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Supplementary Note 1. ELECTRONIC BAND STRUCTURE

We show the electronic band structure and density of states of Fm3m LuH2 in Fig. S1a

calculated using semilocal DFT in the PBEsol approximation (DFT model in the main text).

In agreement with earlier calculations, we find a metallic band structure with the Fermi level

crossing highly dispersive bands that lead to an overall small density of states at the Fermi

energy.
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FIG. S1: Electronic structure of pristine LuH2. a. Band structure and density of states of

pristine LuH2. b. Orbital-projected band structure of LuH2. The band structure is projected onto

lutetium 5d (left) and hydrogen 1s (right) orbitals and the size of the open circles is proportional

to the projected weight.

We also show the electronic band structure projected on various lutetium and hydrogen

atomic orbitals in Fig. S1b. The states derived from the lutetium 5d orbitals are highly

dispersive.

Figure S2 depicts the evolution of the band structure of LuH2 under pressure. Most

bands only show rigid shifts with increasing pressure, apart from the bands near the X point

in the Brillouin zone which exhibit a more significant re-organisation.
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FIG. S2: Pressure dependence of the electronic band structure of LuH2.
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Supplementary Note 2. ELECTRON CORRELATION

Lutetium has a partially filled 5d shell which may lead to strong electronic correlations.

In Fig. S3 we show the electronic band structure of LuH2 calculated using DFT corrected

with a Hubbard U term (DFT+U model in the main text). We show calculations using U

values in the range from 0 to 5 eV. The band structure changes with U are small, which is

consistent with the small changes reported in the main text for the reflectivity and colour.

Similarly, we have tested the role of dynamical correlations using DFT augmented with

dynamical mean field theory, and find negligible contributions.
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FIG. S3: Dependence of the electronic band structure of LuH2 on the Hubbard U

parameter.
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Supplementary Note 3. ELECTRON-PHONON COUPLING

Hydrogen is the lightest of all elements, and as such it exhibits significant quantum fluctu-

ations which are responsible for the large electron-phonon coupling driving high temperature

superconductivity in high pressure hydrides. In the main text, we present the reflectivity of

LuH2 under ambient conditions including the effects of electron-phonon interactions arising

from quantum and thermal fluctuations. In this Supplementary Note we present additional

details about the associated calculations.

As described in the main text, the dielectric function at temperature T renormalized by

electron-phonon coupling is given by [1, 2]:

ε2(ω;T ) =
1

Z
∑
s

〈Φs(u) |ε2(ω; u)|Φs(u)〉 e−Es/kBT , (1)

where Z is the partition function, |Φs(u)〉 is a harmonic eigenstate s of energy Es, u = {uqν}

is a vector containing all atomic positions expressed in terms of normal mode amplitudes

uqν , and kB is Boltzmann’s constant.
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FIG. S4: Convergence of electron-phonon coupling effects on the reflectivity of LuH2.

a. Convergence with respect to supercell size. b. Convergence with respect to the number of

stochastic configurations in the Monte Carlo integration.

We evaluate Eq. (1) using Monte Carlo integration accelerated with thermal lines [3]. We

start from the phonon calculations described in Supplementary Note 5 and we then generate

atomic configurations in which the atoms are distributed according to the harmonic nuclear
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wave function in which every normal mode has an amplitude equal to:

uqν = ±
(

1

2ωqν

[1 + 2nB(ωqν , T )]

)1/2

, (2)

where nB(ω, T ) is the Bose-Einstein factor, and the sign of the amplitude is chosen stochas-

tically. These calculations involve two convergence parameters which need to be tested.

First, electron-phonon interactions need to be converged with respect to supercell size (or

equivalently with respect to Brillouin zone grid size). Figure S4a shows the electron-phonon

renormalised reflectivity calculated using increasingly large supercell sizes. There is some de-

pendence on supercell size, but the overall reflectivity shape is relatively consistent between

them. In the main text we use the results from the 4 × 4 × 4 calculations. Second, in the

Monte Carlo integration, the electron-phonon renormalised dielectric function is in principle

obtained by averaging over stochastic configurations, where the number of configurations is

a convergence parameter. We find that the electron-phonon renormalised reflectivity con-

verges very rapidly with respect to the number of configurations included in the calculation:

Fig. S4b shows three different configurations (compared to the equilibrium configuration)

and the curves are indistinguishable. We use a single configuration for the results reported

in the main text.
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FIG. S5: Quantum and thermal fluctuations effects on the electron-phonon coupling

renormalised reflectivity of LuH2.

