Supporting information for:

Fe(II), Mn(II), and Zn(II) Binding to the C-Terminal Region of FeoB Protein: An Insight into the Coordination Chemistry and Specificity of the *E. coli* Fe(II) Transporter

Bartosz Orzel, Alessio Pelucelli, Malgorzata Ostrowska, Slawomir Potocki, Henryk Kozlowski, Massimiliano Peana, and Elzbieta Gumienna-Kontecka*

Bartosz Orzel – Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland; https://orcid.org/0000-0001-9299-1697

Alessio Pelucelli - Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy; https://orcid.org/0000-0002-9502-7585

Malgorzata Ostrowska - Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland; https://orcid.org/0000-0001-9765-8914

Henryk Kozlowski - Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland; Department of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland; orcid.org/0000-0001-5769-8583

Slawomir Potocki - Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland; https://orcid.org/0000-0002-5528-7200

Massimiliano Peana - Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy; https://orcid.org/0000-0002-3306-0419

Elzbieta Gumienna-Kontecka – Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland; orcid.org/0000-0002-9556-6378; Email: elzbieta.gumienna-kontecka@ uwr.edu.pl

Figure S1. Comparison of the sample solution color after finished potentiometric titrations at pH=11. Left picture shows the sample in titration vessel after the finished titration- no color is observed. Right picture shows the sample 30 seconds after opening the vessel to air - yellow color indicates Fe(III) presence.

Figure S2. Representative distribution diagram for the protonation equilibria of: a) $Ac_{763}CCAASTTGDCH_{773}$ (**P1**); b) $Ac_{743}RRARSRVDIELLATRKSVSSCCAASTTGDCH_{773}$ (**P2**) at T=298 K and *I*=0.1 M NaClO₄.

Figure S3. Structural model of the [FeH₃L], species in a {2COO⁻, N_{im}, 3H₂O} coordination mode.

Figure S4. Comparison of a selection of ${}^{1}H{}^{-1}H$ TOCSY spectra for the free peptide P1 (red) and Fe(II):P1 system (blue) at 1:3 molar ratio, at pH 8.16 (a) and 9.45 (b).

Figure S5. A proposed structural model of the $[FeLH_2]^{5-}$ species in a $\{3S^-, 2N^-, H_2O\}$ coordination mode.

Figure S6. Comparison of ¹H spectra of P2 with increasing addition of Fe(II) at pH 6.2.

Figure S7. Comparison of a selection of ${}^{1}\text{H}{}^{-1}\text{H}$ TOCSY spectra for the free peptide P1 (red) and Zn(II):P1 system (blue) at 1:1 molar ratio, at pH 5.4.

Figure S8. Comparison of a selection of ¹H-¹³C HSQC spectra for the free peptide P1 (red) and Zn(II):P1 system 1:1 molar ratio, at pH 5.4 (blue) and at pH 6.1 (yellow).

Figure S9. Structural model of the $[ZnL]^{3-}$, species in a $\{N_{im}, 3S^{-}\}$ coordination mode.

Figure S10. Comparison of a selection of ¹H-¹H TOCSY spectra for the free peptide P2 (red) and Zn(II):P2 system (blue) at 1:1 molar ratio, at pH 7.4.

Figure S11. Comparison of a selection of ${}^{1}\text{H}{}^{-1}\text{H}$ TOCSY spectra for the free peptide P2 (red) and Zn(II):P2 system (blue) at 1:1 molar ratio, at pH 9.3.

Figure S12. Comparison of a selection of ${}^{1}\text{H}{-}{}^{13}\text{C}$ HSQC spectra for the free peptide P1 (red) and Mn(II):P1 system (blue) at 0.02:1 molar ratio, at pH 5.0.

Figure S13. Structural model of the [MnH₃L] species in a $\{2 \text{ COO}^-, N_{im}, 3H_2O\}$ coordination mode.

Figure S14. EPR spectra of the Mn(II):P1 system as a function of pH in: a) T=77 K (LN); b) T=298 K (RT).

