Appendix

Appendix Figure S12
Appendix Figure S23
Appendix Figure S34
Appendix Figure S45
Appendix Figure S56
Appendix Figure S67
Appendix Figure S78
Appendix Figure S89
Appendix Figure S910
Appendix Figure S1011
Appendix Figure S1112
Appendix Figure S1213
Appendix Figure S1314
Appendix Figure S1415
Appendix Figure S1516
Appendix Figure S1617
Appendix Table S1
Appendix Table S221
Appendix Table S322

D	size measurement		Н	I9 ESC	s	i	PSCs#	1	i	PSCs#	2	i	PSCs#	3	Total
	Day 10	Batches		2			2			3			5		
	Day IU	Organoids	12			12			17			34		75	
			+D	+L	(-)	+D	+L	(-)	+D	+L	(-)	+D	+L	(-)	
D	Day 12	Batches	2	2	2	2	2	2	2	3	3	5	5	5	
	Day 15	Organoids	14	40	10	13	28	13	21	43	15	37	63	26	323
	Day 16	Batches	2	2	2	2	2	2	3	3	3	5	5	5	
		Organoids	14	38	10	13	20	14	20	30	23	39	61	34	316
	Day 20	Batches	2	2	2	2	2	2	3	3	3	5	5	5	
		Organoids	12	28	35	8	12	15	18	23	38	38	66	55	348

Appendix Figure S1. (Related to Fig. 1B-C) **Organoid morphology at D10, D13, D16, D20, and D40 evolves in comparable ways in all cell lines. (A)** Morphological changes that are comparable across cell lines include outer brightening at D10, tissue budding in MG^{+D} and MG^{+L} conditions from D16, and formation of neural rosettes across conditions at D40. Scale bars: 500 μm. Images of H9 ESCs and D20 and D40 timepoints are as in **Fig.1B. (B)** Number of organoids (technical replicates) and batches (biological replicates) used for the measurement of organoid diameter across timepoints (**Fig. 1C**).

Appendix Figure S2. (Related to Fig. 2B and 2F) Number of organoids and batches used to quantify the number of cavitation spots and neural rosettes from D10 to D20. (A) Cavitation spots at D10. Neural rosettes at D13 (B), D16 (C), and D20 (D). Boxplots mark the median value; the two hinges correspond to the first and third quartiles (the 25th and 75th percentiles); and the whiskers extend from the hinge to the highest/lowest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). Each datapoint is an individual organoid (technical replicate); datapoint colors indicate organoid batches (biological replicates). Statistical tests are analysis of variance (ANOVA); $0 \le p < 0.001$, ***; $0.001 \le p < 0.01$, **; $0.01 \le p < 0.05$, *; $p \ge 0.05$, ns (see results of statistical tests in Appendix Table S1). The tables indicate the number of organoids (technical replicates) and batches (biological replicates) used in these analyses.

Appendix Figure S3. (Related to Fig. 2G) **Comparison of the distribution of polarity proteins at D10 (A) and D13-D20 (B) shows the quick action of Matrigel on tissue morphogenesis.** Apical and basal domains are marked by PKCζ and FN, respectively. Bottom panels: magnification of inset. Whole-organoid images of H9 ESCs at D20 are as in **Fig.2G. (C)** Schematic representation of tissue morphogenesis from D13 to D20. An apical-in/basal-out polarity axis is defined at D13-D16 in MG^{+D} and MG^{+L} organoids, but still undefined in most exECM-organoids. At D20, an apical-in/basal-out polarity axis is defined in all conditions.

Appendix Figure S4. (Related to Fig. 2H-I) Quantification of the area surrounding neural rosettes covered by endogenous or exogenous ECM. (A-B) Co-staining of Ms-LAMA1 (Matrigel-derived) and Ms/h-FN (Matrigel or endogenously derived). Exemplary output of the method in one MG^{+D} (A) and one exECM⁻ organoid (B) (details in Materials and Methods). Briefly, the outside region of individual neural rosettes was segmented with a 15.6µm-thick band (50 pixels, "Segmented line" tool in Fiji) and straightened ("Straighten" tool in Fiji). In the Ms/h-FN channel, which represents both endogenous and exogenous ECM, the following commands were performed: 1) definition of an intensity threshold ("Threshold" command, method: triangle); 2) detection of positive areas and generation of regions of interest (ROIs) ("Analyse Particles" command in Fiji). In both channels, ROIs were defined as positive (red arrowheads) or negative (black arrowheads) based on the percentage of positive area. The two organoids shown here are as in Fig.2H. (C) Percentage of area covered by Matrigel-derived (Ms-LAMA1⁺Ms/h-FN⁺) or endogenously derived (Ms-LAMA1⁻Ms/h-FN⁺) ECM, or by negative staining, for each single rosette analyzed. (D) Number of rosettes, organoids (technical replicates), and batches (biological replicates) used for this quantification.

