
 Open Access This file is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. In the cases where the 
authors are anonymous, such as is the case for the reports of anonymous peer reviewers, author attribution should be to 'Anonymous 
Referee' followed by a clear attribution to the source work. The images or other third-party material in this file are included in the article’s 
Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0. 

Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies 

Corresponding author: Jochen Guck

Editorial note 

This document includes relevant written communications between the manuscript’s corresponding author 
and the editor and reviewers of the manuscript during peer review. It includes decision letters relaying any 
editorial points and peer-review reports, and the authors’ replies to these (under ‘Rebuttal’ headings). The 
editorial decisions are signed by the manuscript’s handling editor, yet the editorial team and ultimately the 
journal’s Chief Editor share responsibility for all decisions. 
 
Any relevant documents attached to the decision letters are referred to as Appendix #, and can be found 
appended to this document. Any information deemed confidential has been redacted or removed. Earlier 
versions of the manuscript are not published, yet the originally submitted version may be available as a 
preprint. Because of editorial edits and changes during peer review, the published title of the paper and the 
title mentioned in below correspondence may differ.
 
Correspondence 

Fri 14 Jan 2022 
Decision on Article nBME-21-2659 

Dear Prof Guck, 
 
Thank you again for submitting to Nature Biomedical Engineering your manuscript, "Single-cell physical 
phenotyping of mechanically dissociated tissue biopsies for fast diagnostic assessment". The manuscript has 
been seen by three experts, whose reports you will find at the end of this message. You will see that the 
reviewers appreciate the work, and that they raise a number of technical criticisms that we hope you will be 
able to address. In particular, we would expect that a revised version of the manuscript provides: 
 
* Extended evidence of the viability of the cells dissociated via the tissue grinder, with respect to traditional 
enzymatic methods. 
 
* Evidence of the classification performance of physical phenotyping in tissues that are more representative 
of clinical scenarios, as per the comments of all reviewers. 
 
* Enhanced characterization of the performance of cell sorting via physical phenotyping, in terms of the 
range of detectable phenotypes, robustness and reproducibility. 
 
* Thorough methodological details. 
 
When you are ready to resubmit your manuscript, please upload the revised files, a point-by-point rebuttal to 
the comments from all reviewers, the reporting summary, and a cover letter that explains the main 
improvements included in the revision and responds to any points highlighted in this decision. 
 
Please follow the following recommendations: 
 
* Clearly highlight any amendments to the text and figures to help the reviewers and editors find and 
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Direct electrical stimulation of the brain is a technique for 
modulating brain activity that can help treat a variety of 
brain dysfunctions and facilitate brain functions1–3. For 

example, deep brain stimulation (DBS) is effective in neuro-
logical disorders4 such as Parkinson’s disease5 and epilepsy6, and  
holds promise for neuropsychiatric disorders such as chronic  
pain7, treatment-resistant depression8 and obsessive–compulsive 
disorder9. Direct electrical stimulation also has the potential to 
modulate brain functions such as learning10, and for use in investi-
gating their neural substrates, for example, in speech production11 
and sensory processing12.

Although the mechanism of action by which direct electri-
cal stimulation alters brain activity is still unknown4, studies have 
shown that stimulation alters the activity of multiple brain regions 
(both local and long range4,13–17) distributed across large-scale brain 
networks. This network-level stimulation effect has been observed 
with various signal modalities such as local field potential (LFP)16, 
electrocorticogram (ECoG)13,17, functional magnetic resonance 
imaging (fMRI)15 and diffusion tensor imaging (DTI)14. These 
observations highlight the essential need for modelling the effect 
of stimulation on large-scale multiregional brain network activity, 
which has largely not been possible to date. Such modelling is espe-
cially important when the temporal pattern of stimulation needs to 
change in real time and when the activity of multiple brain regions 
needs to be monitored. For example, closed-loop DBS therapies for 
neurological and neuropsychiatric disorders1–3,18–21 aim to change 
the stimulation pattern (for example, the frequency and amplitude 
of a stimulation pulse train) in real time on the basis of feedback 
of changes in brain activity. In addition, neural feedback may need  

to be provided from multiple brain regions1–3,21–23, for example, in 
neuropsychiatric disorders that involve a large-scale multiregional 
brain network whose functional organization is not well under-
stood24–26. Despite its importance across a wide range of applica-
tions, establishing the ability to predict how ongoing stimulation 
(input) drives the time evolution (that is, dynamics) of large-scale 
multiregional brain network activity (output) remains elusive1,18.

Computational modelling studies to date have largely focused 
on building biophysical models of spiking neurons. Biophysical 
models can provide valuable insights into the mechanisms of 
action of stimulation—for example, in explaining population-level 
disease-specific observations especially for Parkinson’s disease27–31 
and epilepsy32,33—and guide the design of open-loop stimula-
tion patterns using numerical simulations34,35. However, biophysi-
cal models are typically for disease-specific brain regions, require 
some knowledge of their functional organization (for example, the 
cortical-basal-ganglia network in Parkinson’s disease27–29,31) and 
involve a large number of nonlinear model parameters that can be 
challenging to fit to experimental data from an individual33. Thus, 
biophysical models are difficult to generalize to modelling how 
stimulation drives large-scale multiregional brain network dynam-
ics in an individual, especially in neuropsychiatric disorders where 
the disease-relevant brain networks are not well characterized24–26.

An alternative approach to biophysical models is data-driven 
modelling, as suggested by computer simulations18,36,37. However, 
previous data-driven studies of the brain38–42 have not aimed at 
modelling the dynamic response of large-scale multiregional brain 
networks to ongoing stimulation. Some studies have built models 
of brain structural connectivity using diffusion-weighted imaging 
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Direct electrical stimulation can modulate the activity of brain networks for the treatment of several neurological and neuro-
psychiatric disorders and for restoring lost function. However, precise neuromodulation in an individual requires the accurate 
modelling and prediction of the effects of stimulation on the activity of their large-scale brain networks. Here, we report the 
development of dynamic input–output models that predict multiregional dynamics of brain networks in response to temporally 
varying patterns of ongoing microstimulation. In experiments with two awake rhesus macaques, we show that the activities of 
brain networks are modulated by changes in both stimulation amplitude and frequency, that they exhibit damping and oscilla-
tory response dynamics, and that variabilities in prediction accuracy and in estimated response strength across brain regions 
can be explained by an at-rest functional connectivity measure computed without stimulation. Input–output models of brain 
dynamics may enable precise neuromodulation for the treatment of disease and facilitate the investigation of the functional 
organization of large-scale brain networks.
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understand the changes (yet keep in mind that excessive marking can hinder readability). 
 
* If you and your co-authors disagree with a criticism, provide the arguments to the reviewer (optionally, 
indicate the relevant points in the cover letter). 
 
* If a criticism or suggestion is not addressed, please indicate so in the rebuttal to the reviewer comments 
and explain the reason(s). 
 
* Consider including responses to any criticisms raised by more than one reviewer at the beginning of the 
rebuttal, in a section addressed to all reviewers. 
 
* The rebuttal should include the reviewer comments in point-by-point format (please note that we provide all 
reviewers will the reports as they appear at the end of this message). 
 
* Provide the rebuttal to the reviewer comments and the cover letter as separate files. 
 
We hope that you will be able to resubmit the manuscript within 15 weeks from the receipt of this message. If 
this is the case, you will be protected against potential scooping. Otherwise, we will be happy to consider a 
revised manuscript as long as the significance of the work is not compromised by work published elsewhere 
or accepted for publication at Nature Biomedical Engineering. 
 
We hope that you will find the referee reports helpful when revising the work, which we look forward to 
receive. Please do not hesitate to contact me should you have any questions. 
 
Best wishes, 
 
Pep 
 
__ 
Pep Pàmies 
Chief Editor, Nature Biomedical Engineering 
 
 
 
 
__________ 
Reviewer #1 (Report for the authors (Required)): 
 
The manuscript by Soteriou, et al., provides evidence that solid tissues can be quickly dissociated and 
analyzed using RT-FDC, and that this approach can be used for diagnostic purposes. Several examples are 
shown, including inflammatory bowel disease and the ability to distinguish between healthy and cancerous 
tissue, with the goal of establishing a label-free diagnostic pipeline based single-cell deformability, size and 
bright-field imaging properties. The RT-FDC achieves very high throughput when compared to typical single-
cell biophysical measurements and the integration of deformability with bright-field imaging provides a 
unique way to assess cell state. A major strength of the manuscript is the inclusion of this approach with a 
rapid mechanical tissue dissociation to examine clinical specimens. 
 
Although including multiple examples within the manuscript highlights the generality of the measurement 
platform, it comes at the expense of depth and establishing a compelling use case. Most central to the 
manuscript is distinguishing between healthy and cancer tissue. However, the scenarios examined involve 
tissues that are predominately cancer or predominately healthy, which could be identified macroscopically. 
The real challenge would be to find a small island of tumor (or small fraction of tumor cells) within an 
otherwise normal specimen or a similar clinical scenario of actual relevance. Thus, the clinical implications 
based on what is shown in the manuscript are not clear. 
 
In Figure 2, the authors measure physical parameters of cells from murine liver, colon and kidney samples 
and then examine immunophenotypes for various sections of the scatter plots. In one example they show a 
cluster of cells with similar physical properties was mainly composed of EpCAM positive cells (Fig. 2a). The 
authors claim this shows ‘a clean population of epithelial cells can be distinguished in a label-free manner, 
purely using image-derived physical parameters.’ However examining arbitrary regions of scatter plots of 



 

individual samples as is done throughout Figure 2 does not seem useful by itself. It would be more 
compelling if the authors could define a clear use case and then show how biophysical parameters leads to 
superior performance over immunophenotypic markers. 
 
