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Supplementary Methods

RA patient recruitment and clinical data collection 
The Accelerating Medicines Partnership (AMP) Network for RA and SLE constructed a cross-
sectional cohort - samples were collected from 13 clinical sites across the United States and 2 
sites in the United Kingdom. Patients were required to be aged ≥18 years, meet a diagnosis of 
RA by ACR/EULAR 2010 and/or 1987 criteria, and have at least two active inflamed joints 
(including the sentinel joint), a minimum CDAI >10, and an ultrasound gray scale ≥2 for 
QuickCore or ≥1 for portal and forceps biopsies. Patients were recruited to three groups based 
on their treatment status: (1) ≤ 4 weeks of MTX at (15mg once a week) and/or ≤ 4 weeks on any 
other nbDMARD (2) ≥ 3 months of MTX and ≥15mg once a week for 1 of the 3 months and 
stable dose ≥4 weeks; (3) ≥3 months on a TNFi with up to 2 TNFi failures allowed. The 
collection occurred over the course of a 45-month period from October 2016 to February of 
2020. The study was performed with informed consent in accordance with protocols approved 
by the institutional review board at Stanford University. Demographics, RA clinical data, clinical 
assessments, and measurements of ESR and CRP were performed at the baseline visit 50. Data 
collected include age, sex, RA duration, RF or anti-CCP status, RA treatments, tender and 
swollen joint counts. ESR and CRP were measured using commercial assays in each 
institution’s clinical laboratory. Disease activity for each subject was calculated using a DAS28-
CRP3 validated instrument51,52. Clinical data were managed using RedCap version 6.9.0 
through 13.8.1. 

Synovial tissue collection and processing 
Synovial tissue samples were obtained from ultrasound-guided biopsies or surgical procedures. 
Of the 82 samples that completed the tissue processing pipeline, 54 samples were biopsies 
obtained with a Quick-Core needle, 15 samples were biopsies obtained with portal and forceps, 
10 samples were collected during arthroplasty surgery, and 6 samples were collected during 
surgical synovectomy procedures.  All specimens consisted of a median of 13 samples (range 
4-36), of which 6-8 fragments were fixed in formalin for subsequent paraffin embedding and
processing for histologic analysis. The remaining fragments were cryopreserved in one or more
aliquots in Cryostor CS10 (Sigma-Aldrich) cryopreservation media. Samples were shipped to a
central biorepository site until sample collection was complete. They were then transited to the
central pipeline site, where samples were thawed and processed in batches.

Histology assessment, definition of density and aggregation for RA synovium 
In order to exclude low-quality synovial tissue samples from our multi-omics tissue processing 
platform, we analyzed hematoxylin and eosin-stained slides of formalin-fixed, paraffin-
embedded synovial tissue from each patient. At least six tissue fragments per patient were 
included in the analysis to mitigate sampling bias. Synovial tissue was identified as previously 
described8, and samples that lacked any discernible synovial tissue were excluded from further 
analysis. To separate histologic domains of the density of the infiltrate and the extent of 
formation of discrete aggregates that are not distinguished by the Krenn inflammatory infiltrate 
domain, we developed consensus semiquantitative four point scales for density and aggregate 
radial size with a custom atlas using a test set of tissues from the Birmingham Early Arthritis 
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Cohort53, scored by three pathologists. This approach was validated by scoring tissues from the 
first AMP RA cohort8, achieving an intra-class correlation coefficient score of 0.896 for summary 
mean density score of fragments for each tissue and kappa 0.862 for the worst case aggregate 
score achieved in each tissue. Equivalent ICC figures for the summary mean scores of 
fragments for Krenn inflammatory domain and Lining layer thickness domains were 0.937 and 
0.646 respectively. Three pathologists independently determined Krenn lining and inflammatory 
infiltrates scores (0-3 each)54, cellular density scores (0-3), and aggregate (0-3) scores for each 
tissue sample, and the mode of the three scores was used for further analysis.  