Appendix Figure S5. (Related to Fig. 2) **Lumican is endogenously produced by NPCs in all conditions. (A)** At D10, LUM is abundantly expressed but presents disorganized tissue distribution. Apical localization to rosette ventricular zones is defined at D13 in MG^{+D} and MG^{+L} organoids (**B**) and at D20 in all conditions (**C**). Arrowheads mark the location of LUM lining the organoid outer surface (empty arrowheads) or the ventricular zone of neural rosettes within the tissue (white arrowheads). Bottom panels: magnification of inset.

Appendix Figure S6. (Related to Fig. 2J-K) Exposure to purified Laminin of Collagen IV does not have the same effect on organoid morphogenesis as exposure to Matrigel. (A) Experimental paradigm to test the effect of liquid embedding with purified Laminin or Collagen IV on organoid development. (B) Brightfield imaging of organoids from the same batch exposed to the five different experimental conditions, at D13, D16, and D20. Images of Laminin^{+L} and Coll.IV^{+L} organoids at D20 are as in **Fig.2K**. (C) Co-staining of Ms-LAMA1, Ms/h-LAMA1, and Ms/h-Perlecan in Laminin^{+L} and Coll.IV^{+L} organoids at D20. Note the accumulation of Ms-LAMA1 at the organoid surface in Laminin^{+L} conditions (white arrowhead; zoom-in in Cb-Ce). Whole-organoid composite images are as in **Fig.2K**.

Appendix Figure S7. (Related to Fig. 3) **Bulk RNA sequencing analysis of organoids at D20. (A)** Experimental paradigm and normalized gene expression (after variance stabilizing transformation, vst) of each of the 25 analyzed organoids. **(D)** Normalized (vst) and row-scaled expression levels of genes found differentially expressed (adjusted p value, padj., below 0.05 and fold change, FC, above 1.5) considering all pairwise comparisons between single experimental conditions.

8

Appendix Figure S8. (Related to Fig. 3B) **The onset of neurogenesis occurs at around D20.** At D20, few scattered neurons (MAP2⁺) are seen mainly at the outer organoid surface or surrounding neural rosettes (SOX2⁺), in all conditions and cell lines. Bottom panels: magnification of inset. Images of H9 ESCs are as in **Fig.3B**.

Appendix Figure S9. (Related to Fig. 4 and 5) **Matrigel shows long-term permanence within the organoid tissue.** (A) At D40, MG^{+D} organoids remain encapsulated by Matrigel (white arrowhead); and Matrigel remnants are visible within the tissue of MG^{+L} organoids (marked by Ms-LAMA1; white arrowhead). (B) Co-staining of Ms-LAMA1 and Ms/h-LAMA1 at D40. In MG⁺ organoids some neural rosettes are surrounded by Matrigel-derived ECM (Ms-LAMA1⁺; magenta-delimited areas) while others are surrounded by endogenously produced ECM (Ms-LAMA1⁺; green-delimited areas). In exECM- organoids, there is abundant endogenous production of LAMA1 (Ms/h-LAMA1⁺), which surrounds all neural rosettes. (C) At D120, large Ms-LAMA1⁺ regions are visible in MG^{+D} organoids (white arrowhead), when Matrigel has been engulfed by the growing tissue; and Matrigel remnants are still present in MG^{+L} organoids (white arrowhead). ExECM⁻ organoids show complete absence of Ms-LAMA1 staining, as expected.

Appendix Figure S10. (Related to Fig. 4B) Organization of neural progenitors and neurons is comparable between conditions at D40. Organoids from all conditions and cell lines show abundant neural rosettes with $PKC\zeta^+$ ventricular zone, and inside-out organization of SOX2⁺ neural progenitors and MAP2⁺ neurons. *: staining artifact. A zoomed-in view of one rosette of H9 ESC-derived organoids is shown in Fig. 4B.