Major concerns: 
1. The reproducibility of the work remains unclear. In several figures, such as figure 2, the authors display a 
single example sample, but the reproducibility of the conclusions across independent samples is unclear. 
Some figures, such as supplemental fig 1, have unacceptably low N numbers. In some figures, such as 
figure 3, the author report a higher N number, but whether the N refers to independent experiments or, for 
example, just technical replicates from the same patient, is not known. Considering the claims that the 
method should be adapted for routine clinical practice, including more blind-controlled experiments (as was 
done with a few samples in figure 5a) is essential. 
 
2. Given the wide dimensions of disease spectrum, the authors should be more realistic in their discussion of 
the method potential as probably not all disease will have a strong signal to noise in deformability / imaging 
space. Without establishing the dynamic range of pathologic deformability vs normal range, it’s difficult to 
assess whether the approach has broad vs. limited use.  
 
3. The abstract has the strong claim that “[..] distinguish subpopulation of cells..[] without prior knowledge or 
the need for molecular marker”. The authors should elaborate more on the need to eventually or 
synergistically use molecular markers with the RT-FDC. For example, in Fig.2a it is not clear if the cluster of 
epithelial (EpCAM positive) cells (having a faintly lighter blue tone and artificially highlighted in green) could 
be necessarily picked out without relying on the molecular marker.  
 
4. Related #3, the approach may be stronger when combining fluorescence readout with RT-FDC (Figs. 2b,c 
+ Sup Fig. 3). The authors should consider amending their statement in the abstract by emphasizing 
enhancing the fluorescence measurement, rather than substituting it for single-cell measurements. Same for 
conclusion statement (lines 363-365). 
 
5. When the authors describe the potential for sorting/studying cell-doublets (line 138-139), the value of the a 
qualitative measure of deformability (larger deviation from aspherical cells discussed in lines 332-334) is not 
clear. Can orientation be a big confounding factor in such a measurement? 
 
6. The “Tissue Grinder – RT-FDC” data on lung tissue (Supp Fig. 4c) are not discussed within the text of 
paper. Also, it seems that enzymatic dissociation is biased towards lower cell sizes for liver, for lung it is not 
the case (this is evident in Run 2, while Run 1 has a sudden cut-off). Could the authors comment on why this 
happens? The current statement in the opening line of the paragraph (line 150) thus seems ambiguous, and 
the whole paragraph seems not well integrated with the rest of the text and figures.  
 
7. In figure 2, the authors present a range of phenotypes that they can detect. The authors should address if 
these phenotypes reflect diverse cellular responses to the TG or RT-FDC, rather than phenotypes originally 
present in vivo. Furthermore, on line 157, the authors say that “using TG, the proportion of hepatocytes to 
total cells was between 40-80%”. The authors should justify this result and provide evidence for whether this 
is a purely a technical artifact or a biologically meaningful result. 
 
Minor comments: 
1. What is the high-viscosity medium in line 109? Are there special requirements that need attention? Please 
specify. 
2. Line 128: In text it is stated that there are 6 clusters of cells in Fig. 2b while in the figure there are 7 
clusters displayed.  
3. It would help to remove various faint horizontal and vertical lines in Figure 3 and make sure that plots are 
consistently presented as closed or open boxes. 
4. Figs. 3c,4c: include legend or text in caption to explain how the margins are drawn. 
5. Generally Supp Fig. 4, if included, should have clear markings of the cell images as to where they belong 
in the RT-FDC graphs as it is done for example in Fig. 2b,c. 
6. For consistency, in line 184, change “number” to “percentage” to be consistent with Fig. label on horizontal 
axes of Fig. 3d,e. 
 
 
 



 

Reviewer #2 (Report for the authors (Required)): 
 
The manuscript describes the application of high-throughput microfluidic single-cell physical phenotyping to 
solid tissue biopsies towards applications in diagnosis of diseased states in tissues. This is an important 
topic since physical phenotyping approaches can enable rapid and unbiased testing that allows, for example, 
measurement of malignancy during surgical procedures, rather than after histological sectioning, staining 
and analysis. Previous work in the field has mainly addressed cells naturally in suspension like in blood or 
other body fluids. The key breakthrough of this work is showing the ability to use a mechanical dissociation 
approach to obtain single cells compatible with the high-throughput microfluidic measurements. It appears 
that the approach to dissociation is also robust and repeatable enough to identify disease-specific signatures 
of cells across many samples. Several disease models are studied, including controlled animal models of 
colitis and malignancy, 
as well as human tissues (including previously frozen tissues). Overall, the work is well conducted and 
reported on an important and impactful topic. Some of the claims should be better substantiated with data 
analysis approaches. There should also be more clarity on the classification of the clinical disease states and 
what samples were used to train vs. validate the accuracy of the test.  
 
Specific Comments: 
 
Major: 
 
Many claims throughout the manuscript point to the added value of parameters derived from cell deformation 
on disease diagnostic accuracy, however these parameters were not directly evaluated as useful compared 
to related parameters. For example, in the transfer colitis model, can the authors determine if the 
deformation parameters provided additional information beyond the amount or fraction of infiltrating immune 
cells which could be obtained using other processes (e.g. hematology analyzer following mechanical tissue 
dissociation). In the mouse tumor model, was there any correlation between deformation and size (and the 
statistics of these metrics) or were these parameters independent predictors of being a tumor sample? 
Understanding the correlation between the different parameters would be helpful to better elucidate what 
leads to the differential signal. Another way to test the importance of the deformation parameters is to train a 
model that does not use them and see how well 
that model performs. If you remove deformation parameters, can you still perform PCA to separate the 
samples for the human biopsy studies? How well does this perform? 
 
For the fresh tumor biospies it was unclear what the training / validation sets were for these experiments 
when reading the main text. If there were not separate validation data sets, this should be clearly indicated. 
 
This reviewer was surprised that intact cells were observable from cryopreserved tissue sections, since there 
would be cell death and cell membranes compromised in this process. How does this affect the 
images/contrast? One would expect contrast would be decreased substantially given the ability of the 
suspending solution to transfer into the cell if the membrane is disrupted. Can the authors show images of 
cells observed from these various tissue sources to understand how the differences in cell images, initial 
circularity, and contrast, may affect the performance of the technique. 
 
The authors state “The speed of the extraction presumably helps to preserve biochemical and biophysical 
phenotypes in conditions close to those in situ.” 
 
It is unclear what evidence supports this statement. A main concern would be how mechanical shearing 
affects the physical properties of cells and whether some populations are damaged more or are more 
adhesive to other cells and stay in aggregates. Then these populations would be underrepresented in the 
final analysis process. Perhaps the authors could evaluate the cell type distributions in the tissue using 
staining approaches and compare to the cell types that make is through to single cells for analysis to 
determine if there is any bias / enrichment effect. I understand this information does not necessarily impact 
the classification results reported as it may be that differences in enrichment/depletion is part of the signal 
observed that leads to the differences between diseased and normal tissue. 
 
Minor: 
 
In Supplementary Fig. 1 – blue bars are labeled as enzymatic dissociation or mechanical dissociation. The 
caption indicated it should be enzymatic dissociation. The discrepancy should be corrected. 



 

 
 
 
Reviewer #3 (Report for the authors (Required)): 
 
This article by Despina Soteriou et al. entitled “Single-cell physical phenotyping of mechanically dissociated 
tissue biopsies for fast diagnostic assessment” presents a diagnostic pipeline for the rapid, label-free 
analysis of biopsy samples by sequentially assessing the physical phenotype of singularized, suspended 
cells in high-throughput. The authors demonstrate the potential of their method for inflammatory bowel 
disease diagnostics. Their results suggest that mechanically dissociating tissue biopsies can be used to 
accurately distinguish between healthy and tumor tissue in mouse and human biopsy samples. The authors 
claim that their method is quick and delivers results within 30 minutes, laying the groundwork for a fast and 
marker-free diagnostic pipeline to detect pathological changes in solid biopsies. The manuscript is well-
written, and the figures clearly show workflows and results. However, I have several specific questions that I 
want the authors to address. 
 
Specific comments 
 
My main concern with this paper is the mechanical grinder method because it is harsh to the cells and 
should cause significant cell death. Cells are sticky and attach quite firmly to each other and therefore need 
a relatively large force to separate. Thus, enzymatic treatments are used so frequently. The authors must 
provide more robust evidence that the mechanical method is similar to or superior to the enzymatic methods. 
Without further evidence, this method lacks generality and can only be applied to a limited number of tissues. 
 
In Supplementary Fig. 1, the authors compare the cell viability and cell yield between mechanical 
dissociation using a tissue grinder and enzymatic dissociation using conventional enzymes. The cell viability 
is assessed by propidium iodine and the cell yield is evaluated by RT-FDC. However, RT-FDC is not the 
standard method for determining cell viability and yield. The authors must perform similar experiments using 
FACS.  
 
The pathological data of human samples used in this study is not presented. The authors need to show that 
their method works for both high-grade and low-grade cancers. In high-grade cancer, it is easier to detect 
differences in physical parameters, such as cell size; however, the differences in physical parameters are 
much more difficult to detect in low-grade cancer. 
 
In Fig. 5, human cancer and control tissues are used. Were matched pairs used? The numbers suggest that 
control tissues were taken from the cancer patients, e.g., 13 frozen colon tumors vs. 13 frozen colon control, 
11 fresh colon tumors vs. 11 fresh colon control, and 7 fresh lung tumors vs. 7 fresh lung control. The 
authors must show how well their method can detect differences in cancer and control tissue from the same 
patient. This is essential since this is how the method is suggested to be used. 
 
In Fig. 2a (liver), the authors show that a subpopulation of cells forms a cluster at a specific cell size and 
brightness and that these cells are uniform in the enrichment of CD31, CD45, and EpCAM. Why was this 
cluster chosen? How about other subpopulations from the same scatter plot? Do they have different 
enrichments of CD31, CD45, and EpCAM? 
 