Our calculations including electron-phonon coupling are capable of describing the effects

of both quantum fluctuations at 0 K and thermal fluctuations at finite temperature. To eval-

uate the relative contribution of quantum and thermal fluctuations, in Fig. S5 we compare
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the reflectivity of LuH2 obtained by fixing the nuclei at their equilibrium positions (no quan-

tum nor thermal fluctuations), at 0 K (including only quantum fluctuations) and at 300 K

(including quantum and thermal fluctuations). The difference between the equilibrium and

0 K curves quantifies the role of quantum fluctuations, which lead to a shift of the reflectivity

minimum and to a decrease of the reflectivity in the infrared part of the spectrum, but the

overall reflectivity shape does not change significantly. The difference between the 0 K and

300 K curves quantifies the role of thermal fluctuations, which make a significantly smaller

contribution.
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Supplementary Note 4. LUTETIUM-HYDROGEN BINARY SYSTEM

4.1. Crystal structures of LuH2 and LuH3

We have performed extensive structure searches for stoichiometries ranging from LuH0

to LuH3 and at multiple pressures. The results are summarised in the convex hull diagrams

depicted in Fig. 2a in the main text. Here, we focus on the stoichiometric LuH2 and LuH3

as they are mostly relevant phases studied in the literature. We determine all competing

structures in the pressure range 0-1000 kbar.
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FIG. S6: Relative enthalpy of LuH2 and LuH3.

Figure S6 shows the relative enthalpy of the competing structures. For LuH2, the ground

state structure at 0 kbar has cubic Fm3m symmetry. A structure of P4/nmm symmetry

becomes more stable above 732 kbar. We note that there is a structure of space group

C2/m whose energy is almost degenerate with that of the P4/nmm structure across the

entire pressure range. In the main text, we report the pressure-driven reflectivity and colour

changes of the Fm3m structure only. We report the reflectivity and colour of the P4/nmm

structure in Fig. S7.

For LuH3, there are multiple competing phases in the pressure range 0-1000 kbar. The

most important ones are the trigonal P3c1 and the cubic Fm3m structures, as they are the

most consistent with experimental observations. In the main text, we present the reflectivity

and colour of P3c1 at 0 and 100 kbar and Fm3m at 400 kbar according to the relative

enthalpy. The full reflectivity and colour data of both structures over the entire pressure

range of interest are presented in Fig. S8. However, we note that both of these structures are

dynamically unstable at 0 kbar (see Fig. S15 for an example), and the most stable structure
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at 0 kbar is the P63 structure, which is almost degenerate in energy with the P3c1 structure.

We note that the P63 structure is insulating up to a pressure of about 100 kbar. We also

note that two structures with space groups Cm and Fmm2 are almost degenerate in energy

with the cubic Fm3m structure over the entire pressure range of interest (see Fig. S9 for the

reflectivity and colour of the Fmm2 structure).

4.2. Reflectivity and colour of LuH2 and LuH3

Multiple structure searching works have predicted a range of stable and metastable struc-

tures in the binary Lu-H system that may play a role in the reported superconductivity, and

we report our own structure searching results in the main text. Here, we present the reflec-

tivities and colours of the most important phases of LuH2 (Fig. S7) and LuH3 (Fig. S8).
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FIG. S7: Reflectivity and colour of LuH2.

Additionally, we show the calculated reflectivities and colours for the LuH3 structures with

space groups Fmm2 and P63/mmc in Fig. S9. Both structures exhibit a rather featurless

reflectivity which leads to a light grey colour for Fmm2 LuH3 and to a dark grey colour

for P63/mmc LuH3. We have also calculated the reflectivity of the C2/m LuH2 structure

(not shown), and it is very similar to that of the P4/nmm structure, to which it is almost

degenerate in enthalpy (Fig. S6).
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FIG. S8: Reflectivity and colour of LuH3.
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FIG. S9: Reflectivity and colours of Fmm2 and P63/mmc LuH3 structures.
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4.3. Reflectivity and colour of nitrogen doped cubic LuH2 and LuH3

We establish hydrogen-deficient LuH2 as the dominant phase responsible for the experi-

mentally observed colour changes. However, multiple experimental reports include a small

amount of nitrogen doping, and in this subsection we provide an overview of the interplay

between nitrogen doping and colour in LuH2−δ and LuH3−δ.
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FIG. S10: Reflectivity and colour of LuH2−δNε structures. LuH1.963N0.037 is simulated as

a single hydrogen vacancy and a single nitrogen addition in a 3× 3× 3 supercell. Other structures

are simulated in a 2× 2× 2 supercell.