Appendix Figure S11. (Related to Fig. 4C) Tissue identity and organization of dorsal-cortical cell types is comparable between conditions at D40. Radial glia (SOX2⁺), dorsal intermediate progenitors (TBR2⁺) and early born excitatory neurons (CTIP2⁺) show layered arrangement in neural rosettes of organoids from all conditions and cell lines. *: staining artifact. A zoomed-in view of one rosette of H9 ESC-derived organoids is shown in Fig. 4C.

Appendix Figure S12. (Related to Fig. 4D and H) **(A)** At D40, few DLX2⁺ ventral neural progenitor cells are seen in organoids from all conditions. **(B)** Optic cup-like regions show convoluted morphology and are marked by the expression of OTX2 and TTR (shown in consecutive sections of the same organoid). Bottom panels: magnification of inset. Whole-organoid composite images of DAPI/OTX2 immunostaining are as in **Fig. 4D**.

Appendix Figure S13. (Related to Fig. 4E-H) Number of organoids and batches used to quantify rosette metrics and percentage of OTX2⁺ tissue at D40. (A) Organoid diameter. (B) Mean rosette area. (C) Mean rosette number per section. (D) Percentage of OTX2⁺ area. Boxplots mark the median value; the two hinges correspond to the first and third quartiles (the 25th and 75th percentiles); and the whiskers extend from the hinge to the highest/lowest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). Each datapoint is an individual organoid (technical replicate); datapoint colors indicate organoid batches (biological replicates). Statistical tests are analysis of variance (ANOVA); $0 \le p < 0.001$, ***; $0.001 \le p < 0.01$, **; $0.01 \le p < 0.05$, *; $p \ge 0.05$, ns (see results of statistical tests in **Appendix Table S1**). The tables indicate the number of rosettes, organoids (technical replicates), and batches (biological replicates) used in these analyses.

Appendix Figure S14. (Related to Fig. 5A-H) **Details of scRNAseq analysis. (A)** Nine individual organoids (3 per condition) were multiplexed with unique molecular identifiers (Cell Multiplexing Oligos, CMOs). **(B)** T-SNE projection of cells retrieved after sequencing, based on recovered CMOs. **(C)** Demultiplexing of used CMOs allows the assignment of individual cells to the respective organoid of origin. More than 70% of cells (corresponding to 6714 cells) were assigned to an individual organoid; cells tagged with zero (12.9%) or more than one CMO (15%) were excluded from the downstream analysis. Here, one of two sequenced libraries is shown; in the second library, about 56% of cells (7756 cells) were assigned to a unique CMO. **(D)** Top 5 cluster markers of telencephalic clusters: dividing NPCs/radial glia progenitors (RGs), oligodendrocyte precursor cells (OPCs), interneurons (INs), intermediate progenitor cells (IPCs), immature excitatory neurons (ExN), deep-layer excitatory neurons (ExNs DL), and upper-layer ExNs (ExNs UL). **(E)** Subset of the excitatory neuron lineage in UMAP projection after filtering and exclusion of non-telencephalic clusters; selected clusters: IPCs, immature exNs, deep-layer ExNs and upper-layer ExNs. **(F)** UMAP projection of the same dataset, split by each individual condition. **(G)** Percentage of cells in each cluster of the excitatory neuron lineage, per condition and per organoid.

Appendix Figure S15. (Related to Fig. 5I) Organoids cultured for 120 days show size dependent on Matrigel exposure, but comparable cell types and tissue morphology. (A) Although organoid size is variable at D120, exECM⁻ organoids are generally smaller than MG^{+D} or MG^{+L} organoids. Overgrowth may cause tissue damage, as seen in iPSCs#3-derived MG^{+L} organoids (black arrowheads). Grid size: 1cm x 1cm. (B) Tissue immunostaining of organoids at D120 shows abundant deep- and upper-layer neurons (CTIP2⁺ and SATB2⁺, respectively), as well as less abundant populations of interneurons (SCGN⁺ and COUP-TFII⁺) across all conditions and cell lines. *: staining artifacts.

Appendix Figure S16. (Related to Fig. 5J-K) **Patterning assessment at D120 of organoid development. (A-B)** Telencephalic/non-telencephalic tissue regions were identified by the expression of FOXG1 and OTX2, respectively. **(C-D)** Dorsal/ventral cells were segmented by nuclear staining of SATB2 and DLX2, respectively. **(E)** Results of the patterning analyses for each single organoid analyzed. **(F)** Number of organoids (technical replicates) and batches (biological replicates) used in these analyses. **Appendix Table S1. Statistical analyses.** Analysis of variance (ANOVA); $0 \le p < 0.001$, ***; $0.001 \le p < 0.01$, **; $0.01 \le p < 0.05$, *; $p \ge 0.05$, ns. The influence on the quantitative variable was calculated from the interaction between cell line (H9, iPSCs#1 iPSCs#2, and iPSCs#3) and Matrigel condition (Drop, MG^{+D}; Liq, MG^{+L}; Null, exECM⁻).