Tissue disaggregation, live cell sorting, and cell allocations 
For pipeline analysis, cryopreserved synovial tissue samples were thawed and disaggregated 
into single-cell suspension as previously described55. Briefly, thawed synovial tissue fragments 
were mechanically and enzymatically separated in digestion buffer (Liberase TL (Roche) 100 
μg/ml and DNase I (New England Biolabs) 100 μg/ml in RPMI) in 37°C water bath for 30 min. 
Single-cell suspensions from disaggregated synovial tissues were stained with anti-CD235a 
antibodies (clone 11E4B-7-6 (KC16), 1:100, Beckman Coulter) and Fixable Viability Dye eFlour 
780 (eBioscience/ThermoFisher). Live non-erythrocyte cells (viability dye- CD235a-) were 
isolated by fluorescence-activated cell sorting on a BD FACSAria Fusion using BD FACSDiva 
8.0.1 software. Cells were allocated as follows, in order of priority: (1) 60,000 cells for CITE-seq 
analysis; (2) 50,000 cells for flow cytometry and bulk RNA-seq analysis; (3) remaining cells re-
frozen in aliquots of 70,000 - 100,000 cells in CryoStor CS10 for other analyses (e.g. single-cell 
ATAC-seq and immune cell repertoire studies). Samples with fewer than 60,000 cells were 
applied to CITE-seq analysis alone. 

Flow cytometry and bulk RNA-seq 
Up to 50,000 sorted live synovial cells were stained with the following antibodies to define cell 
subsets: CD3 (UCHT1, 1:50), CD4 (OKT4, 1:50), CD8A (SK1, 1:100), CD11c (3.9, 1:50), CD14 
(M5E2, 1:200), CD19 (HIB191:50), CD27 (M-T271, 1:100), CD31 (WM59, 1:200), CD45 (HI30, 
1:200), CD90 (5E10, 1:200), CD146 (P1H12, 1:200), HLA-DR (L243, 1:50), PD-1 (EH12.2H7, 
1:50) (Supplementary Table 10). All antibodies were purchased from Biolegend, and staining 
was performed in the presence of Fc block (eBioscience/ThermoFisher, True-Stain Monocyte 
Blocker (Biolegend), and Brilliant Stain Buffer (BD Bioscience). We collected flow cytometry 
data in conjunction with fluorescence-activated cell sorting of up to 1,000 B cells (CD45+CD3-

CD14-CD19+), fibroblasts (CD45-CD31-CD146-), myeloid cells (CD45+CD3-CD14+), and T cells 
(CD45+CD3+CD14-) on a BD FACSAria Fusion cell sorter BD FACSDiva 8.0.1 software. 

Multicolor immunofluorescence staining and microscopy 
Staining for lymphocyte immunofluorescence microscopy panel 
Formalin-fixed paraffin-embedded synovial tissue fragments from 36 individuals (150 fragments 
total, mean 4.2 fragments per individual, range 2-9 fragments per individual) were incubated at 
60°C for deparaffinization. Tissue sections were transferred to xylenes and gradually hydrated 
by sequentially transfer into alcohol, 95% alcohol, 70% alcohol and water. Sections were then 
immersed in antigen retrieval solution (S1699, DakoCytomation) and boiled for 30 minutes. 
Non-specific binding was blocked by incubating tissue sections with 5% normal donkey serum 

3



(Jackson ImmunoResearch Laboratories) at room temperature (RT) for 30 minutes in a humid 
chamber. Primary antibodies were added to the tissues sections immediately after removing the 
blocking solution. Slides were incubated overnight at room temperature with the primary 
antibodies, which included goat anti-CD3 (1:100, Clone M-20, sc-1127, Santa Cruz 
Biotechnology), Rabbit anti-CD138 (1:50, PA5-32305, Thermo Fisher Scientific), and mouse 
anti-human CD20 (1:50, Clone L26, GTX29475, GeneTex). Tissue sections were washed with 
PBS and incubated for one hour at room temperature with secondary antibodies including Alexa 
Fluor 568-conjugated donkey anti-goat IgG (A-11057, Thermo Fisher Scientific), Alexa Fluor 
488-conjugated donkey anti-rabbit IgG (711-546-152, Jackson ImmunoResearch), Alexa Fluor
647-conjugated donkey anti-mouse IgG (715-606-150, Jackson ImmunoResearch), all at 1:200
dilution. Synovial tissues were washed with PBS and incubated for 20 minutes with NucBlue
Live Ready Probes Reagent (R37605, Thermo Fisher Scientific) to enhance nuclear stain.
Synovial sections were finally mounted with Vectashield antifade mounting media with DAPI (H-
1200, Vector Laboratories). Whole-slide immunofluorescent and bright field images were
scanned at x20 magnification in a Whole Slide VS120 scanner (OLYMPUS, Center Valley, PA).
A region of interest was chosen using the Visiomorph tissue detecting algorithm (Visiopharm
2022.01: Version 2022.01.3.12053), which automatically recognizes and outlines the tissues.
We utilized multiple focus points and semi-automatic focusing for fluorescent whole slide
images and multiple focus points and automatic focusing for bright field images.

