relevant value to 

evaluate signal drift. I would increment the number of cycles by one order of magnitude at 

least. 

The authors should make experiments to evaluate the hysteretic behavior of the sensor. 

Which is the sensor output sampling rate? 

What are piezocapacitive sensors (page 6, top)? 

The thickness of the Ionic gel is 120 microns, the Ionic gel implements the insulating layer of 

the capacitor, which is the dielectric constant of the material? The capacitance value is in the 

order of nF (see Fig. 2.e), which is the capacitance value per unit area? When the mechanical 

stimulus is applied, the thickness of the ionic gel decreases, and the capacitance increases, 

which is the maximum capacitance value which has been measured during experiments? 

Which is the corresponding ionic gel thickness? 

In Fig. 2.f, the amplitude value must be reported on the y-axis. Which is the input stimulus 

amplitude? Which is the measurement setup? 

The sentence at page 7 “The interfacial adhesion behavior between the electrode and the 

ionic gel determines the relaxation time of the sensor” should be better explained also with 

experimental evidence. 

The motivations of the frequency resolution of the sensor of 0.1 Hz should be clearly discussed. 

The electronic interface circuit for capacitive variation measurement must be presented. Fig. 

S9 does not help in understand the read-out circuit. 

Miniaturization of the read-out PCB should be discussed. 

The organization of the data set e.g. time duration of each sample, sliding speed of each 

sample, static pressure of each sample, must be provided by the authors. 

In Fig. 4.g are samples of different sliding velocities collected? Or only one sliding velocity has 

been used? It looks that experiments have been conducted with a constant sliding velocity. 

What happens with a datset collecing samples with different sliding velocities? 

Sentence in the Introduction: “However, artificial sensors often lack the ability or perform 

insufficiently to perceive, recognize, and explore the real world upon touching the target 

objects.”, exploration is an active action which is not implemented by sensors, I suggest 

removing it. 

The information about experimental setup and dataset structure is not sufficient; the authors 

should supply all the features of samples used to build the dataset. 

The authors should evaluate results with a dataset of samples collected at different velocities 

and different static pressure. I believe that if the sliding velocities and static pressure are 

constant the operation of the Machine Learning algorithm is over simplified as shown in 4.e 

where clusters of different textiles are clearly identified and do not overlap. This is in my 

opinion the very high classification accuracy that is achieved. Humans cannot precisely control 

the sliding velocity as such their performance are not that high if compared with those of a 

machine learning algorithm with data collected with precisely controlled operating conditions. 

The inference time, i.e. the time needed for output the classification result should be reported 

in the paper. 

The training and test sets, the related operating conditions (see Fig. 5), should be clearly 
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reported in the paper. Which are the differences with respect to what reported in Fig. 4? Which 

is the meaning of the following sentence “all the 2000 sets of data were used as the training 

set, and we extract features for each textile to further establish a classification model”, which 

features are extracted? Which classification model has been used? 

It is claimed that the system can identify macroscale objects (page 13), my understanding is 

that the sensor can classify different surfaces by sliding the sensorized finger on the object 

surface. The operating conditions of such experiment must be clearly reported. Discussion on 

results is confuse, the assessment is not convincing. 

The authors must compare their results with the ones of: Zhang, J., Yao, H., Mo, J. et al. Finger-

inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency. Nat 

Commun 13, 5076 (2022). https://doi.org/10.1038/s41467-022-32827-7 
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Response to reviewers for manuscript NCOMMS-23-15409A-Z 

 

 

Reviewer #1 (Remarks to the author): 

 

The manuscript by Bai et al. reports an artificial sensory system mimicking the 

biological sensory system for texture recognition. This system uses a specially designed 

iontronic sensor that can detect both static pressure and dynamic stimuli up to 400 Hz, 

which can otherwise be measured using two different sensors. The authors introduce 

the concept “spatiotemporal resolution” for high-performance recognition, and they 

show that the iontronic sensor can exhibit a superhigh spatial resolution of around 10 

microns, and a high frequency resolution of at least 0.1 Hz at a frequency of 400 Hz. 

Based on the high sensing performance of the sensor, the authors build a portable 

sensory system, and integrate the system with a prosthetic hand for real-time texture 

recognition, with the results to be displayed in a user’s visual interface. The system 

achieves a high recognition accuracy of 98.5% in classifying 20 commercial textiles, 

and an accuracy of ~97% in classifying fruits and other stuff. The authors show that the 

results are much higher than the classification accuracies by human subjects. Overall, 

this manuscript is of high novelty and will be of interest to audiences from many fields. 

I therefore strongly recommend publication of the manuscript in Nature 

Communications. 

Response: We thank the reviewer for the kind and positive comments on our work. 

 

A few minor points for the authors to address: 

Q1. The authors should provide the initial value of capacitance (C0, capacitance before 

applying any load). This is because the sensitivity value relies strongly on C0. 

Response: The value of the initial capacitance C0 is ~ 8 pF and the information has been 

added in the “Methods” section in the revised manuscript.  

Modification: Line 13, Page 6 

“……a low initial capacitance (C0) of ~8 pF.” 

 

Q2. The Young’s moduli of the ionic materials (7.5 MPa) and other materials are 

questionable. Young’s modulus should be the slope of the stress-strain curve starting 

from the origin. Please correct the problem. 

Response: Thanks to the reviewer for correcting the method to calculate Young’s 

modulus. The corrected Young’s modulus is ~5.5 MPa, and the information has been 

revised in Supplementary Fig. 5 and corresponding main text (Line 22, Page 7). 
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Q3. I suggest that the authors provide the data for the onset the slip, that is, the signal 

from the static friction to kinetic friction. The data might provide audiences with 

additional information (such as friction coefficient) for object recognition, although it 

is out of the scope of this work. 

Response: The signal for the onset the slip has been provided (see revised Fig. 4h). The 

signal amplitude decreases during the transition from static friction to dynamic friction. 

Such data might provide extra information for texture recognition.   

Modification: Line 7-8, Page 13 

“……Note that the signal for the onset of the slip (Fig. 4h) may reflect extra features 

(such as friction coefficient) of the texture to further improve the classification 

accuracy.” 

 

Q4. It seems to me that the spatial resolution of the sensor is determined by the size of 

the fingerprint tip. But why not further reduce this size to achieve a higher spatial 

resolution? Is that technically unavailable? 

Response: Yes, the size of the fingerprint is determined by the resolution of the 3D 

printer. It is technically difficult to further reduce the size. 

Q5. The frequency resolution is determined to be 0.1 Hz. The true frequency-resolution 

should be even higher because the authors tried only frequency difference of 0.1 Hz. 

Sometimes people use the FWHM of the peaks as the resolution. 

Response: We thanks the reviewer for the suggestion. We have updated the frequency-

resolution in the revised manuscript, and the frequency-resolution is determined to be 

~0.02 Hz based on the FWHM of the peaks. 

Modification: Line 18-21, Page 9 

“……The frequency-resolution is determined to be ~0.02 Hz (or ~0.005% at 400 Hz), 

identified by the full width at half maximum (FWHM) of the peaks. Such a high 

frequency-resolution allows the slip-sensor to identify surface textures with close 

feature spacings.” 