Figure and data	Compar	ison	Mean difference	Lower range	Upper range	Adj. p-val.	
Fig. 2F: number of	All lines: Li	q-Drop	1.807692	-0.04706	3.662443	0.057773	ns
rosettes / section	All lines: N	ull-Drop	-9.68462	-11.4892	-7.88	3.08E-10	***
D13	All lines: Null-Liq		-11.4923	-13.095	-9.88962	3.08E-10	***
	H9 ESCs	Liq-Drop	-0.925	-5.81414	3.964136	0.999966	ns
	H9 ESCs	Null-Drop	-11.6571	-15.9247	-7.38955	3.09E-10	***
	H9 ESCs	Null-Liq	-10.7321	-15.3003	-6.16396	6.29E-10	***
	iPSCs#1	Liq-Drop	3.1	-2.22262	8.422617	0.724825	ns
	iPSCs#1	Null-Drop	-6.375	-11.9415	-0.80847	0.011356	*
Appendix Fig. S2:	iPSCs#1	Null-Liq	-9.475	-14.3641	-4.58586	2.31E-07	***
/ section D13	iPSCs#2	Liq-Drop	2.5	-3.14549	8.145488	0.941835	ns
, 6664611 2 16	iPSCs#2	Null-Drop	-7.4	-13.1491	-1.65092	0.002195	**
	iPSCs#2	Null-Liq	-9.9	-14.6358	-5.16417	2.13E-08	***
	iPSCs#3	Liq-Drop	1.654545	-3.90475	7.213838	0.99746	ns
	iPSCs#3	Null-Drop	-13.8	-19.1699	-8.43007	3.17E-10	***
	iPSCs#3	Null-Liq	-15.4545	-19.6074	-11.3017	3.08E-10	***
			Moon	Lower	Unnor		
Figure and data	Compar	ison	difference	range	range	Adj. p-val.	
Fig. 2F: number of	All lines: Li	q-Drop	2.672587	0.058384	5.286789	0.043854	*
rosettes / section	All lines: N	ull-Drop	-9.94048	-12.5392	-7.34172	5.33E-14	***
D16	All lines: N	lull-Liq	-12.6131	-14.8474	-10.3787	2.31E-14	***
	H9 ESCs	Liq-Drop	3.638889	-2.86376	10.14153	0.782386	ns
	H9 ESCs	Null-Drop	-9.83333	-16.0023	-3.66438	2.69E-05	***
	H9 ESCs	Null-Liq	-13.4722	-18.9127	-8.03172	6.23E-12	***
	iPSCs#1	Liq-Drop	5.233333	-2.40555	12.87221	0.498767	ns
Appendix Fig. S2:	iPSCs#1	Null-Drop	-4.1	-12.3765	4.176517	0.889129	ns
number of rosettes	iPSCs#1	Null-Liq	-9.33333	-16.4566	-2.21004	0.001462	**
/ section	iPSCs#2	Liq-Drop	1.296703	-6.88325	9.476653	0.999995	ns
D16	iPSCs#2	Null-Drop	-11.3571	-19.4342	-3.28009	0.000407	***
	iPSCs#2	Null-Liq	-12.6538	-19.3744	-5.93333	2.66E-07	***
	iPSCs#3	Liq-Drop	0.844444	-6.51246	8.201348	1	ns
	iPSCs#3	Null-Drop	-14.1556	-21.5125	-6.79865	1.33E-07	***
	iPSCs#3	Null-Liq	-15	-21.3713	-8.62873	6.08E-11	***
Figure and data	Compar	ison	Mean difference	Lower range	Upper range	Adj. p-val.	
Fig. 2E: number of	All lines: Li	q-Drop	4.350941	0.683021	8.018862	0.015553	*
rosettes / section	All lines: N	ull-Drop	0.17963	-3.49766	3.856916	0.992641	ns
D20	All lines: N	Iull-Liq	-4.17131	-7.05652	-1.2861	0.002324	**
	H9 ESCs	Lig-Drop	4,179487	-4.43373	12,7927	0.901146	ns
	H9 ESCs	Null-Drop	4 458333	-4 24668	13 16335	0.863703	ns
	H9 ESCs	Null-Lia	0 278846	-6.02538	6 583075	1	ns
	iPSCs#1	Lig-Drop	1.269841	-9.95368	12,49336	1	ns
	iPSCs#1	Null-Drop	1.78E-15	-10 4986	10,49864	1	ns
Appendix Fig. S2:	iPSCs#1	Null-Lig	-1.26984	-12 4934	9.953676	1	ns
number of rosettes	iPSCs#2	Lig-Drop	0.2	-11,3007	11 70068	1	ns
/ section D20	iPSCs#2	Null-Drop	0.636364	-10 6666	11 93931	1	ne
	iPSCs#2	Null-Lia	0.436364	-9 20453	10 16725	1	ne
	iPSCs#3	Lig-Drop	6 333333	-7 55506	20 22173	0 933532	ne
	iPSCs#3	Null-Drop	-7 8125	-21 82/3	6 1003/0	0.784501	ne
	iPSCs#3	Null-Liq	-14.1458	-21.798	-6.4937	5.31E-07	***