We show the pressure-driven changes in the reflectivity and colour of nitrogen-doped
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LuH2−δ in Fig. S10. The effect of nitrogen doping is to flatten the reflectivity curves obtained

with LuH2−δ, such that the resulting colours become more grey. As a result, we conclude

that nitrogen doping also affects the reflectivity and colour of LuH2, but the changes are

secondary compared to those driven by hydrogen vacancies.
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FIG. S11: Reflectivity and colour of LuH3−δNε structures. The single hydrogen vacancy

in LuH3 is simulated in a 2× 2× 2 supercell. In b and c, Oct and Tet denote the octahedral and

tetrahedral sites for the hydrogen vacancy, respectively. In c, the structure is insulating at low

pressures.

For completeness, we also show the pressure-driven changes in the reflectivity and colour

of nitrogen-doped LuH3−δ in Fig. S11. Nitrogen doping has a small effect in the reflectivities,

which remain relatively flat leading to overall grey colours.
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Supplementary Note 5. LUTETIUM-HYDROGEN-NITROGEN TERNARY SYS-

TEM

5.1. Crystal structures
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FIG. S12: Convex hull diagram, energetics, and atomic structures of the lutetium-

hydrogen-nitrogen ternary system. a. Convex hull diagram for the Lu-H-N ternary system at

ambient pressure. Dark blue circles indicate thermodynamically stable structures and metastable

structures are shown as squares and stars. Stars indicate the cubic structures whose simulated

X-ray diffraction (XRD) pattern is consistent with the experimental report [4], as shown in d-g.

The colour scale represents the energy distance from the convex hull. b. Based on the calculated

distance from the hull, we present the energetics of the five best Lu-H-N compounds including

thermodynamically stable Lu4H5N2 as a function of pressure. c-g. Atomic structures and XRD

simluation results for c Lu4H5N2, d Lu4H8N, e Lu4H11N, f Lu4H9N3, and g LuH2N. Except for the

Lu4H5N2 compound with P2/c symmetry, Lu atoms form a fcc lattice. For the XRD similulations,

experimental XRD data are displayed as green and red ticks, which are assigned as two different

phases in Ref. [4].
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We perform extensive crystal structure search in the full Lu-H-N ternary space (Fig. S12).

We highlight that our structure searches [5] are the only ones of all those published that

identify a stable ternary compound P2/c Lu4H5N2 at ambient pressure. We have selected

multiple ternary Lu-H-N compounds Pm3m Lu4H8N, Pm3m Lu4H11N, Pm3m Lu4H9N3,

and Fm3m LuH2N that are not on the convex hull but whose simulated X-ray diffraction

data is consistent with experimental reports. The calculated colours for these compounds

are shown in Fig. S13.

5.2. Reflectivity and colour
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FIG. S13: Pressure dependence of reflectivity and colour of the lutetium-hydrogen-

nitrogen ternary system.

Multiple structure searching works have predicted a stable and multiple metastable struc-
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tures in the ternary Lu-H-N system that may play a role in the reported superconductiv-

ity. Lu4H5N2 is the only structure predicted to be thermodynamically stable in the Lu-H-N

ternary system, and we show its reflectivity and colour as a function of pressure in Fig. S13a.

Its reflectivity in the visible range is small and constant, leading to an overall dark grey

colour. We also display the reflectivities and colours for four additional metastable struc-

tures of stoichiometries Lu4H8N, Lu4H11N, Lu4H9N3, and LuH2N in Figs. S13b-e. These

structures are metastable but all have cubic symmetry, which has been identified experi-

mentally as the relevant symmetry. Their reflectivities are relatively constant across the

visible range of the spectrum, leading to overall grey colours with a slight blue tone in

Lu4H11N at ambient pressure.
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Supplementary Note 6. PHONON DISPERSION

Regarding the dynamical stability of the compounds, we have confirmed that the pure

LuH2 and hydrogen deficient LuH2−δ structures, depicted in photorealistic rendering in Fig.

3 in the main text, exhibit dynamic stability at the harmonic level, as displayed in the phonon

dispersion in Fig. S14. The phonon band structures show a large gap separating the low-

frequency acoustic modes from the high frequency optical modes. This large gap is expected

in binary compounds with a large mass difference between the elemental components, with

hydrogen having a relative atomic mass of 1.008 and lutetium of 174.967.
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FIG. S14: Phonon dispersion of pure and hydrogen-deficient lutetium dihydrides at 0

and 400 kbar.