 

Q6. There is a problem in the format of references (Ref. 19 and 20) in page 5. Please 

correct it. 

Response: Done! 

 

Q7. In figure 1a, I suggest that the authors change the expression “rough or fine” to 

“rough or smooth”. 

Response: Thanks for the suggestion! We have changed the expression “rough or fine” 
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to “rough or smooth” in Fig. 1a in the revised manuscript. 

------------------------------------------------ 

Reviewer #2 (Remarks to the Author) 

The authors propose an artificial sensory system that can respond to both static and 

dynamic stimuli with high spatial resolution and high frequency resolution. By 

leveraging machine learning analytics, high-precision discrimination of textile surface 

textures has been demonstrated for robotic applications. Although the sensor in this 

paper shows a great advantage in sensitivity, response relaxation time, and 

corresponding frequency range compared to other capacitive sensors, the novelty of its 

system level application is not particularly obvious compared to current state-of-art 

works, which needs to be strengthened. Thus, I suggest major revision with the 

following comments properly considered: 

 

Response: We acknowledge the reviewers’ comments on the system level of this work. 

The article has been thoroughly revised based on the reviewers’ suggestions. We believe 

that such revisions have significantly improved this work. 

 

Q1. For the sensor structure, the periodic domes are designed with a diameter of 200 

um and a height of 55 um. The choice of this parameter or the related optimization 

data/discussion are suggested to be mentioned in the text. 

Response: We thank the reviewer for the suggestion. The specific dimensions of the 

periodic dome, including its diameter and height, are determined by a trade-off between 

printing resolution of the 3D printer and the thickness of the device. Specifically, the 

thickness of the sensor should be made to be as thin as possible to achieve a high 

flexibility, whereas a limited thickness makes the introduction of graded 

microstructures difficult. We finally select a diameter of 200 microns and a height of 

55 microns. We have emphasized this point in the revised manuscript. 

Modification: Line 2-4, Page 6  

“……The specific dimensions of the periodic domes or finer protrusions, including 

their diameters and heights, are determined by a trade-off between the fabrication 

resolution and the thickness of the device.” 

Q2. Typos and errors, e.g., “diamater” in “...with a diamater of 200 μm and a height of 

55 μm,”. The authors need to check through the main text again carefully. 

Response: The word “diamater” has been corrected to “diameter”, and we have 

thoroughly checked the typos and grammar problems in the revised manuscript.  

Q3. For the spatiotemporal resolution test of the slip-sensor, the authors fixed the 

sliding rate to 1.0 mm s-1. However, the contact force/pressure may also affect signal 
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amplitude during sliding, which needs to be mentioned or discussed in the text. 

Response: We thank the reviewer for the suggestion. Indeed, the contact pressure will 

affect signal amplitudes. As shown in the Fig. R1 (or revised Supplementary Fig. 7), 

the signal magnitude increases with contract pressure because of the stronger 

interaction between the slip-sensor and the microstructure.  

 

Fig. R1. Signals to the microstructures with a spacing of 15 μm at a sliding rate of 1.0 

mm·s–1 under contact pressures of 2, 10, and 20 kPa. 

Modification: From Line 22, Page 8 to Line 2, Page 9 

“……In addition, signal magnitude increases with contact pressure due to the stronger 

interaction between the slip-sensor and the microstructure (Supplementary Fig. 7).” 

 

Q4. In Fig. 4, the authors demonstrated that the developed artificial sensory system can 

achieve high-accuracy textile recognition with a given sliding rate. However, in 

practical applications, the sliding rate is not always well maintained. What is the 

performance of this perception system at a relatively random sliding rate, e.g., to 

simulate the relatively random touch done by a human hand? 

Response: A great point! In the revised manuscript, we have added texture recognition 

at random sliding rates. We show that system can achieve an average accuracy of 98.6% 

at random sliding rates (updated Fig. 4h and Fig. 4i).  

Modification: From Line 18 Page 12 to Line 4, Page 13 

“The human finger touch objects at a random sliding rate, we thus conducted texture 

recognition at a random sliding rate. We fixated the slip-sensor on an index finger of a 

human subject and unconsciously slid the sensor over the textiles with unknown 

contact pressure and sliding rate. Here, we collected signals for the whole interaction 

between the sensor and the textile: before contacting, finger touching, finger sliding 

over the textile, and finger withdrawing (Fig. 4h and Supplementary Fig. 15).   
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We collected a dataset comprised of 4200 instances for the 20 textiles, with 210 

entries per category. The original dataset was divided into training and test sets at a 

ratio of 6:4, and we used the Random Forest algorithm for classification. An average 

recognition accuracy of 98.6% was achieved (Fig. 4i), revealing the high robustness 

and reliability of our sensory system in texture recognition.” 

Q5. In Fig. 2, the authors demonstrated that the proposed sensor achieved the static and 

pressure detection simultaneously, and mimic the SA and FA of biological sensory 

system. However, for the textile recognition shown in Fig. 4 and Fig. 5, the authors only 

use the dynamic signal as the input of perception model. Actually, some works have 

proved that the fusion of static and dynamic features can obtain better texture 

recognition performance, i.e., Nano letters 19.5 (2019): 3305-3312. Such data is 

suggested to be added to make the story of the whole article seem more complete. 

Response: Thanks for the valuable suggestion. We have cited this work and conducted 

texture recognition that considers both static and dynamic features, and the result 

verifies a higher recognition accuracy (Fig. 4i).  

 

Q6. Many recent works have shown the possibility of simulating SA and FA for texture 

recognition under flexible sensory platform for HMI and robotic applications. A 

comparison table is needed to compare this work with other state-of-art works to further 

highlight the novelty of this paper. 

Response: We thank the reviewer for the constructive suggestion. In the revised 

manuscript, we have added Supplementary Table 2 to compare our sensory system 

with existing sensory systems that simulate SA and FA receptors for texture recognition. 

Modification: Line 4-9, Page 14 

“Existing work has reported several sensory systems for texture or material recognition 

using two types of sensors (e.g., piezoresistive and piezoelectric sensors, or 

piezoresistive and triboelectric sensors) to simulate SA and FA receptors25,26,46-49. These 

sensory systems, however, require two sensors integrated together with two sets of data 

acquisition systems (Supplementary Table 2). In contrast to these sensory systems, our 

sensory system can achieve a high recognition accuracy using a single sensor, while the 

system is simplified and robust.” 

 

Q7. Some recent interesting works can be referred in introduction to broaden the view 

of readers, e.g., Science Advances 8.31 (2022): eabq2521; ACS Nano, vol. 17, no.5, 

4985-4998, 2023; ACS Nano, vol. 17, no.2, 1355-1371, 2023; Adv. Energy Mat., vol. 

13, no.1, 2203040, 2023; Nat. Commun., vol. 13, 5224, 2022.; Applied Physics Rev, 

vol. 7, no. 3, 031305, 2020.  

Response: We have cited these works in the Introduction of the revised manuscript to 
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better serve the community.  