Quantitation of immune cells in whole slide images of lymphocyte panel. 
Images were pre-processed in Visiopharm (version 2022.01.3.12053) to adjust image threshold 
for optimal identification of nuclei. Polyblobs segmentation tool, tissue, and cell count apps were 
utilized for the accurate counting of nuclei and cells. Positively stained cells were rigorously 
identified by their morphological features: size (small = CD20+ B and CD3+ T cells vs. large = 
CD138+ plasma cells), membrane stain (CD20+ B and CD3+ T cells) and cytoplasmic stain 
(CD138+ plasma cells), and separately counted. We used bimodal segmentation for 
distinguishing pixels representing stained membrane from other pixels in the image. Images 
were then post-processed to merge membranes that were not completely connected and 
eliminate small membrane fragments. Proportions were calculated by dividing the number of 
positive cells by the total number of nuclei in tissues with high cell density. 

Staining for stromal/myeloid immunofluorescence microscopy panel 
Sections from the same tissue blocks from the same 36 individuals as the lymphocyte panel 
above were also staining for stromal and myeloid markers. Prior to staining, RA synovium tissue 
slides were deparaffinized on the Leica BOND RX automated immunostainer (Leica 
Microsystems, Milton Keynes, UK) by baking for 30 min at 60°C, soaking in BOND Dewax 
Solution at 72°C, and then rehydrating in ethanol. Staining was performed on the Leica BOND 
RX with HIER pretreatments applied at 95°C using BOND Epitope Retrieval (ER) Solutions: 
EDTA-based pH 9.0 ER2 (Leica Biosystems; Cat. No. AR9640). Multiplex tissue 
immunofluorescence (IF) staining for CLIC5 (1:50, clone 1E6, SAB1402589, Sigma), CD68 
(1:50, clone 514H12, CD68-L-CE, Leica) CD3 (1:25, clone LN10, CD3-565-L-CE, Leica), HLA-
DR (1:200, clone EPR3692, ab92511, Abcam), CD34 (1:100, clone QBEnd/10, END-L-CE, 
Leica) and CD90 (1:200, clone D3V8A, 13801, Cell Signaling Technology) was also then 
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performed on the Bond RX automated staining platform with the Opal 7-Color Automation IHC 
Kit (NEL871001KT, Akoya Biosciences) according to the manufacturer's instructions. 
Immunofluorescence signals for CLIC5, CD68, CD3, HLA-DR, CD34 and CD90 were visualized 
using TSA dyes 570, 520, 620, 480, 690 and 780 respectively, and counterstained with spectral 
DAPI. Slides were mounted with ProLong™ Diamond Antifade Mountant (Invitrogen, Cat. No. 
P36965). Multispectral images were acquired at ×20 magnification using the Vectra Polaris 
Automated Quantitative Pathology Imaging System (Akoya). MoTIF settings were used for 
multispectral image acquisition and to remove autofluorescence. Multispectral image processing 
of multiplex IHC stains was performed using Phenochart (version 1.0.11/Akoya) and inForm 
Image Analysis Software (version 2.3, Akoya). 
 
Quantitation of cells in whole slide images of stromal/myeloid panel. 
The Visiopharm platform (version 2022.10) was used to analyze images. This software relies on 
linking Analysis Protocol Packages (APPs) to analyze images in a stepwise fashion. APPs for 
general tissue detection, tissue compartmentalization to vessels and non-vessels areas using 
vessel morphology and CD34 staining (AI), cellular segmentation based on DAPI staining (AI), 
and automatic identification of phenotypes based on trained phenotyping classification were 
developed for the various steps of image analysis. 
 