The manuscript shows that RT-FDC can detect cell doublets from a cell suspension from murine thymus and 
spleen. There are many lymphocytes in the thymus and spleen, and they are relatively uniform in their 
shape, so cell doublets can easily be detected using RT-FDC. The authors should also show that cell 
doublets can be detected in other solid organs, such as the colon and kidney. 
 
In Supplementary Fig. 6, the authors show that a high percentage of CD45 positive cells are smaller in size 
than 60 µm2. These smaller cells are excluded from the analysis as these cells are mainly “immune cells and 
small debris”. Please back up this exclusion with experimental data or at least a reference. Of all excluded 
cells (<60µm2), what percentage was CD45 positive?  
 
There seems to be a significant difference in the number of analyzed cells between murine control and 
murine tumor tissues in Fig. 4a and 4b. The authors state that “the healthy tissue was always more difficult to 
mechanically break apart into single cells, and tumor tissue yielded more intact cells”. However, from the 
scatter plots in Fig. 4a and 4b, it appears that many more control cells (= healthy) were analyzed than tumor 



 

cells. Please comment. 
 
In the analysis of murine samples, the authors exclude cells with a size of 60µm2 or smaller. However, in the 
analysis of human samples, all cells are included and analyzed. The authors should also assess the 
distribution and number of CD45 positive cells in human samples.  
 
The authors state that there are three clusters of cells that correspond to hepatocytes of different sizes, 
according to the scatter plot in Supplementary Fig. 4b. It is difficult to understand how these clusters were 
selected. Please indicate the clusters in the figure. Also, explain what the diagonal lines represent and what 
does the square box indicates? 
 
The authors list papers presenting alternative new and rapid intraoperative methods. There is a paper by 
Glaser et al. which presents a rapid intraoperative surface microscopy method of fresh breast tissues for 
guiding surgical oncology. This paper should be cited. Nat Biomed Eng (2017) Jul;1(7):0084. doi: 
10.1038/s41551-017-0084. PMID: 29750130 entitled “Light-sheet microscopy for slide-free non-destructive 
pathology of large clinical specimens”  
 
Please use a larger font size in Fig. 4d-g. 
 
  



 

 
 
Tue 01 Nov 2022 
Decision on Article nBME-21-2659A 

Dear Prof Guck, 
 
Thank you for your revised manuscript, "Single-cell physical phenotyping of mechanically dissociated tissue 
biopsies for fast diagnostic assessment". Having consulted with the original reviewers, I am pleased to write 
that we shall be happy to publish the manuscript in Nature Biomedical Engineering. 
  
We will be performing detailed checks on your manuscript, and in due course will send you a checklist 
detailing our editorial and formatting requirements. You will need to follow these instructions before you 
upload the final manuscript files.  
 
Please do not hesitate to contact me if you have any questions.  
 
Best wishes, 
 
Valeria 
 
__ 
Dr Valeria Caprettini 
Associate Editor, Nature Biomedical Engineering 
 
 
 
 
_____ 
Reviewer #1: 
Report for the authors (Required): 
The authors have addressed my concerns. I recommend that the manuscript be published. 
 
 
 
Reviewer #2: 
Report for the authors (Required): 
The authors have significantly improved the manuscript and addressed weaknesses highlighted in the first 
round of review. In particular they have addressed my first round of comments and now further validate the 
importance of deformability parameters, by training separate models without these parameters for 
comparison. The authors also find that size and deformability were independent predictors in the models. 
Two new supplementary figures are included to present these updated results. In a new supplementary 
figure 12 the authors also show more data and images of the cryopreserved vs. fresh cells, which indicate 
that although fewer cells are present, the cells that are present have similar contrast and morphology as 
fresh cells. This new figure is helpful in supporting the unexpected result that cells from frozen tissues can be 
analyzed with minimal changes to biophysical properties. 
 
 
 
Reviewer #3: 
Report for the authors (Required): 
The authors have satisfactorily responded to all my comments and revised the manuscript accordingly. 
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Re: Point-by-point reply to Reviewers for resubmission of manuscript (nBME-21-2659) 

“Single-cell physical phenotyping of mechanically dissociated tissue biopsies for fast 
diagnostic assessment” 
 
 
Reviewer #1 (Report for the authors (Required)): 
 
The manuscript by Soteriou, et al., provides evidence that solid tissues can be quickly 
dissociated and analyzed using RT-FDC, and that this approach can be used for 
diagnostic purposes. Several examples are shown, including inflammatory bowel 
disease and the ability to distinguish between healthy and cancerous tissue, with the 
goal of establishing a label-free diagnostic pipeline based single-cell deformability, size 
and bright-field imaging properties. The RT-FDC achieves very high throughput when 
compared to typical single-cell biophysical measurements and the integration of 
deformability with bright-field imaging provides a unique way to assess cell state. A 
major strength of the manuscript is the inclusion of this approach with a rapid 
mechanical tissue dissociation to examine clinical specimens. 
 
Although including multiple examples within the manuscript highlights the generality of 
the measurement platform, it comes at the expense of depth and establishing a 
compelling use case. Most central to the manuscript is distinguishing between healthy 
and cancer tissue. However, the scenarios examined involve tissues that are 
predominately cancer or predominately healthy, which could be identified 
macroscopically. The real challenge would be to find a small island of tumor (or small 
fraction of tumor cells) within an otherwise normal specimen or a similar clinical 
scenario of actual relevance. Thus, the clinical implications based on what is shown in 
the manuscript are not clear. 
 
We thank the Reviewer for their positive feedback and the constructive criticism. We have 
on purpose included various tissues to showcase the potential of the method for different 
applications, even though we have to admit that they are included mostly for illustrative 
purposes. No single manuscript could be both general and go broadly into depth. We 
have toned down the claims regarding general performance of physical phenotyping in 
tissues other than colon in favour of strengthening the specific use case of intraoperative 
pathological analysis. The central use case presented in this manuscript is indeed the 
distinction between predominantly cancerous and predominantly healthy tissue. We 
would like to emphasize, however, that we analyse a very small fraction of the biopsy 
tissue (50-200 mg) which is selected at random and which is hardly macroscopically 
identifiable and nearly impossible to be used for conventional histopathological analysis. 
Importantly, and this is now newly added, the method can also detect small amounts of 
cancer cells within a large amount of healthy tissue, as suggested by the Reviewer. To 
support this claim, we have conducted additional experiments and performed an 
extended analysis of the results. 
 
Specifically, we performed experiments in which we analysed a mixture of tumour and 
healthy lung tissues (see the new Supplementary Figure 13). Samples containing 50% 
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tumour and 50% healthy tissue could be identified correctly as tumour. The following text 
has been added to the manuscript (pages 10-11, lines 306-330, marked in yellow in the 
manuscript): 
 
We also tested the sensitivity of our approach to the situation where only few cancer cells are 
present (tumours with low tumour cellularity and extensive desmoplastic tumour stroma content) 
or remain (tumours following chemo- or radiochemotherapy with nearly complete remission) in 
the tissue samples available. This aspect is especially important for clinical situations where 
intraoperative analysis is used to determine whether the operative margin is free of cancer (so 
called frozen sections), which can be particularly difficult when only very few tumour cells are 
present. We performed an experiment in which we analyzed a mixture of fresh tumour and healthy 
lung tissue samples at different ratios (see Supplementary Fig. 13). A sample consisting of 50% 
healthy and 50% tumour tissue was classified as a tumour sample. Of course, not all the tumour 
tissue consists of cancer cells, so that the real sensitivity to detect cancer cells is higher than 
apparent here. In fact, some of the colon tumour samples had relatively high stromal content. In 
the extreme cases (Supplementary Table 7: frozen colon tissue samples 7 and 11) the stromal 
content was 98% and 80%, meaning the patients had nearly no residual tumour after neoadjuvant 
radiochemotherapy. Still, these samples were correctly classified as tumour. This result is 
remarkable as it points out a possible solution to the sampling problem present in conventional 
histopathological analysis – especially in frozen section scenarios. The result of the latter very 
much depends on whether the pathologist inspects and selects the correct tissue location where 
cancer cells are still present. Due to time constraints and technical limitations of slide preparation 
in frozen section scenarios only a small fraction of the total resected tissue specimen can be 
visualized. If the dissociation of the tissue into single cells, and the analysis of a random subset 
of these, can sensitively detect the presence of as low as 20% – or even 2% – of cancer cells 
present in a given tissue sample, this would be a clear advance over the state-of-the-art. More 
specific research is needed to firmly establish this. Finally, our method can also detect low-grade 
cancer, where any differences in physical parameters are expected to be more difficult to detect 
than in high-grade cancer. The vast majority of the analysed samples were G2 (moderately 
differentiated) or G3 (poorly differentiated/undifferentiated; often also referred as “high grade”; 
Supplementary Table 5-10). In the lung tissue dataset one of the samples was classified as the 
lowest grade G1 (well differentiated). Therefore, one can appreciate that the method is not limited 
to high-grade cancer. 
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Supplementary Fig. 13: Testing of the performance of logistic regression on mixed 
samples consisting of different ratios of tumour and healthy lung biopsy samples. The 
percentages indicate the percentage of the volume of the dissociated tumour sample in the total 
sample volume. The pure tumour sample and the sample with 50% tumour content were classified 
as tumour, while 25%, 10% and 0% of tumour content resulted as the “healthy” category. 
 
 
More importantly, the newly added Supplementary Tables 5-10 contain clinical 
information for the measured human biopsy samples, including stromal content We note 
that the measured samples were not purely consisting of cancer cells – some of the 
samples had relatively high stromal content. In the extreme cases (frozen colon tissue 
samples 11 and 7) the stromal content was 80% and 98%, since the patients had nearly 
no residual tumour after neoadjuvant radiochemotherapy. Still, these samples were 
classified as tumour. This is particularly exciting, as it addresses the sampling problem of 
conventional histopathological analysis of frozen tissue sections. Since not all areas of all 
tissue sections can be visually inspected by a pathologist, small amounts of tumour could 
be missed. This is especially relevant in the intraoperative analysis of tumour margins 
where only few tumour cells might still be in the sample. Here, the approach of 
dissociating the tissue, and randomly sampling the individual cells might offer a solution, 
if it is sensitive enough to detect the presence of as little as 2% tumour cells in the sample. 
Of course, this result will have to be followed up in clinical trials, but the prospect is 
exciting and paints a very clear path towards a specific use case of our approach. 
 