 

--------------------------------------------- 

Reviewer #3 (Remarks to the Author): 

 

The authors present a novel sensor based on tunable electric double layers (EDLs) that 

have a nanoscale charge separation which translates mechanical stimuli into capacitive 

signals. The sensor responds to static and dynamic stimuli and shows impressive 

performance i.e. sensitivity up to 519 kPa–1, spatial resolution down to ~15 μm in 

spacing and 6 μm in height, frequency vibrations measurement sensitivity up to 400 Hz, 

frequency-resolution of 0.1 Hz, total response-relaxation time of ~2.4 ms. The 

fingerprint has a bio-mimetic structure and geometry. The authors present results on the 

recognition of 20 different commercial textiles with high accuracy and a portable 

system with a robotic hand which integrates the sensor, a PCB for interfacing with a PC 

and for real-time graphic interface for surface classification. 

Strong points: 

Novel iontronic sensor which measures both static and dynamic pressure/mechanical 

stimuli with low (for a capacitive sensor) response-relaxation time, high frequency 

bandwidth and frequency resolution. 

Response: We greatly appreciate the reviewer for the evaluation on the high 

performance of our sensor. 

 

Weak points: 

Q1. Missing relevant information on the experimental setup (see other comments). 

 

Response: We thank the reviewer for pointing out the lack of details in some of 

experimental setups. Per the reviewer’s suggestions, we have supplemented the method 

for the computation of sensitivity, the design of circuit board, and other detailed 

information of the sensory system.  

 

Q2. The machine learning approach looks overestimated: Fig. 4.e shows that, with a 

proper transformation, different clusters are almost separated, a simpler algorithm (e.g. 

SVM) could perform the task. The authors should compare the classification results 

with a reference algorithm in the state of the art. 

Response: We thank the reviewer for the comments on the machine learning method. 

In fact, it is crucial to consider uncertainties in data acquisition, such as variations in 

contact pressure, tilt angle of the textile, and the movement of yarns in the textiles 

during repeated rubbing. These factors affect the extraction of features from the raw 

signals. Therefore, we need a model that can handle such complex situations. 

Here, our model can not only achieve a high classification accuracy in dealing with 
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existing datasets, but also be promising to deal with newly collected and real-time data, 

considering the aforementioned uncertainties. That is, our method exhibits high 

robustness and adaptability. 

 

Q3. The comparison with the human capabilities in textile recognition by touch 

exploration is not meaningful, I expect that an artificial system overcomes human 

performance in many different ways. In the proposed results, the artificial system 

applies the stimulus in a very controlled way which oversimplifies the task. This part 

of the paper is not meaningful and should be removed. 

Response: We thank the review for the suggestion. The part of texture recognition by 

human subjects is removed from the revised manuscript. Instead, we have added a new 

part on the recognition with random sliding rates.  

 

Q4. Presentation in some points is obscure, more details and a clear presentation must 

be supplied in many parts. In the last part, the paper presents a touch-based object 

recognition experiment. This part should be revised as the task performed is the 

recognition of surface objects by sliding the sensor on the surface itself. 

Response: We thank the reviewer for pointing out the problem in presentation. In the 

revised version, the part for the recognition of surface objects has been removed from 

the manuscript since this part is not clear and not solely related to textures. Please also 

see our Response to Q29.  

 

Q5. The read-out electronic circuit of the portable system must be clearly presented. 

Response: We thank the reviewer for the constructive suggestion. In the revised 

manuscript, we provide the details on the readout circuit board and the portable sensory 

system. 

Modification: On Line 12-16, Page 11, and Line 2-13, Page 18, we add a detailed 

description of the readout circuit. 

On Line 12-16, Page 11: “The circuit board consists of five parts: a power supply 

module, a microcontroller module (STM32) serving as the central processing unit to 

process data and make decision, an input/output interface module for the 

communication with external devices, a signal processing module responsible for 

conditioning internal signals, and a 24-bit analog-to-digital conversion (ADC) module 

for sampling signals (Supplementary Fig. 12). 

 

On Line 2-13, Page 18: “The design principle of the circuit is as follows. First, a 

12-bit digital-to-analog converter inside the STM32 microcontroller is programmed to 

generate a stable sine wave signal as the excitation source for the measurement. This 

excitation signal is applied to the capacitor to be measured, causing a current to flow 
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through the capacitor. During this process, the capacitor exhibits a fixed resistive 

characteristic known as capacitive reactance, which is proportional to the capacitance 

value. Next, a reactance-to-voltage conversion circuit is used to transform the 

capacitive reactance into a voltage signal that is proportional to the capacitance value. 

Subsequently, the output voltage signal is processed through a low-pass filter to obtain 

a DC voltage. Finally, this DC voltage is sampled using a 24-bit ADC, and the STM32 

microcontroller calculates the value of the capacitance being measured (Supplementary 

Fig.12). 

The circuit board had dimensions of 5.5 cm in length and 3.5 cm in width (inert in 

Supplementary Fig.12), which are determined based on the functional requirements and 

component quantity.” 

From Line 11, Page 13 to Line 3, Page 14, we add the details on the portable 

sensory system: “……a circuit board for collecting sensing information of textures and 

sending real-time data to a PC via USB wired transmission, the aforementioned 

machine learning method for classifying the textures, and a user interface for 

visualizing the output results (Fig. 5a).   

In the real-time sensory system, all 2000 data sets collected were used for training, 

while the test set is independent data collected by the circuit board in real time. By 

analyzing the real-time data, features were extracted and classification models were 

applied to make immediate predictions or recognitions. Real-time recognition enables 

rapid decision making and faster feedback based on streaming data, making it suitable 

for time-sensitive applications or scenarios that require immediate response. Our 

experimental results showed that the inference time was below 20 ms, validating the 

real-time feasibility of our sensing system. With the machine learn-based classifier, we 

can identify the textiles in the signals collected in real time and display the confidence 

of the recognition as well as the microscopic morphology of the textiles identified on a 

real-time visual user interface. Figure 5b shows the implementation of two real-time 

sensing systems, showing the high confidence when a prosthetic hand with an 

integrated slip-sensor touches textiles. Of particular note is that the real-time system 

showed an average accuracy of 98.5% for these 20 textiles (Supplementary Movie 1).” 

Q6. The claim in the Introduction “the selection of low-viscosity ionic material together 

with the microstructural design allow the sensor to rapidly respond to high-frequency 

vibrations” is not sufficiently motivated/demonstrated in the paper. I see two different 

points here: 1) the fingerprint arrangement which is biomimetic and improves the 

spatial resolution; 2) the ionic-material as insulating layer of the sensing capacitor 

which allows to achieve high frequency. The authors should better explain these two 

points. 

Response: In the Introduction, the sentence “the selection of low-viscosity ionic 

material together with the microstructural design allow the sensor to rapidly respond to 

high-frequency vibrations” points out the impact of viscosity and microstructures of 
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ionic materials on response time.  

For the first point, the fingerprint structure plays a crucial role in texture 

recognition. We used a PDMS fingerprint to simulate human fingerprints and to capture 

vibrational stimuli during the interaction between the sensor and textiles. The size of 

the fingerprint tip determines the spatial resolution of the sensor. A smaller size of 

fingerprint tip down to microns can fill in smaller gaps of surface textures to effectively 

interact with the textures.  