Quantitative histology analysis 
Adjacent slices of 150 synovial tissue fragments from 36 synovial tissue samples were stained 
with a lymphocyte panel (CD20, CD138, CD3) and stromal cell panel (CD3, CD68, CLIC5, 
CD34, CD90, HLA-DR), as described above. The designation of CD90+ cells excludes CD34+ 
cells. We quantified CD3 staining from the stromal cell panel because of higher quality control 
parameters. For each CTAP, we filtered out low-quality or non-synovial fragments with low 
(<50%) cell density across all markers. We corrected for differences in fragment size and 
density by calculating the proportion of total cells positive for each marker within each fragment. 
We tested the association between proportion of cells positive for each marker and CTAP using 
ANOVA.  
 
Single-cell CITE-seq antibody staining, RNA library preparation, and sequencing 
CITE-seq56 antibody staining using TotalSeqTM-A antibodies was performed as per the 
recommended protocol (BioLegend). Briefly, we first curated a list of surface proteins based on 
markers of cell states identified in previous RA studies and TotalSeqTM-A antibodies available at 
the time. To identify optimized concentrations of these antibodies for synovial tissue, we 
conducted a series of pilot studies where we titrated antibodies and measured their staining 
quality with mean expression (i.e., intensity) and Kullback-Leibler (K-L) divergence (i.e., 
specificity). We calculated K-L divergence by comparing the distribution across mRNA-defined 
cell clusters expressing the protein highly (>85th percentile) versus the null distribution of all 
cells. If an antibody had low mean staining and low K-L divergence, we removed it from the 
panel. If it had high mean staining and low K-L divergence, we used it at a lower concentration.  
 
The optimized list of antibodies included CD107a/LAMP-1 (H4A3); CD314/NKG2D (1D11); 
CD19 (HIB19); CD8a (RPA-T8); CD21 (Bu32); IgG Fc (M1310G05); CD209/DC-SIGN (9E9A8); 
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EGFR (AY13); CD196/CCR6 (G034E3); CD1c (L161); CD309/VEGFR2 (7D4-6); CD127/IL-7Rα 
(A019D5); CD273/B7-DC/PD-L2 (24F.10C12); CD226/DNAM-1 (TX25); CD278/ICOS 
(C398.4A); CD119/IFN-γ R α chain (GIR-208); CD274/B7-H1/PD-L1 (29E.2A3); CD3 (UCHT1); 
CD55 (JS11); IgM (MHM-88); CD155/PVR (SKII.4); CD112/Nectin-2 (TX31); CD4 (SK3); CD11c 
(S-HCL-3); CD34 (581); CD90/Thy1 (5E10); CD45RA (HI100); CD16 (3G8); CD45RO (UCHL1); 
CD20 (2H7); Podoplanin (NC-08); CD140a/PDGFRα (16A1); CD146 (P1H12); CD195/CCR5 
(J418F1); CD69 (FN50); CD161 (HP-3G10); HLA-DR (L243); CD64 (10.1); CD24 (ML5); 
CD192/CCR2 (K036C2); CD163 (GHI/61); CD44 (IM7); CD141/Thrombomodulin (M80); CD27 
(LG.3A10); CD206/MMR (15-2); Folate Receptor β/FR-β (94b/FOLR2); CD45 (2D1); CD31 
(WM59); CD11b (ICRF44); CD68 (Y1/82A); CD38 (HIT2); CD144/VE-Cadherin (BV9); 
CD304/Neuropilin-1 (12C2); CD86 (IT2.2); CD279/PD-1 (EH12.2H7); CX3CR1 (K0124E1); 
CD56/NCAM (QA17A16); CD14 (63D3). Supplementary Table 2 lists these antibodies with 
barcode sequences, catalog numbers, and dilutions. Antibodies against CD107a (LAMP-1), 
CD314 (NKG2D), CD19, CD8a, CD21, IgG Fc, CD209 (DC-SIGN), EGFR, CD196 (CCR6), 
CD1c, CD309 (VEGFR2), CD127 (IL-7Rα), CD273 (B7-DC, PD-L2), CD226 (DNAM-1), CD278 
(ICOS), CD119 (IFN-γ R α chain), CD274 (B7-H1, PD-L1), CD3, CD55, IgM were used at a 
dilution of 1:250 (0.2 ug per 100 uL staining reaction), whereas the remaining antibodies were 
used at a dilution of 1:50 (1 ug per 100 uL staining reaction). To perform CITEseq antibody 
staining, we prepared a cocktail of TotalSeq antibodies and centrifuged for 10 min at 14,000G to 
remove precipitates. Up to 60,000 sorted live synovial cells were pre-incubated with Human 
TruStain FcX (BioLegend) in Cell Staining Buffer (BioLegend) for 10 minutes prior to adding 100 
uL of the antibody cocktail. Single-cell RNA-seq for all synovial samples was performed by the 
BWH Single Cell Genomics Core. After a 30-minute incubation at 4°C, cells were washed twice 
with Cell Staining Buffer and resuspended in 0.4% BSA/PBS. After performing a live cell count 
using Trypan blue exclusion method, cells were resuspended at 1,000 cells per microliter and a 
maximum of 15,000 cells were loaded into a Chromium Next GEM Chip G (10x Genomics). For 
samples with fewer than 15,000 live cells, all cells were loaded into the chip. cDNA and library 
generation were done according to the manufacturer’s protocol. mRNA libraries were 
sequenced to an average of 50,000 reads per cell using Illumina Novaseq S4. CITE-seq 
antibody-derived tag (ADT) libraries were sequenced to an average of 5,000 reads per cell 
using Illumina Hi-Seq X Ten. 
 