 
In Figure 2, the authors measure physical parameters of cells from murine liver, colon 
and kidney samples and then examine immunophenotypes for various sections of the 
scatter plots. In one example they show a cluster of cells with similar physical properties 
was mainly composed of EpCAM positive cells (Fig. 2a). The authors claim this shows 
‘a clean population of epithelial cells can be distinguished in a label-free manner, purely 
using image-derived physical parameters.’ However examining arbitrary regions of 
scatter plots of individual samples as is done throughout Figure 2 does not seem useful 
by itself. It would be more compelling if the authors could define a clear use case and 
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then show how biophysical parameters leads to superior performance over 
immunophenotypic markers. 
 
We agree with the Reviewer and are presenting these results in Figure 2 now more as 
illustrative cases for potential applications, apart from the specific use case of diagnosis 
of colon inflammation and cancer. We still feel that the inclusion of results from other 
tissues is of interest to the readership of NBE and might inspire other independent 
research. We have toned down or eliminated claims of biophysical markers performing 
better than immunophenotypic markers, since this is unsubstantiated in the present 
manuscript and distracts from the main point. 
 
Major concerns: 
1. The reproducibility of the work remains unclear. In several figures, such as figure 2, 
the authors display a single example sample, but the reproducibility of the conclusions 
across independent samples is unclear. Some figures, such as supplemental fig 1, have 
unacceptably low N numbers. In some figures, such as figure 3, the authors report a 
higher N number, but whether the N refers to independent experiments or, for example, 
just technical replicates from the same patient, is not known. Considering the claims 
that the method should be adapted for routine clinical practice, including more blind-
controlled experiments (as was done with a few samples in figure 5a) is essential. 
 
We would like to thank the Reviewer for pointing out concerns regarding the 
reproducibility of our work. We have performed more measurements of different types of 
murine tissues to demonstrate the reproducibility of our approach compared to enzymatic 
protocols. We have updated Supplementary Figure 1 to include the new measurements 
and updated the caption to include the new ‘N’ numbers accordingly and updated the 
Method section and Supplementary Table 1 and 2. We now have a minimum of 4 
biological repeats for the tissue grinder and 3 for the enzymatic protocols. 
 
We have now thoroughly inspected the manuscript and updated the N numbers for all 
figures to correspond to the correct numbers. Throughout the manuscript N number refers 
to biological repeats.  
 
To strengthen the proposed clinical use case of our platform, we performed 3 additional 
blind experiments for fresh human colon biopsies and 2 for the fresh lung biopsies, which 
we have added to Figure 5 as crosses (green for tumour, purple for healthy). We have 
modified the main text (see page 10, lines 295-303; marked in yellow) accordingly: 
 
Upon logistic regression, only 3 out of 22 samples used for PCA and 1 out 6 of the blind samples 
were not correctly classified, which could be attributed to inter-tumour or intra-tumour 
heterogeneity. Nevertheless, using our approach on blind samples we achieved 100% accuracy 
in classifying healthy and tumour samples from frozen biopsies, and 83% accuracy for the 
separation of fresh biopsy samples. 
To validate our method on tissue from a different organ, we applied it to freshly excised lung 
biopsy samples from nine cancer patients. PCA combined with logistic regression readily 
separated 7 healthy from 7 tumour samples and further 4 blind samples were correctly classified 



5 
 

(Fig. 5c). In the PCA, 46.9% of the variance was explained by PC1 and PC2 (31.2% and 15.7%, 
respectively).  
 
 

 

Fig. 5: Distinction of tumour and healthy tissues in human biopsies using PCA and logistic 
regression. In the PCA plots on the left, each green point represents a tumour sample from one 
patient; purple points represent the corresponding healthy surrounding tissue from the same 
patient. Logistic regression was performed on each of the PCAs with the resulting two categories 
shown as purple (healthy) and green (tumour) background colours. Crosses represent blind 
experiments used for the validation of the trained model. The feature importance analysis to the 
right of the PCA plot shows the colour-coded significance of each feature for determining PC1 
and PC2 for that particular tissue; the x axis lists cell size categories; the y axis lists RT-FDC 
parameters and their statistical features derived across all samples (in brackets). a, PCA on RT-
FDC parameters of 32 frozen colon samples (16 tumour biopsies and 16 samples of healthy 
surrounding tissue). b, PCA on RT-FDC parameters of 28 fresh colon biopsy samples (14 tumour, 
14 healthy). c, PCA on RT-FDC parameters of 18 fresh lung biopsy samples (9 tumour, 9 healthy). 
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2. Given the wide dimensions of disease spectrum, the authors should be more realistic 
in their discussion of the method potential as probably not all disease will have a strong 
signal to noise in deformability / imaging space. Without establishing the dynamic range 
of pathologic deformability vs normal range, it’s difficult to assess whether the approach 
has broad vs. limited use. 

 
We agree with the Reviewer that the presented work does not prove that our method 
could be applied universally to any kind of cancerous biopsy, the applicability has to be 
tested on a case-by-case basis. We have edited the Discussion (page 11, lines 366-373; 
marked in yellow) to give a more realistic view of the method’s potential: 
 
PCA of murine colon samples and human colorectal biopsies revealed that cell deformation in 
standardised channel flow conditions is key for distinguishing between healthy and tumorous 
tissue in the examined biopsy types. This highlights the uniqueness of the information brought by 
this method, currently missing from routine diagnostic practices which to date rely mostly on 
histological assessment. Following this proof of concept study, it will be necessary to investigate 
whether the method can be adapted to different types of cancer or tissue. We expect that cell 
deformability changes might manifest more in certain types of cancer than in others. This, there 
might be certain application areas where the method has a particularly high potential to improve 
diagnostic practice. 
 
3. The abstract has the strong claim that “[..] distinguish subpopulation of cells..[] 
without prior knowledge or the need for molecular marker”. The authors should 
elaborate more on the need to eventually or synergistically use molecular markers with 
the RT-FDC. For example, in Fig.2a it is not clear if the cluster of epithelial (EpCAM 
positive) cells (having a faintly lighter blue tone and artificially highlighted in green) 
could be necessarily picked out without relying on the molecular marker. 
 
This is a very good point. Combining RT-FDC parameters with molecular markers will 
enhance the information obtained for each cell and will allow the user to identify cell 
populations with greater confidence. This was actually a main point of another one of our 
recent publications on RT-FDC, where we introduced sorting capabilities (Nawaz et al., 
Nat. Methods, 2021), which we do not need to elaborate here again. We have amended 
the discussion (pages 12, lines 398-404, marked yellow) to emphasize the possibility of 
synergistically using molecular markers and RT-FDC parameters: 
 
Finally, an important aspect of the method is that the physical phenotype of cells can be used to 
identify cell populations in tissue either in a fully label-free manner or synergistically with molecular 
markers, enhancing the fluorescence measurements. Furthermore, thanks to the sorting modality 
recently added to RT-FDC36, a specific population of cells can be isolated according to parameters 
calculated from images in real-time or using trained neural networks64,65.  
 
Even though not strictly relevant in the present manuscript, we would like to comment on 
our approach to select clusters in scatter plots of RT-FDC data. The traditional approach 
for identifying subsets of cells in flow cytometry is to reduce the data set dimensionality 
using gating strategies based on scattering parameters and molecular marker expression. 
Here, we adopt a gating strategy based on RT-FDC parameters (such as size, brightness 
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or deformation) and expression of molecular markers to identify possible subset of cells. 
In the scatter plots, the marker hue is color-coded according to the kernel density estimate 
(using the viridis colour map), meaning that the brightest yellow areas are areas with the 
densest events, while dark purple areas have the lowest density. We apologize for 
omitting a colour scale, this has now been amended. Currently, a well-separated cluster 
of events or a cluster with higher density is selected by manual polygon gating, similar to 
the approach used in conventional flow cytometry. The Reviewer has correctly noticed 
that when several clusters are rather close to each other, we aim to keep the polygon 
gates relatively conservative around the densest areas (as seen e.g. in Figure 2a, marked 
green), aiming for a single clean subpopulation of cells. In the future, we also plan to apply 
automated clustering algorithms. 
 
4. Related #3, the approach may be stronger when combining fluorescence readout 
with RT-FDC (Figs. 2b,c + Sup Fig. 3). The authors should consider amending their 
statement in the abstract by emphasizing enhancing the fluorescence measurement, 
rather than substituting it for single-cell measurements. Same for conclusion statement 
(lines 363-365). 
 
In addition to the text changed in response to comment number 3, we have also 
amended the abstract as follows (marked in yellow): 
 
We show that physical phenotype parameters extracted from brightfield images of single cells 
can be used to distinguish subpopulations of cells in various tissues, enhancing or even 
substituting measurements of molecular markers. 
 
5. When the authors describe the potential for sorting/studying cell-doublets (line 138-
139), the value of a qualitative measure of deformability (larger deviation from 
aspherical cells discussed in lines 332-334) is not clear. Can orientation be a big 
confounding factor in such a measurement? 
 
It is important to emphasize that in the case of doublets, a qualitative measure of 
deformability via RT-FDC is not possible using the current models. In our analytical model 
and numerical simulations (Mietke et al., Biophys. J., 2015 and Mokbel et al., ACS Biomat. 
Sci. Eng., 2017), the basic assumption is that the initial shape under normal stress-free 
conditions is a sphere, which is obviously not the case for cell doublets. Therefore, the 
measured deformation of a cell doublet cannot be quantified by an apparent elastic 
modulus. However, our aim here was not to quantify deformability of cell doublets, but 
rather to use the images to distinguish cell doublets from single cells. For this purpose, 
the deformation parameter is still useful, as doublets have a higher deviation from 
circularity in the channel than single cells. However, from our experience, other features 
derived from images are more useful for the purpose of distinguishing doublets, mainly 
the aspect ratio and shape features such as Fourier descriptors. 
 