For the second point, we utilized a low viscosity ionic gel to minimize adhesion 

strength at the electrode-ionic gel interface, resulting in a substantial increase of 

response-relaxation time. In addition, we introduced a graded microstructure consisting 

of microdomes with finer protrusions on the ionic gel, which reduces the contact area 

between the electrode and the ionic gel. A smaller contact area induces a further 

reduction in the interfacial adhesion energy (see Fig. 2j), and thus leading to shortened 

response-relaxation time. In addition, the densely distributed graded microstructure can 

behave like springs to enable rapid elastic recovery and release of strain energy, 

reducing the response-relaxation time.  

Besides, the smaller anions (H+) and inorganic anions in the PVA-H3PO4 gels can 

also contribute to fast ion migration and thus a rapider response-relaxation speed 

compared with traditional ionic liquid. We have added the explanation in the revised 

manuscript. 

Modification: Line 7-9, Page 8 

“……In addition, the ionic radii of hydrogen ions and inorganic anions in the PVA-

H3PO4 gel enable faster ion migration, contributing to a rapid response-relaxation speed 

as well.” 

 

Q7. Which are the advantages of using ionic-material with respect to other materials? 

Response: The ionic material forms an electric double layer (EDL, for which the charge 

separation is on nanoscale) with an electronic material (electrode). The capacitance of 

an EDL-based capacitor is a few orders of magnitude higher than that of conventional 

capacitors. This leads to ultrahigh sensitivity and high signal magnitude. 

 

Q8. The advantages of the “microstructured surface with two-levels of structures” (see 

page 5) should be better discussed and demonstrated. The measurement of the static 

capacitance versus normal mechanical stimulus should be reported. The way the 

microstructured surface affects the capacitance value upon loading should be 

introduced. 

Response: The advantages of the microstructured surface have been discussed in the 
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revised manuscript. We have also added a supplementary figure (see Fig. R2 Or 

Supplementary Fig. 4) to visualize the contact process that two levels of microstrctures 

are involved.  

 

Fig. R2. The Capacitance of the slip-sensor at different pressures. The inset pictures 

show the interfacial contact area under different pressures. 

Modification: Line 11-18, Page 6 

“The high sensitivity is attributed to the subtle change in microstructured EDL interface 

upon loading. Before applying a pressure, the presence of air gap prevents the contact 

between the electrode and the ionic gel, resulting in a low initial capacitance (C0) of ~8 

pF. When a pressure is applied, the smaller protrusions of the ioinic gel begin to contact 

with the electrode, and the signal increases sharply because of the increasing EDL 

capacitance. As the pressure further increases, the larger microdomes are involved in 

the contact and the capacitance remains increasing (Supplementary Fig. 4). Therefore, 

such two-level microstructures increase the sensitivity and extend the working range of 

the sensor.”  

Q9. The authors must explain the reason why “the hierarchical microstructures of the 

ionic layer help improve the sensitivity and reduce the response-relaxation time of 

sensors.” Page 6, top. 

Response: Thanks for the comments regarding the effect of the hierarchical 

microstructure on sensitivity and response-relaxation speed. The reason that the 

microstructures can improve sensitivity has been explained in our Response to Q8. We 

have added text in the revised manuscript to explain the effect of hierarchical 

microstructure on response-relaxation speed (Line 4-7, Page 8).  

Introducing microstructure can enhance the response-relaxation speed of sensors 

due to that the microstructures can quickly store and release energy for elastic recovery 

(Nat. Mater. 2010 9, 859-864). The smaller contact area caused by the microstructures 

further reduces the adhesion energy of the interface (Nat. Commun. 2019, 10, 4405), 
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and increases the energy release rate of the interface, thereby leading to an improved 

response-relaxation speed.  

 

Q10. The section structure with the thickness of the sensor various layers must be 

reported. 

Response: The thickness of each layer has been provided in the structure diagram of 

the slip-sensor, as illustrated in revised Fig. 2a. 

Q11. Due to the total response-relaxation time of ~2.4 ms which is very impressive for 

a capacitive sensor, the corresponding maximum frequency that can be measured by 

the sensor is 416 Hz which overcomes capacitive sensors at the state of the art. 

The authors should explain how the measurement setup of Fig. 2.d, if the measurements 

were static or dynamic, they should report the values of C and C0, it is not clear to me 

how they computed the sensitivity. 

Response: We appreciate the reviewer for the recognition of the response-relaxation 

speed and frequency bandwidth. We have added the details on the measurement in the 

Characterization and Measurements of the revised manuscript. 

Modification: From Line 16-23, Page 16  

“……The sensitivity was defined as S = δ (ΔC/C0) /δP, where P represents the applied 

pressure, and ΔC is the difference between the measured capacitance C and the initial 

capacitance C0 (~8 pF). Increased dynamic pressures up to 100 kPa were applied to the 

sensor, and the corresponding peak capacitance value for each pressure was recorded 

using the LCR meter. The slope in the ΔC/C0-P curve represented the sensitivity value 

of the sensor. 

The response-relaxation time was tested by rapidly applying and withdrawing a 

pressure of ~50 kPa to the sensor using manual pulling on a flat metal post with the 

diameter of 3 mm. The time for the rising edge represented the response time, and the 

time for the descending edge was the relaxation time.”  

Q12. Fig. S2 should report the input stimulus versus time; 1000 cycles are not a relevant 

value to evaluate signal drift. I would increment the number of cycles by one order of 

magnitude at least. 

Response: According to the reviewer’s suggestion, the number of compression cycles 

was extended to 10,000, with a total test time of ~14.5 h (Fig. R3 or Supplementary 

Fig. 2).  
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Fig. R3. Change in capacitance over 10,000 loading-release cycles under a peak 

pressure of 100 kPa, with a total test time of ~14.5 h. 

Q13. The authors should make experiments to evaluate the hysteretic behavior of the 

sensor. 

Response: The hysteretic behavior of the sensor has been added in the revised 

manuscript, and negligible hysteresis was observed, as shown in Fig. R4 or revised 

Supplementary Fig. 3. 

 

Fig. R4. Hysteresis curve of the slip-sensor during a loading-unloading cycle. 

Modification: Line 9-10, Page 6 

“……Furthermore, the sensor exhibits low hysteresis by loading a maximum pressure 

of 100 kPa and releasing (Supplementary Fig. 3).” 

 

Q14. Which is the sensor output sampling rate? 

Response: The signals of the sensor were recorded using either a high-speed LCR 

digital bridge (TH2840B, Tonghui) or a digital circuit board. The sampling frequency 

is 1600 Hz using an LCR meter for frequency bandwidth measurement. The circuit 
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board uses a different sampling frequency of 1000 Hz.  

The information has been added in the Methods part (Line 12-15, Page 16). 

 

Q15. What are piezocapacitive sensors (page 6, top)? 