Figure and data Comparison		rison	Mean difference	Lower range	Upper range	Adj. p-val.	
Fig. 4E: organoid	All lines: L	iq-Drop	-701.48	-845.905	-557.055	9.77E-14	***
diameter	All lines: N	ull-Drop	-945.449	-1084.7	-806.195	9E-14	***
D40	All lines: I	Null-Liq	-243.969	-383.687	-104.25	0.000155	***
	H9 ESCs	Liq-Drop	-784.444	-1225.04	-343.846	9.02E-07	***
	H9 ESCs	Null-Drop	-1156.16	-1596.76	-715.565	2.53E-13	***
	H9 ESCs	Null-Liq	-371.719	-825.09	81.65228	0.229743	ns
	iPSCs#1	Liq-Drop	-164.933	-690.268	360.4022	0.996702	ns
Appendix Fig.	iPSCs#1	Null-Drop	-573.515	-1076.49	-70.5454	0.011135	*
S13A: organoid	iPSCs#1	Null-Liq	-408.583	-933.918	116.7525	0.304588	ns
diameter	iPSCs#2	Liq-Drop	-569.957	-1016.61	-123.303	0.002083	**
D40	iPSCs#2	Null-Drop	-831.263	-1277.92	-384.609	2.17E-07	***
	iPSCs#2	Null-Liq	-261.306	-701.14	178.5286	0.71929	ns
	iPSCs#3	Liq-Drop	-875.703	-1182.36	-569.043	2.06E-13	***
	iPSCs#3	Null-Drop	-1015.06	-1303.77	-726.36	1.11E-13	***
	iPSCs#3	Null-Liq	-139.36	-423.373	144.6522	0.900461	ns
Figure and data	Compa	rison	Mean difference	Lower range	Upper range	Adj. p-val.	
Fig. 4F: mean	All lines: L	iq-Drop	-0.01873	-0.02327	-0.01418	3.29E-14	***
rosette area	All lines: N	ull-Drop	-0.02589	-0.03039	-0.0214	3.11E-15	***
D40	All lines: I	Null-Liq	-0.00717	-0.01151	-0.00282	0.000398	***
	H9 ESCs	Liq-Drop	-0.00822	-0.02227	0.005818	0.732574	ns
	H9 ESCs	Null-Drop	-0.01499	-0.02839	-0.00159	0.014429	*
	H9 ESCs	Null-Liq	-0.00677	-0.01986	0.006333	0.861132	ns
	iPSCs#1	Liq-Drop	-0.02555	-0.04219	-0.00891	5.8E-05	***
Appendix Fig	iPSCs#1	Null-Drop	-0.03458	-0.05027	-0.01889	6.05E-10	***
S13B: mean	iPSCs#1	Null-Liq	-0.00903	-0.02567	0.007615	0.817901	ns
rosette area	iPSCs#2	Liq-Drop	-0.00435	-0.01712	0.008419	0.993016	ns
D40	iPSCs#2	Null-Drop	-0.01681	-0.02957	-0.00404	0.001295	**
	iPSCs#2	Null-Liq	-0.01246	-0.02415	-0.00076	0.025815	*
	iPSCs#3	Liq-Drop	-0.02991	-0.04007	-0.01975	1.21E-13	***
	iPSCs#3	Null-Drop	-0.03384	-0.04419	-0.02349	8.37E-14	***
	iPSCs#3	Null-Liq	-0.00393	-0.01386	0.005997	0.976648	ns
Figure and data	Compa	rison	Mean difference	Lower range	Upper range	Adj. p-val.	
Fig. 4G: mean	All lines: L	iq-Drop	6.110504	2.719573	9.501434	9.81E-05	***
rosette number	All lines: N	ull-Drop	6.166103	2.810302	9.521904	6.98E-05	***
D40	All lines: I	Null-Liq	0.0556	-3.18591	3.297113	0.999094	ns
	H9 ESCs	Liq-Drop	8.470085	-2.01309	18.95326	0.247052	ns
	H9 ESCs	Null-Drop	0.069444	-9.93086	10.06975	1	ns
	H9 ESCs	Null-Liq	-8.40064	-18.1787	1.37741	0.170478	ns
	iPSCs#1	Liq-Drop	12.8625	0.440938	25.28406	0.035149	*
Appendix Fig.	iPSCs#1	Null-Drop	7.423333	-4.28783	19.13449	0.623851	ns
rosette number	iPSCs#1	Null-Liq	-5.43917	-17.8607	6.982396	0.951473	ns
per section	iPSCs#2	Liq-Drop	7.639316	-1.89211	17.17074	0.258153	ns
D40	iPSCs#2	Null-Drop	9.296724	-0.2347	18.82815	0.063227	ns
	iPSCs#2	Null-Liq	1.657407	-7.07158	10.38639	0.999971	ns
	iPSCs#3	Liq-Drop	3.020396	-4.56551	10.6063	0.975691	ns
	iPSCs#3	Null-Drop	8.715909	0.986489	16.44533	0.013092	*
	iPSCs#3	Null-Liq	5.695513	-1.71721	13.10823	0.319646	ns
Figure and data	Compa	rison	Mean difference	Lower range	Upper range	Adj. p-val.	
Fig. 4F: OTX2⁺	All lines: L	iq-Drop	-8.35492	-14.3973	-2.31252	0.003701	**
area	All lines: N	ull-Drop	-16.725	-22.7043	-10.7458	1.27E-09	***
D40	All lines: I	Null-Liq	-8.37011	-14.173	-2.56725	0.002313	**