With regards to the orientation, we believe this is rather a benefit of RT-FDC, as the cell 
doublet long axis aligns with the flow direction when passing through the channel, 
decreasing the degrees of freedom. Thus, it is in fact easier to distinguish doublets from 
other cells via feature selection or via machine learning. Furthermore, thanks to this 



8 
 

orientation, it is possible to distinguish fluorescence signals coming from each of the two 
cells, as they occur sequentially (see Supplementary Figure 3). 
 
6. The “Tissue Grinder – RT-FDC” data on lung tissue (Supp Fig. 4c) are not discussed 
within the text of paper. Also, it seems that enzymatic dissociation is biased towards 
lower cell sizes for liver, for lung it is not the case (this is evident in Run 2, while Run 1 
has a sudden cut-off). Could the authors comment on why this happens? The current 
statement in the opening line of the paragraph (line 150) thus seems ambiguous, and 
the whole paragraph seems not well integrated with the rest of the text and figures. 
 
We agree with the Reviewer that the differences between grinding and enzymatic 
dissociation were not strongly supported by the presented lung data (Run 1 vs Run 2). 
We therefore performed three more measurements of enzymatically dissociated murine 
lungs and compared it to lungs dissociated with a tissue grinder. We observed that larger 
cells are present in these repeats, therefore the difference between mechanical and 
enzymatic dissociation is not prominent. We have added this new data to Supplementary 
Figure 4 and to the result section (page 6, lines 157-159): 
 
In other tissues, such as lung, the differences between mechanical and enzymatic dissociation 
were not as prominent and neither technique gave a bias towards a specific cell population 
(Supplementary Fig. 4d).   
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Supplementary Fig. 4: Physical phenotype characterisation of cells isolated mechanically 
and enzymatically from murine lung and liver. a, Scatter plots of deformation vs cell size for 
cells isolated from mouse liver tissue using a tissue grinder (TG) or enzymatic dissociation, 
showing the enrichment of hepatocytes following mechanical dissociation for 3 independent 
biological repeats. b, Scatter plot of deformation vs cell size showing 3 clusters of cells that 
correspond to hepatocytes of different sizes; with the corresponding kernel density estimate 
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(KDE) plot and representative images (r = radius of cells). c, Percentage of hepatocytes to the 
total number of liver cells, as detected by RT-DC for five independent biological repeats. d, Scatter 
plots of deformation vs cell size for cells isolated from mouse lung tissue using a tissue grinder or 
enzymatic dissociation for 3 independent biological repeats. 
 
 
We have also modified the text to better integrate the paragraph starting at line 150 (now 
page 6, lines 143-149 in the revised manuscript) with the other results presented in this 
section:  
 
An important question to consider when using mechanical dissociation of tissues and label-free 
analysis by physical phenotype is whether this approach faithfully represents the distribution of 
cell types present in the tissue. While this is impossible to assess for all tissues and applications 
in general, it is instructive to have a closer look at liver as a specific tissue (Supplementary Fig. 
4a-c). Mechanical dissociation seems less disruptive to sensitive cells such as hepatocytes, which 
are prone to cell death and often lost during standard isolation procedures38. Upon dissociation 
of murine liver tissue, cells above 150 μm2 in cross-sectional cell area (ca. 7 μm radius) were 
determined as hepatocytes according to their morphology and size39. 
 
7. In figure 2, the authors present a range of phenotypes that they can detect. The 
authors should address if these phenotypes reflect diverse cellular responses to the TG 
or RT-FDC, rather than phenotypes originally present in vivo. Furthermore, on line 157, 
the authors say that “using TG, the proportion of hepatocytes to total cells was between 
40-80%”. The authors should justify this result and provide evidence for whether this is 
a purely a technical artifact or a biologically meaningful result. 
 
The Reviewer has a good point, cellular responses due to sample processing may indeed 
enhance the heterogeneity of the detected physical phenotypes. Although this knowledge 
is not necessary for the diagnostic purposes that are central to the manuscript, is certainly 
an interesting and important topic to address in our future experiments. We have 
amended the relevant paragraph in the Results section, as shown below. 
 
Regarding the Reviewer’s point about hepatocytes, we know that the spread in 
hepatocyte percentages obtained via tissue grinder is not an exact representation of the 
percentage of cells present in the tissue, but rather influenced by technical aspects, as 
the percentage of hepatocytes in the liver is reported to be 60-70%. We performed five 
biological repeats and included the hepatocyte percentages for each of the repeats in the 
new Supplementary Figure 4 (see above), as well as the average and standard deviation. 
The actual percentage obtained with the tissue grinder on average is about 50%, which 
is much closer to the real value than enzymatic dissociation (less than 10%) in our hands. 
We have accordingly adjusted the main text (page 6, lines 149-157): 
 
As the major parenchymal cell type of the liver, hepatocytes account for 70% of the liver cell population and 
take up nearly 80% of liver volume40. In the cell suspension obtained using TG, the proportion of 
hepatocytes to total cells was on average 52.5%, much closer to the real representation in tissue compared 
to the 7.7% for enzymatic digestion. Moreover, distinct subpopulations of hepatocytes could be identified 
according to cell size. We hypothesize that these populations correspond to hepatocytes of differing ploidy, 
as DNA content is strongly correlated with cell volume41. If confirmed, for example by correlation with a 
quantitative fluorescence analysis of DNA amount in each cell, our method could serve as a tool for the 
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label-free monitoring of aging and pathophysiological processes in the liver, which are linked with the 
proportion of polyploid hepatocytes42. 
 
Minor comments: 
1. What is the high-viscosity medium in line 109? Are there special requirements that 
need attention? Please specify. 
 
Indeed, the buffer is composed of methyl cellulose in PBS with carefully adjusted viscosity 
and osmolality. The composition of the high viscosity medium is detailed in the Methods 
in the “Tissue dissociation and single cell preparation” section, as follows (page 14, lines 
453-457): 
 
The cell pellet was resuspended in a high viscosity measurement buffer prepared using 0.6% 
(w/w) methyl cellulose (4,000 cPs; Alfa Aesar) diluted in phosphate buffer solution (PBS) without 
calcium and magnesium, adjusted to an osmolality of 270-290 mOsm/kg and pH 7.4. The viscosity 
of the buffer was adjusted to (25±0.5) mPa∙s at 24 °C using a falling sphere viscometer (HAAKE 
Falling Ball Viscometer Type C, Thermo Fisher Scientific). 
 
For clarity we have also specified the buffer in the main text (page 4, line:103) 
 
In an RT-FDC measurement, hundreds of cells per second, suspended in a high-viscosity 
methyl cellulose buffer, 
 
2. Line 128: In text it is stated that there are 6 clusters of cells in Fig. 2b while in the 
figure there are 7 clusters displayed. 
 
Thank you for pointing out the mistake, it has been amended. 
 
3. It would help to remove various faint horizontal and vertical lines in Figure 3 and 
make sure that plots are consistently presented as closed or open boxes. 
 
We believe this was an artefact of the PDF, as the thin lines are not there in our vector 
graphics files. We have now inserted them into the PDF as a different format and will 
make sure to check this artefact when uploading the individual vector graphics files for 
final submission. 
We have removed the closed box format of Figure 3e to make the plots more consistent. 
 
4. Figs. 3c,4c: include legend or text in caption to explain how the margins are drawn. 
 
We apologize for having omitted a proper explanation of Fig 3c, which shows kernel 
density estimate plots. The caption now includes the following text: 
 
Kernel density estimate plots of samples shown in A and B, with contours marking the 0.5 (light 
shade, outer contour) and 0.95 (dark shade, inner contour) levels. 
 
5. Generally Supp Fig. 4, if included, should have clear markings of the cell images as 
to where they belong in the RT-FDC graphs as it is done for example in Fig. 2b,c. 
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That is a good suggestion; we have edited Supp Fig. 4 accordingly, as shown in our 
reply above. 
 
6. For consistency, in line 184, change “number” to “percentage” to be consistent with 
Fig. label on horizontal axes of Fig. 3d,e. 
 
Thank you for the suggestion, we have changed this in the text. 
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Reviewer #2 (Report for the authors (Required)): 
 
The manuscript describes the application of high-throughput microfluidic single-cell 
physical phenotyping to solid tissue biopsies towards applications in diagnosis of 
diseased states in tissues. This is an important topic since physical phenotyping 
approaches can enable rapid and unbiased testing that allows, for example, 
measurement of malignancy during surgical procedures, rather than after histological 
sectioning, staining and analysis. Previous work in the field has mainly addressed cells 
naturally in suspension like in blood or other body fluids. The key breakthrough of this 
work is showing the ability to use a mechanical dissociation approach to obtain single 
cells compatible with the high-throughput microfluidic measurements. It appears that the 
approach to dissociation is also robust and repeatable enough to identify disease-
specific signatures of cells across many samples. Several disease models are studied, 
including controlled animal models of colitis and malignancy, as well as human tissues 
(including previously frozen tissues). Overall, the work is well conducted and reported 
on an important and impactful topic. Some of the claims should be better substantiated 
with data analysis approaches. There should also be more clarity on the classification of 
the clinical disease states and what samples were used to train vs. validate the 
accuracy of the test. 
 
We thank the Reviewer for the very favourable opinion about our work, its importance, 
relevance and timeliness, and for their valid recommendation to further substantiate 
some of our claims with further analysis. We have extended the data analysis according 
to the specific comments of the Reviewer, e.g. by adding validation data for human 
biopsy classification and by training a model after removing key deformation 
parameters. We hope the Reviewer considers these additions to have improved the 
manuscript. 