Single-cell CITE-seq gene expression and protein expression quantification 
We quantified mRNA and antibody-derived tag (ADT) unique molecular identifier (UMI) counts 
using Cell Ranger v3.1.0. First, raw BCL files were demultiplexed using cellranger mkfastq with 
default parameters to generate FASTQ files. Then, these FASTQ files were aligned to the 
GRCh38 human reference genome using Cell Ranger v3.1.0. Gene and ADT reads were 
quantified simultaneously using cellranger count.   
 
Quality control of single-cell CITE-seq data 
We show each QC step in Supplementary Fig. 1. Specifically, we performed consistent QC to 
remove cells that expressed fewer than 500 genes or contained more than 20% of their total 
UMIs mapping to mitochondrial genes, resulting in 403,596 cells. Then, we performed sample-
level QC and removed samples with a low percentage (< 40%) of cells passing QC. We 
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removed three lower-quality samples (processed on the same day) with less than 40% of cells 
passing QC compared to 71% for other good quality samples. In the end, we obtained 393,344 
cells from 82 samples that passed QC.  
 
We identified and removed doublets based on a combined strategy: 
 

1. To detect doublets/multiplets based on gene count, we utilized the Scrublet57 framework 
implemented in Python on each sample. We input the full raw, unnormalized UMI count 
data into the Scrublet() function with default parameters. We determined the doublet 
scores and the threshold for doublet detection by using the scrub_doublets() function 
with the following parameters: min_counts = 2, min_cells = 3, min_gene_variability_pctl 
= 85, and n_prin_comps = 30. Based on the distribution of modes of simulated doublet 
gene expression distributions, we set the threshold at 0.66. Based on this threshold, we 
identified 4.5% of cells as doublets.  

2. Using protein expression, we trained an LDA (Linear Discriminant Analysis)-based 
classifier on non-doublet cells and then predicted the posterior probability of doublets 
using cell-type-specific antibodies (CD45, CD3, CD14, CD19, CD20, CD56, CD1C, 
PDPN, CD146), which improved the precision of doublet detection in a multimodal 
fashion. We obtained 314,011 cells after doublet detection. 