Response: “Piezocapacitive sensors” refers to capacitive sensors for which capacitance 

changes with pressure. This term has already been used in many published papers (e.g., 

Nat. Commun. 2020 11, 5747; Sci. Rep. 2020, 10, 12666; Nat. Commun. 2020, 11, 209; 

Nanoscale 2021, 13, 6076-6086; Nano-Micro Lett. 2022, 14, 141; Nat. Commun. 

2022, 13, 5839). 

 

Q16. The thickness of the ionic gel is 120 microns, the ionic gel implements the 

insulating layer of the capacitor, which is the dielectric constant of the material? The 

capacitance value is in the order of nF (see Fig. 2.e), which is the capacitance value per 

unit area? When the mechanical stimulus is applied, the thickness of the ionic gel 

decreases, and the capacitance increases, which is the maximum capacitance value 

which has been measured during experiments? Which is the corresponding ionic gel 

thickness? 

Response: The iontronic sensors are based on the electric double layer, for which the 

charge separation is ~1 nm. The capacitance of iontronic sensors is determined by the 

contact area of the iontronic interface instead of the thickness of the ionic gel. As a 

result, the dielectric constant of the ionic gel, a frequency-sensitive parameter, is often 

not measured.  

The capacitance density can reach ~330 nF·cm-2 at 100 kPa. The maximum 

capacitance is 126 nF, which is measured at 100 kPa. Since in iontronic sensors the 

capacitance is not dependent on thickness, we did not measure the thickness of the ionic 

gel. 

 

Q17. In Fig. 2.f, the amplitude value must be reported on the y-axis. Which is the input 

stimulus amplitude? Which is the measurement setup? 

Response: Thanks. We have given the amplitude value of the y-axis. In addition, the 

details of the measurement setup are described in the Methods part (On Line 2-3, Page 

17). 

 

Q18. The sentence at page 7 “The interfacial adhesion behavior between the electrode 

and the ionic gel determines the relaxation time of the sensor” should be better 

explained also with experimental evidence. 

 

Response: This is because iontronic sensing is an interfacial behavior—the capacitance 
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value is in direct proportion to the interfacial contact area. Therefore, the interfacial 

adhesion determines the relaxation time.  

We have changed the sentence to “The interfacial adhesion behavior between the 

electrode and the ionic gel determines the relaxation time of the sensor because the 

contact area is proportional to the capacitance value.” On Line 19-20, Page 7. 

 

Q19. The motivations of the frequency resolution of the sensor of 0.1 Hz should be 

clearly discussed. 

Response: The high frequency resolution allows the sensor to identify surface textures 

with close feature spacings. A sensor exhibits a wide frequency detection range 

(bandwidth) may not discriminate close frequencies in the detection range. Therefore, 

the determination of frequency resolution is important.  

Modification: Line 18-21, Page 9 

“……The frequency-resolution is determined to be ~0.02 Hz (or ~0.005% at 400 Hz), 

identified by the full width at half maximum (FWHM) of the peaks. Such a high 

frequency-resolution allows the slip-sensor to identify surface textures with close 

feature spacings.” 

 

Q20. The electronic interface circuit for capacitive variation measurement must be 

presented. Fig. S9 does not help in understand the read-out circuit. 

Response: Thanks for the suggestion. We have provided the details of the readout 

circuit board. 

Modification: On Line 12-16, Page 11, and Line 2-13, Page 18, we supplement a 

detailed description of the readout circuit board. 

On Line 12-16, Page 11: “The circuit board consists of five parts: a power supply 

module, a microcontroller module (STM32) serving as the central processing unit to 

process data and make decision, an input/output interface module for communication 

with external devices, a signal processing module responsible for conditioning internal 

signals, and a 24-bit analog-to-digital conversion (ADC) module for sampling signals 

(Supplementary Fig. 12).” 

On Line 2-13, Page 18: “The design principle of the circuit is as follows. First, a 

12-bit digital-to-analog converter inside the STM32 microcontroller was programmed 

to generate a stable sine wave signal as the excitation source for the measurement. This 

excitation signal was applied to the capacitor to be measured, causing a current to flow 

through the capacitor. During this process, the capacitor exhibited a fixed resistive 

characteristic known as capacitive reactance, which was proportional to the capacitance 

value. Next, a reactance-to-voltage conversion circuit was used to transform the 

capacitive reactance into a voltage signal that is proportional to the capacitance value. 

Subsequently, the output voltage signal was processed through a low-pass filter to 
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obtain a DC voltage. Finally, this DC voltage was sampled using a 24-bit ADC, and the 

STM32 microcontroller calculated the capacitance value.  

The circuit board had dimensions of 5.5 cm in length and 3.5 cm in width (inset in 

Supplementary Fig.12), which were determined based on the functional requirements 

and component quantity.” 

 

Q21. Miniaturization of the read-out PCB should be discussed. 

Response: The circuit board has dimensions of 5.5 cm in length and 3.5 cm in width. 

The dimensions may be further reduced by optimizing the components and wiring 

layouts. 

Modification: Line 11-13, Page 18 

“The circuit board had dimensions of 5.5 cm in length and 3.5 cm in width (inset in 

Supplementary Fig.12), which were determined based on the functional requirements 

and component quantity.” 

Q22. The organization of the data set e.g. time duration of each sample, sliding speed 

of each sample, static pressure of each sample, must be provided by the authors. 

Response: The specific parameters such as sliding rate, sliding distance, and static 

pressure are provided in Methods of the revised manuscript. 

Modification: Line 16-18, Page 17 

“The data for the 20 textiles were collected at a sliding distance of 40 mm and a sliding 

rate of 2 mm·s–1, with a total of 2000 data sets. A static pressure of ~50 kPa was applied 

to the sensor before sliding. The texture cognition test at random sliding rates was 

conducted by fixing the slip sensor on the subject's index finger and unconsciously 

sliding the sensor onto the textile with an estimated sliding rate of 0-30 mm·s-1. The 

details about the recognition of microstructure by human subjects was provided in the 

Supplementary Information.” 

 

Q23. In Fig. 4.g are samples of different sliding velocities collected? Or only one 

sliding velocity has been used? It looks that experiments have been conducted with a 

constant sliding velocity. What happens with a datset collecing samples with different 

sliding velocities? 

Response: A great point! Fig. 4g and Supplementary Fig. 14 show the recognition 

accuracies at constant sliding rates of 2 and 40 mm·s-1, respectively. In the revised 

manuscript, we have added a texture recognition test at random sliding rates, which 

shows an average recognition accuracy of 98.6% (updated Fig. 4h and Fig. 4i).  

Modification: From Line 18, Page 12 to Line 4, Page 13 

“The human finger touch objects at a random sliding rate, we thus conducted texture 
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recognition at a random sliding rate. We fixated the slip-sensor on an index finger of a 

human subject and unconsciously slid the sensor over the textiles with unknown contact 

pressure and sliding rate. Here, we collected signals for the whole interaction between 

the sensor and the textile: before contacting, finger touching, finger sliding over the 

textile, and finger withdrawing (Fig. 4h and Supplementary Fig. 15).   