Specific Comments: 

 
Major: 
 
Many claims throughout the manuscript point to the added value of parameters derived 
from cell deformation on disease diagnostic accuracy, however these parameters were 
not directly evaluated as useful compared to related parameters. For example, in the 
transfer colitis model, can the authors determine if the deformation parameters provided 
additional information beyond the amount or fraction of infiltrating immune cells which 
could be obtained using other processes (e.g. hematology analyzer following 
mechanical tissue dissociation). In the mouse tumor model, was there any correlation 
between deformation and size (and the statistics of these metrics) or were these 
parameters independent predictors of being a tumor sample? Understanding the 
correlation between the different parameters would be helpful to better elucidate what 
leads to the differential signal. Another way to test the importance of the deformation 
parameters is to train a model that does not use them and see how well that model 
performs. If you remove deformation parameters, can you still perform PCA to separate 
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the samples for the human biopsy studies? How well does this perform? 
 
We thank the Reviewer for these questions and suggestions. We believe the added value 
of the cell deformation parameters was already evident from the distinction between 
healthy and tumour tissue samples, both for murine and human tissues. This can be 
observed in Supplementary Figure 7 and in Figure 5, where the colour coded feature 
importance diagram demonstrates that the deformation parameters have high scores 
compared to the other features used. 
 
However, we considered it a great idea to train a model leaving out deformation 
parameters to see how their absence would affect the principal component analysis and 
classification. We have done so for the human colon frozen biopsies, where the 
performance of the algorithm with deformation parameters included was excellent. We 
left out three deformation parameters which had the strongest contribution to the PCA, 
according to the parameter importance scoring: deformation mean, median and SD of 
cells of size 100 – 400 µm2. PCA without these parameters resulted in worse separation 
between healthy and tumorous tissue (see new Supplementary Figure 10b below) than 
the original (Suppl. Fig. 9a below); 6 out of 32 samples ended up misclassified (18.75%). 
We have now included this result as a new Supplementary figure 10 and added a 
sentence to the Results section (page 9, lines 264-268; marked in yellow): 
 
The PCA showed that tumour and healthy samples segregated well along PC2 mainly by the 
deformation and standard deviation of brightness of cells larger than 100 µm2 (Fig. 5a). Cell size 
parameters of cells below 100 µm2 also contributed to the separation of the samples. Excluding 
the most important parameter (deformation of cells larger than 100 µm2) resulted in worse 
separation between healthy and tumour samples (Supplementary Fig. 10). 

 
Supplementary Fig. 10: Testing the performance of healthy vs tumour classification of 
frozen human colon samples. a, PCA and logistic regression including the full set of 45 
parameters as input for PCA; b, PCA and logistic regression after excluding 3 parameters 
(deformation mean, median and SD for cells larger than 100 µm2). 
 
We also considered the Reviewer’s question about the mouse tumour model and potential 
correlations between deformation and size and the statistics of these metrics. The 
Pearson’s correlation coefficients for deformation and area for all events are shown in the 
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newly added Supplementary Fig.8 below. The correlation coefficients for the statistical 
means and medians of the samples (divided into the 3 cell size categories used for PCA) 
are shown in the table below. The values were either not correlated, or the correlation 
was weak. Therefore, we conclude that deformation and cell size were independent 
predictors in the tumour vs healthy classification of murine samples. 
 
The following text was added to the manuscript (page 8-9, lines 250-256; marked in 
yellow): 
 
Logistic regression performed on the PCA (shown by the linear divide in Fig. 4h) demonstrated 
that the condensed physical phenotype information represented by the principal components 
suffices to distinguish between healthy and tumour tissue; 29 out of 32 samples lay in the correct 
region. Finally, we analysed the correlation between deformation and cell size and found it to be 
weak or non-existent (Supplementary Fig. 8). This led us to conclude that deformation and cell 
size were independent predictors of tumours in murine colon samples, further demonstrating the 
added value of deformation measured via RT-FDC as a diagnostic marker. 
 

 
Supplementary Fig. 8: Correlation of deformation and cell size in murine healthy and 
tumour samples. a, Pearson’s correlation coefficients for deformation and area; each point 
corresponds to one murine sample and b, table showing Pearson’s correlation coefficients for the 
statistical means and medians of area and deformation, divided into the three cell size categories 
used for the principal component analysis. 
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For the fresh tumor biopsies it was unclear what the training / validation sets were for 
these experiments when reading the main text. If there were not separate validation 
data sets, this should be clearly indicated. 
 
We have now included validation data (blind experiments) also for the fresh colon and 
fresh lung experiments shown in Figure 5 (6 samples and 4 samples, respectively). These 
data are shown as crosses in Fig.5 b, c. This is also clarified in the caption (marked in 
yellow): 
 

 

Fig. 5: Distinction of tumour and healthy tissues in human biopsies using PCA and logistic 
regression. In the PCA plots on the left, each green point represents a tumour sample from one 
patient; purple points represent the corresponding healthy surrounding tissue from the same 
patient. Logistic regression was performed on each of the PCAs with the resulting two categories 
shown as purple (healthy) and green (tumour) background colours. Crosses represent blind 
experiments used for the validation of the trained model. The feature importance analysis to the 
right of the PCA plot shows the colour-coded significance of each feature for determining PC1 
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and PC2 for that particular tissue; the x axis lists cell size categories; the y axis lists RT-FDC 
parameters and their statistical features derived across all samples (in brackets). a, PCA on RT-
FDC parameters of 32 frozen colon samples (16 tumour biopsies and 16 samples of healthy 
surrounding tissue). b, PCA on RT-FDC parameters of 28 fresh colon biopsy samples (14 tumour, 
14 healthy). c, PCA on RT-FDC parameters of 18 fresh lung biopsy samples (9 tumour, 9 healthy). 

 
This Reviewer was surprised that intact cells were observable from cryopreserved 
tissue sections, since there would be cell death and cell membranes compromised in 
this process. How does this affect the images/contrast? One would expect contrast 
would be decreased substantially given the ability of the suspending solution to transfer 
into the cell if the membrane is disrupted. Can the authors show images of cells 
observed from these various tissue sources to understand how the differences in cell 
images, initial circularity, and contrast, may affect the performance of the technique. 
 
Like the Reviewer, we were positively surprised with the performance of the method for 
frozen colon tissues. Supplementary Figure 12 compares the same biopsy sample 
analysed by RT-FDC in its fresh state and following rapid freezing in liquid nitrogen. We 
have updated the figure to include representative images of cells from each sample. The 
quality of images of cells detected as such in the frozen samples appears to be 
comparable to those from fresh samples. However, dead cells or cells with compromised 
membrane integrity, which will definitely be present in the sample after freezing, may not 
be detected as events due to their low contrast. This is likely also the reason for the lower 
quantity and heterogeneity of cells upon freezing, which is evident in the scatter plots in 
Supplementary Figure 12. However, what is important is that there seem to be sufficient 
events with good quality in order to achieve excellent classification for frozen tissue 
samples (Figure 4).  
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Supplementary Fig. 12: Comparison of physical phenotype parameters of cells from frozen 
and fresh human biopsy samples. Cell size vs deformation scatter plots of single cells extracted 
from either fresh (purple) or frozen (green) colon biopsy samples; a, healthy sample; b, tumour 
sample; including 3 sample cell images for each plot with a scale bar = 10 μm2. The kernel density 
estimate (KDE) plots on the right correspond to the scatter plots on the left; the histograms show 
the distributions of cell size and deformation. c, Medians and standard deviations of cell size, 
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deformation, area ratio and aspect ratio of fresh (N = 6) and corresponding frozen (N = 6) samples. 
Boxes extend from the 25th to the 75th percentile with a line at the median; whiskers span 1.5x the 
interquartile range. Statistical comparisons were performed using Wilcoxon signed rank test, cell 
size SD (*p = 0.0277, r = 0.64), median area ratio (*p = 0.0277, r = 0.64) and area ratio SD (*p = 
0.0277, r = 0.64); r: effect size; ns: non-significant. 
 
 
The authors state “The speed of the extraction presumably helps to preserve 
biochemical and biophysical phenotypes in conditions close to those in situ.” It is 
unclear what evidence supports this statement. A main concern would be how 
mechanical shearing affects the physical properties of cells and whether some 
populations are damaged more or are more adhesive to other cells and stay in 
aggregates. Then these populations would be underrepresented in the final analysis 
process. Perhaps the authors could evaluate the cell type distributions in the tissue 
using staining approaches and compare to the cell types that make is through to single 
cells for analysis to determine if there is any bias / enrichment effect. I understand this 
information does not necessarily impact the classification results reported as it may be 
that differences in enrichment/depletion is part of the signal observed that leads to the 
differences between diseased and normal tissue. 
 
The Reviewer has a valid point. Mechanical shearing may affect the physical properties 
of cells, which will likely be different to the properties in situ. One cannot simply dissociate 
cells form tissues into a single cell suspension and claim that the measured mechanical 
properties and cell representation are the same as in its original location (which holds true 
for any type of dissociation, not only mechanical). It is also possible that certain 
populations of cells are more sensitive than others to damage done by the dissociation 
protocol; this is in fact already known to be the case for certain enzymatic protocols 
(Waise et al., Sci. Rep., 2019). The investigation of effects of mechanical dissociation via 
tissue grinder on physical phenotypes and cell population enrichment is certainly a topic 
for a large separate study. Such effects will be very specific for each tissue type and for 
each subpopulation of cells, we are therefore facing a very large and demanding 
experimental project. We think that the best approach will be to do single cell sequencing 
and physical phenotyping in parallel, which is technically a challenge. Like the Reviewer, 
we also consider it an intriguing and very important question and are currently working on 
setting up such a system. 
 