Figure S15. EPR spectra of the Mn(II):P2 system as a function of pH in: a) T= 77 K (LN); b) T= 298 K (RT).

TABLES

Table S1. Hydrolysis constants for Mn(II), Zn(II) and Fe(II) ions for I=0.1M ionic strength, T= 298 K. The hydrolysis constants for zero ionic strength were taken from the "Hydrolysis of Metal Cations" by Brown and Ekberg and calculated to 0.1 M ionic strength with the formula proposed by Baes and Mesmer in "The Hydrolysis of Cations".^{1,2}

Species	$\log \beta$			
Mn(II)				
$Mn(OH)^+$	-10.78			
Mn(OH) ₂	-22.39			
Mn(OH) ₃ -	-34.34			
Mn(OH) ₄ ²⁻	-47.82			
Zn(II)				
Zn(OH) ⁺	-9.12			
Zn(OH) ₂	-18.08			
Zn(OH)3 ⁻	-27.97			
$Zn(OH)_4^{2-}$ -39.50				
Fe(II)				
Fe(OH) ⁺	-9.63			
Fe(OH) ₂	-20.73			
Fe(OH) ₃ -32.68				

(1) C. F. Baes and R. S. Mesmer: The Hydrolysis of Cations. John Wiley & Sons, New York, London, Sydney, Toronto 1976. 489 Seiten, Preis: £ 18.60. *Berichte der Bunsengesellschaft für physikalische Chemie* **1977**, *81* (2), 245–246. https://doi.org/10.1002/bbpc.19770810252.

(2) Brown, P. L.; Ekberg, C. *Hydrolysis of Metal Ions*; John Wiley & Sons, 2016.

System	Ion	m/z	m/z
		experimental	simulated
Fe(II):P1	${[FeH_3L]+2H^+}^{2+}$	582.66	582.66
	$\{[H_5L]+2H^+\}^{2+}$	555.70	555.69
	$\{[H_5L]+H^+\}^+$	1110.40	1110.36
Zn(II):P1	$\{[ZnH_{3}L]+2H^{+}\}^{2+}$	586.65	586.64
	$\{[H_5L]{+}2H^{+}\}^{2+}$	555.70	555.69
	$\{[H_5L]{+}H^{+}\}^{+}$	1110.36	1110.36
Mn(II):P1	$\{[MnH_3L]+2H^+\}^{2+}$	582.15	582.15
	$\{[H_5L]{+}2H^{+}\}^{2+}$	555.70	555.69
	$\{[H_5L]{+}H^{+}\}^{+}$	1110.37	1110.36
Fe(II):P2	$\{[FeLH_{\text{-}1}] + 5H^{\text{+}}\}^{5\text{+}}$	689.93	689.92
	${[HL + 5H^+]^{5+}}$	679.13	679.14
	${[HL + 4H^+]^{4+}}$	848.92	848.92
	${[FeLH_{-1}]+3H^{+}}^{3+}$	1131.22	1131.23
Zn(II):P2	$\{[ZnLH_{\text{-}1}] + 5H^{\text{+}}\}^{5\text{+}}$	691.53	691.53
	${[HL]+5H^+}^{5+}$	679.14	679.14
	${[HL+4H^+]^{4+}}$	848.93	848.92
	$\{[ZnLH_{-1}]+3H^{+}\}^{3+}$	1151.87	1151.87
	${[HL]+3H^+}^{3+}$	1131.23	1131.23
Mn(II):P2	$\{[MnLH_{\text{-}1}]+5H^{\text{+}}\}^{5\text{+}}$	689.72	689.72
	${[HL]+5H^+}^{5+}$	679.15	679.14
	${[HL]+4H^+}^{4+}$	848.93	848.92
	$\{[MnLH_{\text{-}1}] + 3H^{\text{+}}\}^{3\text{+}}$	1148.87	1148.87
	${[HL]+3H^+}^{3+}$	1131.23	1131.23

Table S2. Intensity maxima of the major complexes and adduct ions observed by ESI-MS for each metal:peptide system at pH=7.4, M:L=1:1.