We collected a dataset comprised of 4200 instances for the 20 textiles, with 210 

entries per category. The original dataset was divided into training and test sets at a ratio 

of 6:4, and we used the Random Forest algorithm for classification. An average 

recognition accuracy of 98.6% was achieved, revealing the high robustness and 

reliability of our sensory system in texture recognition (Fig. 4i).” 

 

Q24. Sentence in the Introduction: “However, artificial sensors often lack the ability or 

perform insufficiently to perceive, recognize, and explore the real world upon touching 

the target objects.”, exploration is an active action which is not implemented by sensors, 

I suggest removing it. 

Response: Done as suggested.  

 

Q25. The information about experimental setup and dataset structure is not sufficient; 

the authors should supply all the features of samples used to build the dataset. 

Response: We have added the information in the revised.  

Modification: On Line 3-13, Page 12, we provide detailed information about machine 

learning. From Line 11, Page 13 to Line 3, Page 14, we add the experimental set for 

portable sensing system 

 On Line 3-13, Page 12: “We use a Bagging ensemble learning approach to solve the 

classification problem, which improves the generalization capability of the model and 

the overall classification performance. The classification models (or classifiers) used in 

ensemble include K-nearest neighbors, random forests, logistic regression algorithms, 

and decision trees. In order to accurately distinguish between different textures, a 

variety of signal features are extracted, such as statistical, frequency domain, 

autoregressive, wavelet transform, and time domain features. There are 20 categories 

and dozens of features in our dataset, and Fig. 4f shows four categories and two features 

for simplified illustration. Each category has 100 sets of data, which were divided into 

five blocks. We selected one block at a time as the testing set and the rest as the training 

data, and iterated the prediction results in the testing set for several times. By combining 

the predictions of each base classifier through voting, more accurate and robust overall 

classification results can be achieved.” 

From Line 11, Page 13 to Line 3, Page 14: “…… a circuit board for collecting 

sensing information of textures and sending real-time data to a PC via USB wired 



17 

 

transmission, the aforementioned machine learning method for classifying the textures, 

and a user interface for visualizing the output results (Fig. 5a).   

In the real-time sensory system, all 2000 data sets collected were used for training, 

while the test set is independent data collected by the circuit board in real time. By 

analyzing the real-time data, features were extracted and classification models were 

applied to make immediate predictions or recognitions. Real-time recognition enables 

rapid decision making and faster feedback based on streaming data, making it suitable 

for time-sensitive applications or scenarios that require immediate response. Our 

experimental results showed that the inference time was below 20 ms, validating the 

real-time feasibility of our sensing system. With the machine learn-based classifier, we 

can identify the textiles in the signals collected in real time and display the confidence 

of the recognition as well as the microscopic morphology of the textiles identified on a 

real-time visual user interface. Figure 5b shows the implementation of two real-time 

sensing systems, showing the high confidence when a prosthetic hand with an 

integrated slip-sensor touches textiles. Of particular note is that the real-time system 

showed an average accuracy of 98.5% for these 20 textiles (Supplementary Movie 1).” 

 

Q26. The authors should evaluate results with a dataset of samples collected at different 

velocities and different static pressure. I believe that if the sliding velocities and static 

pressure are constant the operation of the Machine Learning algorithm is over 

simplified as shown in 4.e where clusters of different textiles are clearly identified and 

do not overlap. This is in my opinion the very high classification accuracy that is 

achieved. Humans cannot precisely control the sliding velocity as such their 

performance are not that high if compared with those of a machine learning algorithm 

with data collected with precisely controlled operating conditions.  

Response: We thank the reviewer for the suggestion. In the revised manuscript, we 

have added texture recognition under random sliding rate and pressures. The details are 

provided on Line 18-23, Page 12 of the revised manuscript. Please also see our 

Response to Q4 and Q23. 

 

Q27. The inference time, i.e. the time needed for output the classification result should 

be reported in the paper. 

Response: The inference time is below 20 ms, which has been provided in the revised 

manuscript. 

Modification: Line 20-21, Page 13 

“Our experimental results showed that the inference time was below 20 ms, validating 

the real-time feasibility of our sensing system.” 

Q28. The training and test sets, the related operating conditions (see Fig. 5), should be 

clearly reported in the paper. Which are the differences with respect to what reported in 
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Fig. 4? Which is the meaning of the following sentence “all the 2000 sets of data were 

used as the training set, and we extract features for each textile to further establish a 

classification model”, which features are extracted? Which classification model has 

been used? 

Response: We have elaborately illustrated the training set, test set, the related operating 

conditions for the portable sensory system (Fig. 5) in the revised manuscript. 

Non-real-time texture recognition (Fig. 4) and real-time texture recognition in the 

portable sensory system (Fig. 5) both use a Bagging ensemble learning approach to 

solve the classification problem, which improves the generalization capability of the 

model and the overall classification performance. The classification models (or 

classifiers) used in ensemble include K-nearest neighbors, random forests, logistic 

regression algorithms, and decision trees. In order to accurately distinguish between 

different textures, a variety of signal features are extracted, such as statistical, frequency 

domain, autoregressive, wavelet transform, and time domain features.  

We collected 100 sets of data for each of the 20 textiles with a total of 2000 data 

sets generated by the sensor. For model development, we used 80% of these 2000 data 

sets as the training set and reserved the remaining 20% as the test set, for which the 

recognition results were presented through a confusion matrix (Fig. 4). This approach 

represents non-real-time recognition, where the classification or recognition of data 

occurs after the data collection process is complete. It typically involves offline 

processing and analysis, allowing for more computational resources and time to achieve 

accurate recognition results. Therefore, we further established a real-time sensing 

system based on these 2000 data sets. 

The difference between the real-time sensory system (Fig. 5) and the 

aforementioned approach lies in the composition of the training set and the test set. In 

the real-time sensory system, all 2000 data sets collected were used for training, while 

the test set is independent data collected by the circuit board in real time. By analyzing 

the real-time data, features were extracted and classification models were applied to 

make immediate predictions or recognitions. Real-time recognition enables rapid 

decision making and faster feedback based on streaming data, making it suitable for 

time-sensitive applications or scenarios that require immediate response. 

 

Modification: On Line 3-8, Page 12: “We use a Bagging ensemble learning approach 

to solve the classification problem, which improves the generalization capability of the 

model and the overall classification performance. The classification models (or 

classifiers) used in ensemble include K-nearest neighbors, random forests, logistic 

regression algorithms, and decision trees. In order to accurately distinguish between 

different textures, a variety of signal features are extracted, such as statistical, frequency 

domain, autoregressive, wavelet transform, and time domain features.” 

On Line 15-20, Page 13: “In the real-time sensory system, all 2000 data sets 

collected were used for training, while the test set is independent data collected by the 
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circuit board in real time. By analyzing the real-time data, features were extracted and 

classification models were applied to make immediate predictions or recognitions. 

Real-time recognition enables rapid decision making and faster feedback based on 

streaming data, making it suitable for time-sensitive applications or scenarios that 

require immediate response.” 

 

Q29. It is claimed that the system can identify macroscale objects (page 13), my 

understanding is that the sensor can classify different surfaces by sliding the sensorized 

finger on the object surface. The operating conditions of such experiment must be 

clearly reported. Discussion on results is confuse, the assessment is not convincing. 