However, the main focus of this current manuscript is the distinction of a disease vs. 
healthy states, rather than a detailed characterisation of the changes upon mechanical 
dissociation, as the Reviewer acknowledges. For this reason and the extensiveness of 
the experimental work that would be required, we think it is outside of the scope of this 
manuscript to investigate to which degree mechanical dissociation affects the physical 
properties of cells and the enrichment of different populations in different tissues. Even 
though we present no evidence, we still think that it is conceivable and likely 
(”…presumably…”) that the speed of the dissociation helps to preserve biophysical and 
biochemical properties, as we also have argued in the Discussion (page 12; lines 385-
389): 
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Fast dissociation also has the potential to preserve biochemical and biophysical properties of cells 
in a state near to in situ; properties which likely deteriorate with longer processing times in other 
approaches. Due to the speed of the mechanical dissociation, cells might undergo less proteomic 
or transcriptional changes, which are known to happen during enzymatic processing34,57–60. 
Further comparative and molecular studies are necessary to assess these assumptions. 
 
 
Minor: 
 
In Supplementary Fig. 1 – blue bars are labeled as enzymatic dissociation or 
mechanical dissociation. The caption indicated it should be enzymatic dissociation. The 
discrepancy should be corrected. 
 
This is actually not an error; the mesenteric lymph nodes, spleen and thymus were 
dissociated by mashing the tissue between the frosted ends of two microscope slides, as 
detailed in Supplementary Table 1 (a mechanical method standardly used for these 
tissues). This method was used for comparison with tissue grinding. The other organs 
were dissociated enzymatically, as detailed in Supplementary Table 1. We thank the 
Reviewer for pointing this out and to avoid confusion to future readers we have updated 
Supplementary Figure 1 that now reads ‘Standard Dissociation’. 
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Reviewer #3 (Report for the authors (Required)): 
 
This article by Despina Soteriou et al. entitled “Single-cell physical phenotyping of 
mechanically dissociated tissue biopsies for fast diagnostic assessment” presents a 
diagnostic pipeline for the rapid, label-free analysis of biopsy samples by sequentially 
assessing the physical phenotype of singularized, suspended cells in high-throughput. 
The authors demonstrate the potential of their method for inflammatory bowel disease 
diagnostics. Their results suggest that mechanically dissociating tissue biopsies can be 
used to accurately distinguish between healthy and tumor tissue in mouse and human 
biopsy samples. The authors claim that their method is quick and delivers results within 
30 minutes, laying the groundwork for a fast and marker-free diagnostic pipeline to 
detect pathological changes in solid biopsies. The manuscript is well-written, and the 
figures clearly show workflows and results. However, I have several specific questions 
that I want the authors to address. 
 
We are glad that the Reviewer appreciates our work and we thank them for the specific 
suggestions, which allowed us to improve the manuscript. 
 
Specific comments 
 
My main concern with this paper is the mechanical grinder method because it is harsh 
to the cells and should cause significant cell death. Cells are sticky and attach quite 
firmly to each other and therefore need a relatively large force to separate. Thus, 
enzymatic treatments are used so frequently. The authors must provide more robust 
evidence that the mechanical method is similar to or superior to the enzymatic methods. 
Without further evidence, this method lacks generality and can only be applied to a 
limited number of tissues. 
 
We agree with the Reviewer’s concerns that excessive mechanical force can indeed lead 
to cell death. However, the tissue grinder is not as harsh as the Reviewer suggests. 
Evidence is given in Scheuermann, et al., Curr. Dir. Biomed. Eng. (2019) and 
Scheuermann et al., bioRxiv (2021) where they tested the effect of the tissue grinder on 
cell viability of resected tumour tissues and assessed expression of apoptotic markers 
following cell dissociation. When comparing the tissue grinder to explant procedures they 
observed that the tissue grinder was more efficient in isolating cells from tumour biopsies. 
The authors concluded that processing with the tissue grinder resulted in higher viability, 
cell yield and heterogeneity of the cells compared to the commonly used explant method.  
 
In addition, our data presented here also supports the notion that the mechanical grinder 
method is not harsher to cells and does not cause higher cell death than conventional 
protocols. In our experiments, the cell yield and viability observed for tissues processed 
using a tissue grinder were comparable to the conventional dissociation methods 
(Supplementary Figure 1). In addition, the tissue grinder method led to decent recovery 
of hepatocytes, which are extremely sensitive cells that are difficult to isolate. In fact, we 
were able to recover about 50% of hepatocytes from liver tissue, as opposed to less than 
10% with enzymatic dissociation, while literature values report 60 – 70% hepatocytes 
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(see Supplementary Fig. 4 and the discussion of a similar point be Reviewer #1 above). 
This leads us to believe that the tissue grinder is actually relatively gentle to cells. 
 
Overall, we believe that our data and the conclusions of Scheuermann et al. are sufficient 
to state that the mechanical dissociation method is at least comparable to enzymatic 
methods in terms of the harshness but has an unbeaten advantage due to the simple and 
quick preparation. In the future, we plan to investigate the proteomic and transcriptional 
changes caused by tissue grinder and compare them to enzymatic processing, where 
they are known to happen. 
 
We would also like to argue against the statement that the method can only be applied to 
a limited number of tissues. In our manuscript alone we present a large number of 
examined samples where the tissue grinder method proved to be fully functional, ranging 
from various murine organs to inflamed colon samples, as well as frozen and fresh human 
biopsies from different organs. So far, we have successfully processed tissues from 
spleen, thymus, lymph nodes, liver, kidney, small intestine, colon, lung, stomach, and 
pancreas. 
 
And finally, the main use case of the combination of tissue grinder and RT-FDC presented 
in this manuscript is the diagnosis of tissues. Here, the individual performance of the 
tissue grinder does not even matter, as long as the cells it produces can be analyzed, 
and the results are robust and diagnostic. This could even include a differential 
mechanical sensitivity of diseased-state vs healthy cells in the tissues processed using 
the tissue grinder. This has now been discussed more extensively in the revised 
manuscript (see page 6, lines 162-190). 
 
 
In Supplementary Fig. 1, the authors compare the cell viability and cell yield between 
mechanical dissociation using a tissue grinder and enzymatic dissociation using 
conventional enzymes. The cell viability is assessed by propidium iodine and the cell yield 
is evaluated by RT-FDC. However, RT-FDC is not the standard method for determining 
cell viability and yield. The authors must perform similar experiments using FACS. 
 
As in conventional flow cytometry, RT-FDC measures fluorescence signals from each cell 
passing through the microfluidic channel, in addition to the physical characteristics of cells 
(Rosendahl et al., Nat Methods, 2018). As such, RT-FDC is also a fluorescence-based 
flow cytometer with similar performance as standard FACS. The main differences 
between conventional flow cytometry and RT-FDC are the lower cell throughput and 
fewer (3) fluorescence channels of the latter. Neither of these differences affect the cell 
viability measurement using propidium iodide. However, to ensure reproducibility of our 
data we have repeated these experiments and performed Trypan Blue exclusion assay 
together with the propidium iodide. We have updated Supplementary Figure 1 accordingly 
(see below).  
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The cell yield per mg of tissue upon grinding was in fact not analysed via RT-FDC, but 
using a conventional cell counter, which is a standard method. This has now been 
specified in the methods (page 13, lines 422-424). 
 

 
Supplementary Fig. 1: Comparison of cell viability and cell yield of mechanical vs standard 
dissociation of different murine tissues. a, Percentage of viable cells for different organs 
dissociated using a tissue grinder (TG; marked in red) or standard dissociation (marked in blue). 
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Cell viability was assessed using propidium iodide and RT-FDC. b, Number of cells (obtained 
using a cell counter device) per mg of tissue processed. Lung, liver, kidney, pancreas and 
stomach processed with enzymatic dissociation were not weighted prior to the experiments. The 
line represents the mean and the box extends from minimum to maximum values. The number of 
biological repeats for each tissue is specified in Supplementary Table 1 (standard dissociation) 
and Supplementary Table 2 (tissue grinder dissociation). 

 
The pathological data of human samples used in this study is not presented. The 
authors need to show that their method works for both high-grade and low-grade 
cancers. In high-grade cancer, it is easier to detect differences in physical parameters, 
such as cell size; however, the differences in physical parameters are much more 
difficult to detect in low-grade cancer. 
 
This is an important comment and a grave omission of the original submission. Like the 
Reviewer, we would expect low-grade cancer to be more difficult to detect and more prone 
to misclassification. In the new Supplementary Tables 5-10 we present the pathological 
data of the human samples presented in this study. The table also shows the cancer 
grade. The vast majority of the analysed samples were G2 (moderately differentiated) or 
G3 (poorly differentiated); no high-grade G4 (undifferentiated) samples were analysed. In 
the lung tissue dataset, one of the samples was classified as the lowest grade G1 (well 
differentiated). Therefore, one can appreciate that even low-grade cancer samples can 
be detected using our method. The following text was added to the Results section (page 
10-11; lines 325-330): 
 

Finally, our method can also detect low-grade cancer, where any differences in physical 
parameters are expected to be more difficult to detect than in high-grade cancer. The vast majority 
of the analysed samples were G2 (moderately differentiated) or G3 (poorly 
differentiated/undifferentiated; often also referred as “high grade”; Supplementary Table 5-10). In 
the lung tissue dataset one of the samples was classified as the lowest grade G1 (well 
differentiated). Therefore, one can appreciate that the method is not limited to high-grade cancer. 
 
Furthermore, we would like to refer to reply to Reviewer 1 (on page 1-3) where we 
explained how we tested the sensitivity of the method for detecting small fractions of 
cancer cells in a sample, and the new Supplementary Figure 13. Even tumour samples 
with a high stromal content (as high as 98% and 80%) could be reliably classified as 
tumour. This clearly demonstrates sufficient sensitivity for the intended use case of 
intraoperative pathological assessment, specifically addressing the sampling problem of 
conventional histopathological inspection of frozen tissue sections.  
 