	H9 ESCs	Liq-Drop	-11.7291	-30.4953	7.037044	0.644639	ns
	H9 ESCs	Null-Drop	-13.5799	-31.4816	4.321929	0.339277	ns
	H9 ESCs	Null-Liq	-1.85073	-19.3546	15.65318	1	ns
	iPSCs#1	Liq-Drop	-7.40224	-29.6384	14.83389	0.994253	ns
	iPSCs#1	Null-Drop	-8 83626	-29 8007	12 12816	0.963001	ns
Appendix Fig.	iPSCs#1	Null-Lia	-1 43402	-23 6701	20 80211	1	ne
S13D: OTX2 ⁺ area	iPSCs#2	Lig-Drop	21 2544	-20.0701	1 102	0 003308	**
D40	iPSCs#2	Null-Drop	-21.2344	-30.3109	-4.192	2.075.06	***
	iPSCs#2	Null_Lig	-29.4243	-40.4000	-12.3019	2.97 E-00	
	iPSCc#2		-0.10991	-23.7959	12 00040	0.051195	115
	iF 3C3#3		-0.45795	-13.8768	12.9609	1	ns
	IPSCs#3	Null-Drop	-14.1598	-27.8386	-0.481	0.035266	^
	IF 305#3	Null-Liq	-13.7018	-26.9715	-0.43214	0.036207	^
Figure and data	Compa	rison	Mean difference	Lower range	Upper range	Adj. p-val.	
	All lines: L	iq-Drop	-3.2781	-5.22179	-1.33442	0.000345	***
	All lines: N	ull-Drop	-3.42248	-5.13665	-1.70832	2.08E-05	***
	All lines: N	Null-Liq	-0.14438	-1.9305	1.641741	0.979797	ns
	All conditions: H9	ESCs-iPSCs#1	-1.07702	-3.28318	1.129127	0.580094	ns
	All conditions: H9	ESCs-iPSCs#2	1.131396	-0.96833	3.231119	0.496984	ns
	All conditions: H9	ESCs-iPSCs#3	-0.86912	-3.30394	1.565702	0.787057	ns
	All conditions: iPS	Cs#1-iPSCs#2	2.20842	0.067705	4.349136	0.040498	*
	All conditions: iPS	Cs#1-iPSCs#3	0.207906	-2.26235	2.678165	0.996214	ns
	All conditions: iPS	Cs#2-iPSCs#3	-2.00051	-4.37621	0.375177	0.130116	ns
Fig. 5J:	H9 ESCs	Liq-Drop	-4.4824	-10.363	1.39823	0.320851	ns
%FOXG1 ⁺ /OTX2 ⁺	H9 ESCs	Null-Drop	-4 49332	-9 55334	0.566702	0 13243	ns
areas	H9 ESCs	Null-Lia	-0.01092	-4 80088	4 779034	1	ns
0120	iPSCs#1	Lia-Drop	0.86442	-4 2717	6.000536	0 00000	ne
	iPSCs#1	Null-Drop	0.067681	-4 78802	4 924279	0.00000	ne
	iPSCs#1	Null-Lia	0.007001	-4.70092 5 81055	4.924279	1 000001	115