Response: Thanks for pointing out the problems. We have removed this part from the 

manuscript since it is not a necessary part of the work and may cause confusion.  

 

Q30. The authors must compare their results with the ones of: Zhang, J., Yao, H., Mo, 

J. et al. Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high 

frequency. Nat Commun 13, 5076 (2022). https://doi.org/10.1038/s41467-022-32827-

7 

Response: We have compared our slip-sensor sensor with the one mentioned by the 

reviewer.  

The revised Ref. 33 is the one mentioned by the reviewer.  

Modification: Line 1-4, Page 7 

“Such a rapid response-relaxation process enables the sensor to effectively respond to 

high-frequency vibrations up to 400 Hz, as shown in the time-dependent capacitance 

signals and the corresponding Fourier transform spectra (Fig. 2f). The response-

relaxation time is almost two orders of magnitude shorter than that of existing 

capacitive sensors, and comparable to that of a rigid-soft hybrid sensor 33. 

 

 

 

https://doi.org/10.1038/s41467-022-32827-7
https://doi.org/10.1038/s41467-022-32827-7
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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors made sufficient revisions and the paper is recommended for publicaiton now. 

 

 

Reviewer #2 (Remarks to the Author): 

 

In the revised manuscript, the authors have addressed the majority of my comments, leading 

to an improvement in the quality of this manuscript. However, there remain certain details 

that require modification to enhance the scientific rigor and persuasiveness of the entire paper. 

I think this manuscript can be accepted after a minor revision, accompanied by the following 

comments: 

 

Related to my previous comments: 

 

Previous Q1: Although the authors have provided reasons for selecting 200 µm and 55 µm 

based on the difficulty of preparation and the flexibility of the device, the dome structure is 

crucial in detecting the vibrations generated by the surface fingerprint pattern. At the same 

time, the authors have chosen a spacing of 350 µm and a height of 260 µm for the fingerprint 

pattern. Hence, it raises the question of which of these parameters is more significant in 

affecting surface texture detection? For instance, it is later mentioned that the sensor can 

recognize a structure with a minimum period of 231 µm. Is this because this value exceeds the 

200 µm diameter of the dome? If so, what is the importance of the surface fingerprint pattern? 

 

Previous Q2: No further questions. 

 

Previous Q3: If the amplitude changes in lockstep with force during the sliding process, can a 

high recognition accuracy still be achieved if the applied force is not controlled at a consistent 

and stable value? 

 

Previous Q4: In the newly added data, recognition accuracy with random speed and force on 

a human hand appears even higher than under precise control. The authors should provide 

additional explanation to elucidate this experimental result. Furthermore, attributing 

randomness solely to being “unconsciously” caused lacks sufficient scientific support. Also, 

the sliding habits of the same individual across multiple data sets would likely remain 

consistent. It is suggested that the authors might utilize instruments like IMU to quantify this 

randomness through sensing data. 

 

Previous Q5-Q7: No further questions. 

 

New comment to be addressed: 

New Q1: The scientific connection between the frequencies tested in Figure 2 and the 
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vibrations used for texture recognition later in the text appears insufficiently tight. This is 

because the frequencies tested in Figure 2 are generated by vertical pressure, while the 

frequencies used for identification are produced by horizontal frictional forces. These may be 

more appropriately linked through common characteristics, such as the device's response time, 

rather than directly associating them through frequency. 

 

 

Reviewer #3 (Remarks to the Author): 

 

Page3, Line 18, artificial not artificials 

Page 5, lines 7-8, sensor signal not signal sensor 

Supplementary Fig. 1 is a replica of Fig. 2.b,c, I suggest to remove it 

Fig. 3.e, which is the applied stimulus? Which is the measurement setup? 

I suggest replacing Video 1 and Fig. 5 with experimental results at variable sliding velocity. 

The Discussion section looks as a conclusion section, the authors should revise the text 

accordingly to the section title. 

Page 13, lines 16-17. Which are the extracted signal features? The authors should introduce a 

Table with all the extracted and used features. 

The authors should evaluate and report in the paper, the signal-to-noise ratio and the effective 

number of bits of the sensor output signal. 
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Response to reviewers for manuscript NCOMMS-23-15409B 

 

 

Reviewer #2 (Remarks to the Author): 

 

In the revised manuscript, the authors have addressed the majority of my comments, 

leading to an improvement in the quality of this manuscript. However, there remain 

certain details that require modification to enhance the scientific rigor and 

persuasiveness of the entire paper. I think this manuscript can be accepted after a minor 

revision, accompanied by the following comments. 

 

Response: The authors appreciate the reviewer for the positive evaluation to our 

revised version.  

 

Related to my previous comments: 

 

Q1: Although the authors have provided reasons for selecting 200 µm and 55 µm based 

on the difficulty of preparation and the flexibility of the device, the dome structure is 

crucial in detecting the vibrations generated by the surface fingerprint pattern. At the 

same time, the authors have chosen a spacing of 350 µm and a height of 260 µm for the 

fingerprint pattern. Hence, it raises the question of which of these parameters is more 

significant in affecting surface texture detection? For instance, it is later mentioned that 

the sensor can recognize a structure with a minimum period of 231 µm. Is this because 

this value exceeds the 200 µm diameter of the dome? If so, what is the importance of 

the surface fingerprint pattern? 

Response: We use a spacing of 350 µm and a height of 260 µm for the fingerprint 

pattern to mimic human fingerprints—which often have a spacing of 300~500 µm and 

a height of 100~300 µm. We will further investigate the effect of fingerprint parameters 

on the classification in our further studies.  

In fact, our sensor can detect structures with periods much smaller than 231 μm, as 

shown in Fig. 2b. The spatial resolution (the smallest period that our sensor can detect) 

is down to ~15 µm. 

 

Q3: If the amplitude changes in lockstep with force during the sliding process, can a 

high recognition accuracy still be achieved if the applied force is not controlled at a 

consistent and stable value? 
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Response: Yes, we can still achieve a high recognition accuracy if the applied force is 

not stable. We show that when both pressure and sliding rate change, our system can 

still achieve a recognition accuracy of 98.9% (Fig. 4i). 

 

Q4: In the newly added data, recognition accuracy with random speed and force on a 

human hand appears even higher than under precise control. The authors should provide 

additional explanation to elucidate this experimental result. Furthermore, attributing 

randomness solely to being “unconsciously” caused lacks sufficient scientific support. 

Also, the sliding habits of the same individual across multiple data sets would likely 

remain consistent. It is suggested that the authors might utilize instruments like IMU to 

quantify this randomness through sensing data. 

Response: The authors thank the reviewer for pointing out the details. In the previous 

version, only five features were extracted for machine learning, owing to a certain level 

of consistency in the tactile data at a fixed sliding rate. For the case of random sliding 

rate and pressure, hundreds of features were extracted using a Python package (“Tsfresh” 

module), due to the diversity of the corresponding datasets, resulting in a slightly higher 

accuracy.  

