Supporting Information

Thiol-Silylated Cellulose Nanocrystals as Selective Biodepressants in Froth Flotation

Feliciana Ludovici^{1†}, Robert Hartmann^{2‡}, Martin Rudolph^{3†,‡}, Henrikki Liimatainen^{1*}

^{1†}Fiber and Particle Engineering Research Unit, University of Oulu, P. O. Box 4300, FI-90014 Oulu, Finland

²[‡]Fraunhofer Center for Chemical-Biotechnological Processes, 06237 Leuna, Germany

^{3†,‡}Helmholtz-Zentrum-Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany

*Corresponding author e-mail: henrikki.liimatainen@oulu.fi

- 1. Number of Pages: 5 (S1, S2, S3, S4, S5)
- 2. Number of Figures: 5
- 3. Number of Tables: 4
- 4. Page S1: Cover
- 5. Page S2: Table S1 particle diameter of chalcopyrite and pyrite, Figure S1 particle size distribution of chalcopyrite and pyrite, Figure S2 CNCs modification reaction scheme,
- 6. Page S3: Figure S3 TEM of modified CNCs, Table S2 XPS analyses of CNCs samples, Table S3 grafting amount and contact angles of CNCs samples,
- 7. Page S4: Figure S4 ζ-potential of CNCs samples, Figure S5 FESEM images of chalcopyrite and pyrite,
- 8. Page S5: Table S4 elemental composition (% w/w) of chalcopyrite and pyrite

Size quantiles	Chalcopyrite		Pyrite	
	Fine	Coarse	Fine	Coarse
$D_{10}/\mu m$	1.3 ± 0.1	69.7 ± 0.2	2.1 ± 0.1	73.2 ± 0.1
$D_{50}/\mu m$	3.4 ± 0.2	116.8 ± 0.3	4.7 ± 0.2	121.9 ± 0.2
$D_{90}/\mu m$	12.7 ± 0.7	169.9 ± 0.4	50.3 ± 2.5	187.4 ± 0.5
Mean/µm	5.1 ± 0.6	116.2 ± 0.2	16.2 ± 0.3	125.8 ± 0.1

Table S1. Particle diameter of quantile sizes and mean diameter of chalcopyrite and pyrite.

Figure S1. Particle size distribution of fine (left) and coarse (right) fractions of chalcopyrite and pyrite.

Figure S2. Synthesis of **a**) CNCs containing thiol silane group (CNC-thiol) and **b**) CNCs containing thiol and propyl silane groups (CNC-mix) via aqueous silylation.

Figure S3. TEM images of functionalized CNCs: a) CNC-thiol I, b) CNC-mix I, c) CNC-thiol II, and d) CNC-mix II.

Sample	Surface composition (%)			
	O1s	C1s	Si2p	S2p
CNC	42.40	57.61	-	-
CNC-thiol I	43.57	54.75	0.96	0.71
CNC-mix I	43.28	52.73	2.78	1.20
CNC-thiol II	39.97	52.08	4.47	3.35
CNC-mix II	40.49	54.39	4.69	0.43

Table S2. Composition of pristine and functionalized CNCs from XPS analysis.

Table S3. Grafting amount and static contact angle of pristine and silylated CNCs (n = 6).

Sample	Cellulose-MPTMS (-PTS) mass ratio	Grafting amount (mmol/g)		Static contact angle (Θ)
		Si	S	
CNC	-	-	-	29.6 ± 3.6
CNC-thiol I	1:0.5	0.34	0.22	38.1 ± 3.5
CNC-thiol II	1:1	1.59	1.05	68.6 ± 1.0
CNC-mix I	1:0.5:0.5	0.99	0.37	62.2 ± 1.5
CNC-mix II	1:1	1.67	0.13	52.5 ± 3.6

Figure S4. ζ -potential of pristine and silvlated CNCs; error bars represent single standard deviation (n = 6).

Figure S5. FESEM images of (a) chalcopyrite, (b) chalcopyrite and CNC-thiol II (2.5 mg/L), (c) pyrite, and (d) pyrite and CNC-thiol II (2.5 mg/L).

	Chalcopyrite	Chalcopyrite and CNC-thiol II	Pyrite	Pyrite and CNC- thiol II
	% w/w			
0	n.d.	12.20 ± 10.34	n.d.	n.d.
Si	n.d.	0.82 ± 0.41	n.d.	n.d.
S	28.74 ± 0.15	19.12 ± 10	50.91 ± 2.79	52.51 ± 0.50
Fe	24.09 ± 0.15	36.40 ± 15.53	47.97 ± 2.59	45.87 ± 0.40
Cu	46.62 ± 0.65	31.08 ± 12.75	n.d.	n.d.

Table S4. Elemental composition (% w/w) of chalcopyrite and pyrite in the presence and absence of CNC-thiol II with standard deviations (n = 5).