We have also confirmed the dynamical stability of multiple other structures (e.g. LuH in

Fig. S15a). However, we note that cubic LuH3, proposed as the phase responsible for super-

conductivity in the original Nature paper by Dias and co-workers, is dynamically unstable

at the harmonic level (Fig. S15b). This has also been reported by other works.
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FIG. S15: Phonon dispersion of lutetitum monohydride and trihydride. Results are

shown for a LuH in the Fm3m structure and b LuH3 in the Fm3m structures.
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Supplementary Note 7. PHONON-MEDIATED SUPERCONDUCTIVITY

There have been several reports of phonon-mediated superconductivity calculations in a

range of stable and metastable compounds of the Lu-H-N system. Interestingly, none of

these calculations find superconducting critical temperatures near room temperature. Ex-

perimentally, the superconducting phase is claimed to only exist when the sample exhibits

a pink colour. Given our discovery that the pink phase of lutetium hydride only exists in

hydrogen-deficient LuH2, we estimate the phonon-mediated superconducting critical tem-

perature of LuH1.875 and LuH1.750 as a function of pressure. Figure S16 shows the isotropic

Eliashberg function α2F (ω) including the pink colour phases of LuH1.875 at 400 kbar and

LuH1.750 at 20 kbar. The corresponding superconducting critical temperatures for LuH1.875

(LuH1.750) at 20, 100, and 400 kbar are 0.19 K (0.04 K), 0.16 K (0.03 K), and 0.33 K (0.06 K),

respectively.
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FIG. S16: Isotropic Eliashberg function of the hydrogen-deficient LuH1.875 and LuH1.750

at multiple pressures.
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Supplementary Note 8. DETAILS OF PHOTORELIASTIC RENDERING

8.1. Benchmark tests on Lu and LuH2

We have described the computational methodology used to calculate colour in Methods,

which was originally developed and tested by Prandini and co-workers [6]. They applied

the methodology to a wide variety of metallic systems, including 18 elemental metals (e.g.

Au, Cu, Al), intermetallic compounds (e.g. AuAl2, PdIn), and solid solutions (e.g. Au-

Ag solid solutions), in all cases demonstrating remarkable agreement between theory and

experiment. Therefore, the computational method we use has been thoroughly validated for

many compounds. As an additional validation, in our work we have tested the calculation of

the colour of ambient conditions LuH2 and Lu, and again our results are in good agreement

with experiment (Fig. S17).
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FIG. S17: Reflectivity and colour of Lu and LuH2. Here, we present two photorealistic ren-

dering images for each system with different surface roughness conditions (clean or rough surface)

as implemented in the Mitsuba 3 renderer [7]. The photorealistic rendering of the Lu metal shows

a silvery white colour, in good agreement with experiment [8].

8.2. Surface roughness effect

Figure S18 illustrates the blue colour of LuH2 using different models for the surface rough-

ness, which shows the type of change that one may expect between different samples. We

find that the surface effect does not change the colour. We highlight that the key quan-

tity to describe the optical response of materials is the dielectric function, and we include

all calculated dielectric functions as Supplementary Data to enable readers to evaluate the

optical response for distinct setups.
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FIG. S18: Surface roughness effect. Photorealistic rendering images for LuH2 with different

surface roughness conditions (clean or rough surface) as implemented in the Mitsuba 3 renderer [7].

The images in upper panels are taken from this webpage on the Mitsuba 3 renderer website. For

b, we use roughness values of αu = 0.05 and αv = 0.3.

8.3. Choice of exchange-correlation functional

We note that the brightness of the colour can change if we use different exchange-

correlation functionals for the DFT calculations. For example, Figure S19 shows DFT+U

results compared with DFT, with the former exhibiting brighter orange colours and a tran-

sition to a red phase in pure LuH2. Despite these small change depending on the calculation

details, the overall conclusions of our work remain unchanged.
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FIG. S19: Comparison between DFT and DFT+U colour results. a-c. Colour and

photorealistic rendering of a LuH2, b LuH1.875 and c LuH1.750 as a function of pressure. We use

U = 3 eV on Lu d orbitals.
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Supplementary Note 9. CONVERGENCE TESTS ON REFLECTIVITY

We have tested various convergence parameters on the calculation of reflectivity, and

found that an energy cutoff of 400 eV and a k-point grid size of 40 × 40 × 40 are fully

converged. Convergence test details are presented in Fig. S20.
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FIG. S20: Convergence tests on reflectivity.
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