Here, in the latest version, we utilized “Tsfresh” module to extract hundreds of 

features for data with fixing sliding rate, achieving an exceptionally high accuracy of 

100% (see the updated Fig. 4h). In the revised manuscript, the reasons for the high 

classification accuracy were outlined on Lines 6-9, Page 12. 

We acknowledge the reviewer’s concern on randomness. Per the suggestion of the 

reviewer’s, we have used an inertial measurement unit (IMU) to quantify the 

randomness.  

In our new dataset, each category involved random touches from three people in a 

2:1:1 ratio, with a total of 400 sets data for per category, 40% of which were used for 

testing. We also recorded change in acceleration during sliding using an IMU. Because 

the sliding process occurred on a plane, we disregarded acceleration in the z-axis (the 

primary component in the direction of gravity). The chaotic acceleration in the x-y 

direction during multiple slides on each textile clearly illustrated the variability and 

unpredictability of the sliding rates (see the updated Supplementary Fig. 17-19). 

Modification: On Lines 6-9, Page 12; Lines 18-24, Page 12 

On Lines 6-9, Page 12, we have added “The output confusion matrix finally 

confirms an accuracy of 100.0% for textile recognition (Fig. 4g). The high recognition 

accuracy can be attributed to two aspects. First, the slip-sensor can sensitively capture 

the small differences between different textiles. Second, the tactile dataset for each 

textile is consistent at a fixed sliding rate. We extracted a multitude of features using 
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the “Tsfresh” module that helps achieve a high classification accuracy.” 

On Lines 18-24, Page 12, we have added “Considering the potential consistency 

within the sliding habits of the same subject, we collected data of random sliding rates 

from three different subjects. Each category involved random touches from three 

individuals in a 2:1:1 ratio, resulting in a total of 400 sets data for each category and a 

total of 8000 sets for the 20 textile types, with 40% of the data reserved for testing. We 

used an inertial measurement unit (IMU) to record the acceleration during the sliding 

process. The evidently chaotic acceleration in the x-y plane confirms that the sliding 

rates of an individual continuously changes during sliding (Supplementary Fig. 16-18).”  

 

Q5: The scientific connection between the frequencies tested in Figure 2 and the 

vibrations used for texture recognition later in the text appears insufficiently tight. This 

is because the frequencies tested in Figure 2 are generated by vertical pressure, while 

the frequencies used for identification are produced by horizontal frictional forces. 

These may be more appropriately linked through common characteristics, such as the 

device’s response time, rather than directly associating them through frequency. 

Response: Many thanks for the suggestion. The response-relaxation time of our sensor 

is 2.4 ms, corresponding to a frequency bandwidth of 416 Hz (1000/2.4), and this agrees 

well with our experimental result (frequency bandwidth of 400 Hz).  

During the horizontal sliding of the sensor, the artificial fingerprints interact with 

the surface textures. There will be vibrations along both the horizontal and the vertical 

directions during the interaction between the fingerprints and the object surface 

structures (Fig. R1). The two vibrations share the same frequency since the process is 

considered as linear.  

 

Fig. R1 Schematic diagram of vibrations generated by the interaction of the slip-sensor 

with the surface structure of the object. 

Reviewer #3 (Remarks to the Author): 

Q1. Page3, Line 18, artificial not artificials; Page 5, lines 7-8, sensor signal not signal 



4 

 

sensor. 

Response: Done as suggested. 

Q2. Supplementary Fig. 1 is a replica of Fig. 2. b,c, I suggest to remove it. 

Response: We thank the reviewer for the suggestion. Sorry to make these two figures 

confusing because we did not clearly describe their difference. In fact, Supplementary 

Fig. 1 shows the cross section of a human fingerprint replica, while Fig. 2b shows SEM 

images of the artificial fingerprints. They are similar but not exactly the same. Therefore, 

it is necessary to retain Supplementary Fig. 1. We have changed the figure legend in 

case of confusion. 

Q3. Fig. 3e, which is the applied stimulus? Which is the measurement setup? 

Response: We have added the missing information. The vibrational stimuli were 

applied to the sensors via a vibration generator at a pressure of ~10 kPa, and the 

corresponding vibration response signals were collected by an LCR meter. 

 

Modification: On lines 1-3, Page 17, we have added “A vibration generator (Model 

BL-ZDQ-2185, Hangzhou Peilin Instrument Co. Ltd.) was used to apply constant 

frequency vibrations to the sensor at pressure of ~10 kPa, and the corresponding 

vibration response signals of the sensor were collected using the LCR meter.”    

Q4. I suggest replacing Video 1 and Fig. 5 with experimental results at variable sliding 

velocity. 

Response: Thanks for the reviewer’s suggestion. In the manuscript, we have replaced 

one of demonstrations of experimental results at a fixed sliding rate with a variable 

sliding rate (see the updated Fig. 5). In addition, we added a supplementary video 

showcasing the sensory system for texture recognition at variable sliding rates (see 

Supplementary Video 2).  

 

Q5. The Discussion section looks as a conclusion section, the authors should revise the 

text accordingly to the section title. 

Response: In the revised manuscript, we have removed the conclusive description in 

the “Discussion” section, and provided signal-to-noise ratio and achieved an effective 

number of bits of the sensor output signal. 

Modification: On Lines 12-17, Page 14 
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“The fine fingerprint plays a key role to allow the sensor to fully interact with the fine 

features of textures, even at high sliding rates. Without the fingerprint, the recognition 

accuracy drops to only 54.5% at a sliding rate of 2 mm·s–1 (Supplementary Fig. 19). 
Furthermore, the slip-sensor exhibits a high signal-to-noise ratio of 86.79 dB and a high 

effective number of bits of 14.12 bits (Supplementary Fig. 20). These characteristics 

ensure that the sensor can precisely capture subtle tactile signals and deliver high-

quality output in texture recognition.” 

 

Q6. Page 13, lines 16-17. Which are the extracted signal features? The authors should 

introduce a Table with all the extracted and used features. 

Response: In the revised manuscript, we have added a Table to show the top ten 

important extracted signal features (see the updated Supplementary Table 2). 

Q7. The authors should evaluate and report in the paper, the signal-to-noise ratio and 

the effective number of bits of the sensor output signal. 

Response: Thanks for the valuable suggestion. We have provided the signal-to-noise 

ratio and the effective number of bits of the slip-sensor in the “Discussion” section in 

the revised manuscript.  

 

Modification: On Lines 14-17, Page 14 

 “······Furthermore, the slip-sensor exhibits a high signal-to-noise ratio of 86.79 dB 

and a high effective number of bits of 14.12 bits (Supplementary Fig. 20). These 

characteristics ensure that the sensor can precisely capture subtle tactile signals and 

deliver high-quality output in texture recognition.” 
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REVIEWERS' COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have addressed all my previous comments. I think the current version is with good 

quality to be accepted by Nature Communcations. 
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Response to reviewers for manuscript NCOMMS-23-15409C 

 

 

Reviewers’ comments 

Reviewer #2 (Remarks to the Author): 

 

The authors have addressed all my previous comments. I think the current version is 

with good quality to be accepted by Nature Communications. 

Response: The authors appreciate the reviewer for the positive feedback on the revised 

version. 
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