	iPSCs#2	Lig-Drop	7 1024	12 0140	2 10102	0.000000	***
	iPSCs#2	Null-Drop	-7.1034	-12.0149	-2.19192	0.000292	***
	iPSCs#2	Null-Lig	-0.92347	-11.1023	-2.00400	2.49E-05	
	iPSCc#3		0.179931	-4.50474	4.864601	1	ns
	iF 305#3		-1.286	-7.68648	5.114475	0.999938	ns
	IPSCS#3	Null-Drop	-1.0532	-6.76167	4.655274	0.999974	ns
	IP305#3	Null-Liq	0.232803	-5.79305	6.258653	1	ns
Figure and data	Compa	rison	Mean difference	Lower range	Upper range	Adj. p-val.	
	All lines: L	iq-Drop	-1.48882	-8.77696	5.79933	0.87757	ns
	All lines: N	ull-Drop	0.92519	-5.65456	7.504939	0.939936	ns
	All lines: N	Null-Liq	2.414005	-4.30836	9.136366	0.66906	ns
	All conditions: H9	ESCs-iPSCs#1	-17.9547	-26.1807	-9.72863	9.06E-07	***
	All conditions: H9	ESCs-iPSCs#2	4.254357	-3.68739	12.1961	0.500644	ns
	All conditions: H9	ESCs-iPSCs#3	-0.48987	-10.1308	9.151043	0.999151	ns
	All conditions: iPS	Cs#1-iPSCs#2	22.20902	14.18729	30.23074	1.26E-09	***
	All conditions: iPS	Cs#1-iPSCs#3	17.46479	7.757888	27.17169	5.43E-05	***
	All conditions: iPS	Cs#2-iPSCs#3	-4.74423	-14.2114	4.722962	0.557299	ns
Fig. 5K:	H9 ESCs	Liq-Drop	-7.45806	-28.817	13.90085	0.989688	ns
%SATB2*/DLX2*	H9 ESCs	Null-Drop	-6.90264	-25.6356	11.83035	0.984187	ns
D120	H9 ESCs	Null-Liq	0.555414	-17.2163	18.32709	1	ns
	iPSCs#1	Liq-Drop	4.303088	-14.3517	22.95787	0.999747	ns
	iPSCs#1	Null-Drop	8.527653	-9,57014	26.62545	0.91049	ns
	iPSCs#1	Null-Lia	4 224565	-14 4302	22 87934	0 999789	ns
	iPSCs#2	Lia-Drop	-2 57959	-20 7001	15 63007	0 000008	ne
	iPSCs#2	Null-Drop	0.012746	-16 4254	16 45088	1	ne
	iPSCs#2	Null-Lia	2 502222	-14 0209	20 11545	0 00007	115
	iPSCs#3	Lig-Drop	2.392333	30 2622	20.11340	0.355357	115
	iPSCe#3	Null-Drop	-3.21340	-20.3022	20.00120	I 0.004000	115
	iPSCe#3	Null-Lia	-1.12410	-01./0/1	10.00001	0.994000	115
	1 000000		-4.000/	-20.0/1/	13.00427	0.333300	115