 
To assess the accuracy of protein measurements in CITE-seq, we selected antibodies for 
surface markers of each cell-type lineage: T cells (CD45 and CD3D), NK cells (CD45, CD56, 
CD16, and IL17R), B cells and plasma cells (CD45 and CD19), macrophages (CD45 and 
CD14), classical dendritic cells (cDCs, CD1c), fibroblast (PDPN), mural cells (PDPN and 
CD146), and endothelial cells (CD146) (Supplementary Table 2). For flow cytometry, we used 
13 antibodies (Supplementary Table 10). Flow cytometry data were collected on a BD 
FACSAria Fusion running BD FACSDiva 8.0.1 software and were analyzed using FlowJo 
10.7.1. We measured the Pearson correlation between the per-donor proportion of cells in each 
gate across donors. We removed surface proteins with low expression overall. 
 
mRNA feature normalization, selection, and scaling 
Global: For each cell, we normalized the expression of each gene with log(1 + UMIs for 
gene/total UMIs in cell *10,000). Then, we selected the top 1,000 most highly variable genes in 
each sample based on a variance stabilizing transformation (VST)58, which considers overall 
variance of the transcript per sample. We excluded cell cycle genes from “Seurat::cc.genes” for 
downstream analysis. We then pooled the most highly variable genes across all samples for a 
cell type into a data matrix and performed z-score scaling on each gene to have mean=0 and 
variance=1 across cells. 
 
By cell type: We carried out the same normalization, feature selection, and scaling steps as 
described for the global analysis, but on only the cells of each given cell type.  
 
Protein feature normalization, selection, and scaling  
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Global: For each cell, we normalized each protein with centered-log ratio (CLR): 
{#$(&!/((&)), . . . , #$(&"/((&))}, where & is a vector of protein counts56. For each feature, we then 
performed z-score scaling on each protein to have mean 0 and variance 1 across cells. To 
improve discrimination of signal and background in visualizations, we corrected for antibody 
background staining by fitting a Gaussian mixture model (with the normalmixEM function from 
the mixtools R package; k = 2, lambda = 0.5) to the CLR-normalized expression of each protein 
in each cell type. Then we calculated the mean of the first (lower) Gaussian in each cell type, 
identified the lowest mean across cell types, and subtracted this value—representing 
background—from all cells’ expression of the protein (with a lower bound of 0 for any values 
that would otherwise become negative).  
 
To select variable proteins, we measured Kullback-Leibler (KL) divergence for each protein by 
comparing the distribution of cells with normalized expression above the 75th percentile for that 
protein across broad cell-type clusters, versus the distribution of all cells across broad cell-type 
clusters. For each feature, we then performed z-score scaling on each protein to have mean = 0 
and variance = 1 across cells. We used a KL-divergence threshold of 0.3.  
 
By cell type: We carried out the same normalization as described for global analysis, but only on 
the cells of each given cell type. For T and B/plasma cells only, we conducted protein feature 
selection and scaling as described for global analysis. We removed proteins expressed in < 1% 
of cells and selected variable proteins based on KL divergence (computed as described above 
except using the 85th percentile to define the distribution of protein-expressing cells). Proteins 
with KL divergence greater than or equal to 0.025 were considered variable. 
 
A unimodal dimensionality reduction strategy for single-cell gene expression 
For cell-type-specific analysis of myeloid cells, fibroblasts/mural cells, endothelial cells, and 
natural killer cells, we used a unimodal pipeline to reduce the dimensionality of the data based 
on mRNA expression. For each cell type, we used truncated principal component analysis 
(PCA) as implemented in the prcomp_irlba function from the irlba R package59 and calculated 
20 principal components (PCs) based on the scaled mRNA data.  We then corrected sample-
driven batch effects with the HarmonyMatrix function from the harmony R package60 with 
parameters as specified in Supplementary Table 3 and projected the cells into two dimensions 
with UMAP61. 
 
A multi-modal dimensionality reduction strategy for CITE-seq data  
For global analysis of all cell types and cell-type-specific analysis of T and B/plasma cells, we 
used a multi-modal pipeline to integrate mRNA and surface protein expression from the same 
cells and project the cells into a low dimensional embedding informed by both modalities62. After 
scaling the protein features so that their total variance was equal to the total variance of the 
mRNA features, we used canonical correlation analysis (CCA) as implemented in the cc 
function from the CCA R package to calculate canonical variates (CVs)63 based on the scaled 
mRNA and surface protein data. These are projections of cells onto axes defined by maximally 
correlated linear combinations of genes and surface proteins that capture the greatest amount 
of shared variance. For further analysis, we selected the top 20 CVs with highest canonical 
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correlations, as defined in the mRNA space. We then corrected sample-driven batch effects with 
the HarmonyMatrix function from the harmony R package60 with default parameters and 
projected the cells into two dimensions with UMAP61. 
 