 
In Fig. 5, human cancer and control tissues are used. Were matched pairs used? The 
numbers suggest that control tissues were taken from the cancer patients, e.g., 13 
frozen colon tumors vs. 13 frozen colon control, 11 fresh colon tumors vs. 11 fresh 
colon control, and 7 fresh lung tumors vs. 7 fresh lung control. The authors must show 
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how well their method can detect differences in cancer and control tissue from the same 
patient. This is essential since this is how the method is suggested to be used. 
 
We agree with the Reviewer that it is crucial to show that our method can distinguish 
differences between healthy and tumour tissue from the same patient. Indeed, matched 
pairs were used in our experiments. For each patient in Fig.5, a control was taken from 
the healthy tissue surrounding the tumour. This has now been clarified in the caption of 
Fig. 5: 
 
In the PCA plots on the left, each green point represents a tumour sample from one patient; purple 
points represent the healthy surrounding tissue from the same patients. 
 
We have also clarified the Methods section (page 13, lines 436-438): 
 
Matched pairs of samples were analysed, with two samples derived from each patient: a tumour 
sample and a control sample originating from healthy tissue surrounding the tumour. 
 
 
In Fig. 2a (liver), the authors show that a subpopulation of cells forms a cluster at a 
specific cell size and brightness and that these cells are uniform in the enrichment of 
CD31, CD45, and EpCAM. Why was this cluster chosen? How about other 
subpopulations from the same scatter plot? Do they have different enrichments of 
CD31, CD45, and EpCAM? 
  
We are aware that the potential use of our approach, to identify and analyze 
subpopulations of cells in tissues by their physical phenotypes presents an intriguing 
option. In fact, we are pursuing this aspect in detail in several projects. However, as 
prompted by the editor and other Reviewers, for this manuscript, we instead decided to 
focus on a specific clinical use case – intraoperative diagnostic assessment of colon 
tissue biopsies – at the expense of providing depth to other uses. As such, we show the 
results of Figure 2 as illustrative examples of other tissue types and only hint at possible 
uses (sorting of such subpopulations for further identification and OMICS analysis, etc.). 
To specifically answer the questions of the Reviewer: the particular subpopulation was 
chosen rather randomly. The other subpopulations have not systematically been 
analyzed for their enrichment of these fluorescence markers. However, from our 
experience with these data, and from other experiments with heterogeneous populations 
(see for example, Nawaz et al., Nat. Methods, 2021), we can say that subpopulations 
identified by biophysical phenotyping often also represent unique populations when 
queried biochemically. One way to show this is to sort out these subpopulations one-by-
one and then performing subsequent RNA sequencing, for example. This is outside the 
scope of the present manuscript. Even though this aspect of the manuscript has not been 
elaborated in any depth, we still feel that the inclusion of this figure is of benefit to the 
readers of NBE. However, we are open to removing this Figure entirely should this 
Reviewer and the editor think it would be appropriate. 
 
The manuscript shows that RT-FDC can detect cell doublets from a cell suspension 
from murine thymus and spleen. There are many lymphocytes in the thymus and 
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spleen, and they are relatively uniform in their shape, so cell doublets can easily be 
detected using RT-FDC. The authors should also show that cell doublets can be 
detected in other solid organs, such as the colon and kidney. 
 
Thank you for the comment. It is possible to detect doublets also in other organs. We 
show an example of a doublet in Fig. 2b in murine colon tissue. In addition, we have 
added an example from the kidney to Supplementary Figure 3. We initially chose the 
spleen and thymus because the doublet populations were very strong in these organs, 
which we believe is linked with their immune functions. As can be seen in Supplementary 
Figure 3e, the doublets are scarce in the kidney. 
 
We note that the distinction of doublets based on the cell size and aspect ratio is only a 
basic way to do so which should be improved, e.g. by calculating “shape features” (such 
as Fourier descriptors) or by training a deep learning algorithm to distinguish doublets 
from single cells. This is subject of currently ongoing activities. 
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Supplementary Fig. 3: Detection of cell doublets using RT-FDC. Representative scatter plots 
of aspect ratio vs cell size of cells isolated from murine a, thymus, c, spleen and e, kidney showing 
the gating strategy for identifying cell doublets. Cell doublets identified in b, thymus and d, spleen 
and f, kidney with corresponding fluorescence traces, showing a leukocyte (CD45) attached to an 
endothelial cell (CD31), or the interaction of two leukocytes. 
 
In Supplementary Fig. 6, the authors show that a high percentage of CD45 positive cells 
are smaller in size than 60 µm2. These smaller cells are excluded from the analysis as 
these cells are mainly “immune cells and small debris”. Please back up this exclusion 
with experimental data or at least a reference. Of all excluded cells (<60µm2), what 
percentage was CD45 positive? 
 
We have added percentage calculations to back up our statement that the applied size 
gate removed mostly debris and leukocytes. Averaging over all analysed samples, debris 
accounted for nearly 90% of events < 60 µm2 and the percentage of the remaining 10% 
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of cells that were positive for CD45 was about 57%. In the murine control vs tumour 
samples, small cells < 60 µm2 were identified by additionally gating for area ratio 1 – 1.05 
and aspect ratio 1 – 2. Any events outside of these gates and all events < 25 µm2 were 
considered as debris. CD45+ cells were identified by fluorescence. Based on this, we 
added the following percentages to Supplementary Figure 6: 
 

 Mean STD 
debris / all events < 60 µm2 89.6% 10.5% 

CD45+ cells / total cells < 60 µm2 57.2% 19.0% 
 
 
There seems to be a significant difference in the number of analyzed cells between 
murine control and murine tumor tissues in Fig. 4a and 4b. The authors state that “the 
healthy tissue was always more difficult to mechanically break apart into single cells, 
and tumor tissue yielded more intact cells”. However, from the scatter plots in Fig. 4a 
and 4b, it appears that many more control cells (= healthy) were analyzed than tumor 
cells. Please comment. 
 
We would like to thank the Reviewer for pointing this out. This sentence is in fact wrongly 
placed and it was intended for the transfer colitis model as well as the human biopsy 
samples. In the transfer colitis model, the healthy tissue is more difficult to dissociate than 
the inflamed tissue. We also observed that the healthy biopsy sample was also more 
difficult to process than the tumour sample. We suspect that the altered tissue 
architecture of the tumour might not be as stable as the complex structure of the healthy 
tissue organs.  
We have moved the sentence to page 6; lines 188-190 and modified it accordingly to 
clarify that this was an experimental observation: 
  
A noteworthy observation was that the healthy tissue was more difficult to mechanically break 
apart into single cells than the diseased tissue which yielded more cells/events for analysis. 
 
Indeed, in Fig 4a and 5b there are more control cells in the healthy sample than in the 
tumour sample. The reason behind this observation is that the tumours used for these 
experiments were very small and hence did not yield a great number of cells/events for 
analysis.  
 
In the analysis of murine samples, the authors exclude cells with a size of 60µm2 or 
smaller. However, in the analysis of human samples, all cells are included and 
analyzed. The authors should also assess the distribution and number of CD45 positive 
cells in human samples. 

 
In the human samples, CD45 positive signal was also common in larger sized events, in 
contrast to the murine tissue where it was more localised to small cells. We therefore 
decided to try PCA without excluding any of the cells. The performance turned out to be 
very good and we kept it that way. We have not added the analysis of CD45 positive cells 
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to the manuscript, as it does not seem relevant to the results, which were obtained by 
analysing all cells. We would like to show the Reviewer the typical distribution of CD45+ 
events on two examples of fresh human tissues, a healthy sample and a tumour sample 
(left are all cells, right filtered for CD45+ signal). However, we would like to state that 
some of these CD45+ events might be due to unspecific binding of the antibody. 
 
 

Ex.1 - healthy  

Ex. 2 - tumour  
        All cells                          CD45+cells 

 
The authors state that there are three clusters of cells that correspond to hepatocytes of 
different sizes, according to the scatter plot in Supplementary Fig. 4b. It is difficult to 
understand how these clusters were selected. Please indicate the clusters in the figure. 
Also, explain what the diagonal lines represent and what does the square box 
indicates? 
 
The Reviewer is right that the identification of hepatocyte clusters according to size should 
have been made clearer. We have amended Supplementary Figure 4 to better show the 
distribution and density of hepatocytes. We have also added a kernel density estimate 
(KDE) plot for this sample (Supplementary Fig. 4c). The clusters should be more evident 
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now in the scatter plot, where density is indicated by the colour scale, as well as in the 
contour (KDE) plot. 
 
As per suggestion of Reviewer #2, we have also removed the confusing boxes and 
replaced them with a line connecting an example each of a hepatocyte from the three 
densest regions and its coordinates in the plot.  
 

 
 

Part of Supplementary Figure 4:  b, Scatter plot of deformation vs cell size showing 3 clusters 
of cells that correspond to hepatocytes of different sizes; with the corresponding kernel density 
estimate (KDE) plot and representative images (r = radius of cells).  
 
The authors list papers presenting alternative new and rapid intraoperative methods. 
There is a paper by Glaser et al. which presents a rapid intraoperative surface microscopy 
method of fresh breast tissues for guiding surgical oncology. This paper should be cited. 
Nat Biomed Eng (2017) Jul;1(7):0084. doi: 10.1038/s41551-017-0084. PMID: 29750130 
entitled “Light-sheet microscopy for slide-free non-destructive pathology of large clinical 
specimens” 
 
Thanks for alerting us to this interesting and relevant publication. We have added this 
reference in the Introduction (page 2, lines 61-63): 
 
Moreover, sample preparation is time-, resource- and labour-intensive. Alternative workflows 
have been proposed28, including stimulated Raman spectroscopy29,30, optical coherence 
tomography31 and fluorescence microscopy32,33, but have not yet been implemented.  
 
Please use a larger font size in Fig. 4d-g. 
 
We have increased the font size. 
 