Appendix Table S2. Medium composition for telencephalic organoid culture. Medium components and recipe for 500 mL of Neural Induction medium (NI), Differentiation medium without vitamin A (Diff-A), and Differentiation medium with Vitamin A (Diff+A). All media were vacuum-filtered through a membrane with a pore size of 0.22 µm.

Medium	Components	Manufacturer	Catalog number	Recipe for 500 mL
	DMEM/F12(1:1) 1x, with HEPES	ThermoFisher Scientific	11330057	500 mL
	N-2 Supplement (100X)	ThermoFisher Scientific	17502048	5 mL
Neural	GlutaMAX supplement-I (100X)	ThermoFisher Scientific	35050-038	5 mL
induction	MEM Non-essential amino acid solution (100X)	ThermoFisher Scientific	11140050	5 mL
	Antibiotic-Antimycotic (100X)	ThermoFisher Scientific	15240062	5 mL
	Heparin solution (1 mg/mL in DPBS-/-)	Merck	H3149	500 µL
	DMEM/F12(1:1) 1x, with HEPES	ThermoFisher Scientific	11330057	250 mL
	Neurobasal Medium	ThermoFisher Scientific	21103049	250 mL
Diff	N-2 Supplement (100X)	ThermoFisher Scientific	17502048	2.5 mL
medium	B-27 Supplement (50X), minus vitamin A	ThermoFisher Scientific	12587010	10 mL
- vit. A	Recombinant human Insulin solution	Merck	19278	125 µL
	GlutaMAX supplement-I (100X)	ThermoFisher Scientific	35050-038	5 mL
	MEM Non-essential amino acid solution (100X)	ThermoFisher Scientific	11140050	2.5 mL
	Antibiotic-Antimycotic (100X)	ThermoFisher Scientific	15240062	5 mL
	DMEM/E12(1:1) 1x with HEPES	ThermoFisher Scientific	11330057	250 ml
	Neurobasal Medium	ThermoFisher Scientific	21103049	250 mL
	N-2 Supplement (100X)	ThermoFisher Scientific	17502048	2.5 ml
Diff	B-27 Supplement (50X) serum free	ThermoFisher Scientific	17504044	10 ml
medium	Recombinant human Insulin solution	Merck	19278	125 ul
+ vit. A	GlutaMAX supplement-I (100X)	ThermoFisher Scientific	35050-038	5 mL
	MEM Non assortial amino acid solution (100X)	ThermoFisher Scientific	11140050	2.5 ml
			111100000	E.0 111E
	Antibiotic-Antimycotic (100X)	ThermoFisher Scientific	15240062	5 mL

Appendix Table S3. Antibodies used in this study.

Primary antibodies							
Species	Antigen	Manufacturer	Catalog#				
Chicken	GFP	Aves Labs	GFP-1020				
Mouse	ΡΚϹζ	Santa Cruz Biotechnology	sc-17781				
Rabbit	ΡΚϹζ	Santa Cruz Biotechnology	sc-216				
Mouse	Ms/h-Fibronectin	R&D Systems	MAB1918				
Mouse	Ms/h-Perlecan	Invitrogen	13-4400				
Rabbit	Ms/h-LAMA1	Abcam	ab11575				
Rat	Ms-LAMA1	R&D Systems	MAB4656				
Rabbit	Lumican	Abcam	ab168348				
Mouse	SOX2	R&D Systems	MAB2018				
Goat	SOX2	R&D Systems	AF2018				
Chicken	MAP2	Thermo Fisher Scientific	PA1-10005				
Rabbit	TBR2	Abcam	ab23345				
Sheep	TBR2	R&D Systems	AF6166				
Rat	CTIP2	Abcam	ab18465				
Mouse	SATB2	Abcam	ab51502				
Goat	OTX2	Neuromics	GT15095				
Sheep	TTR	AbD Serotec	ahp 1837				
Mouse	DLX2	Santa Cruz Biotechnology	sc-393879				
Rabbit	SCGN	Sigma-Aldrich	HPA006641				
Mouse	COUP-TFII	R&D Systems	pp-h7147-00				

Secondary antibodies

Antibody	Manufacturer	Catalog#
Alexa Fluor 488 Donkey anti-rabbit	Invitrogen	A21206
Alexa Fluor 488 Donkey anti-mouse	Invitrogen	A21202
Alexa Fluor 488 Donkey anti-chicken	Jackson ImmunoResearch	703-545-155
Alexa Fluor 488 Donkey anti-goat	Invitrogen	A11055
Alexa Fluor 568 Donkey anti-rabbit	Invitrogen	A10042
Alexa Fluor 568 Donkey anti-mouse	Invitrogen	A10037
Alexa Fluor 568 Donkey anti-goat	Invitrogen	A11057
Alexa Fluor 647 Donkey anti-rabbit	Invitrogen	A31573
Alexa Fluor 647 Donkey anti-mouse	Invitrogen	A31571
Alexa Fluor 647 Donkey anti-goat	Invitrogen	A21447
Alexa Fluor 647 Donkey anti-rat	Jackson ImmunoResearch	712-605-150