Graph-based clustering, differential gene expression, and cell type annotation  
We then constructed shared nearest neighbor graphs derived from the top 20 CVs/PCs and 
applied graph-based Louvain clustering64 at various resolution levels (0.2, 0.4, 0.6, 0.8, 1.0). We 
selected optimized resolution values for each cell type (1.2 for T cells, 0.8 for NK cells, 0.6 for 
myeloid cells, 0.6 for B cells, 0.6 for stromal cells, 0.3 for endothelial cells) to gain the biological 
interpretations that made the most sense. We incorporated the number of variable genes 
chosen per sample and parameters for each cell type’s analytical pipeline in Supplementary 
Table 3. In the end, we identified 24 T cell clusters (94,046 cells), 9 B cell clusters (30,691 
cells), 14 NK clusters (8,495 cells), 15 myeloid clusters (76,181 cells), 5 endothelial clusters 
(25,043 cells), and 10 stromal cell clusters (79,555 cells), for a total of 77 clusters. 
 
For each major cell type, we identified differentially expressed mRNA features and surface 
proteins by comparing cells from one cluster with all the other cells. We collapsed single-cell 
mRNA and protein expression profiles into pseudo-bulk count matrices by summing the raw 
UMI counts for each gene or surface protein across all cells from the same donor and cluster. 
For mRNA, we tested all mRNA features that were detected in more than 100 cells per 
individual with non-zero UMI counts. For each feature, we normalized counts in each pseudo-
bulk sample into counts per million (CPM). Using linear models, we estimated the effect of each 
cluster for each feature on pseudo-bulk expression accounting for effects from the donor and 
the number of UMIs for each pseudo-bulk sample. Next, we used likelihood ratio tests (LRT) 
between two models: one that has the cluster variable, and another that doesn’t have the cluster 
variable. Finally, we selected a feature to be a cluster marker if it had a fold change greater than 
2 and p-value less than FDR 5%, which is p < 0.05/(number of tested genes × number of 
clusters). We repeated a similar analytical pipeline of normalization and scaling, feature 
selection, multi-modal dimensionality reduction, clustering, and differential expression analysis 
for T cells (p < 1.5x10-6), B cells and plasma cells (p < 1.9x10-6), NK cells (p < 1.6x10-6), myeloid 
cells (p < 1.8x10-8), stromal cells (p < 4.3x10-7), and endothelial cells (p < 1.2x10-6), respectively. 
Furthermore, we annotated each cell-type cluster based on literature. We present cluster-
specific marker genes and relative statistics in Supplementary Table 5. We visualized our data 
and results at our cell browser website https://immunogenomics.io/ampra2/ using Cell Guide 65. 
 
Building and mapping to global and cell-type-specific references 
We used the buildReferenceFromHarmonyObj() function from the Symphony66 package to build 
integrated reference atlases for the global and cell-type specific atlases from the Harmony 
objects. To find concordance between cell types from our previous study8 and this study, we 
used the Symphony mapQuery() function to map the 5,265 scRNA-seq query cells from Zhang 
et al, 2019 onto the global and respective cell-type reference atlases. We predicted reference 
cell types and states for the query cells using the knnPredict() function with k = 5. For the cell-
type specific mapping, we excluded reference dendritic cells or mural cells because they were 
absent in the query. Note that because the gene expression matrices for the reference (this 
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study) and query8 datasets were generated using different versions of Gencode (version 19 vs. 
version 29, respectively), certain genes were named differently between the two datasets (e.g. 
IL8 and CXCL8 are synonyms for the same gene ENSG00000169429). Because the mapping 
procedure uses overlapping gene names between reference and query, we “synced” the query 
gene names to the version 29 names using the shared Ensembl IDs (which do not change 
between Gencode versions) using the Gencode .gtf files. This converted 9,663 query gene 
names, and the synced expression matrix was used as input to mapping. 
 
Identification of CTAPs based on single-cell cell-type abundance  
We identified six cell-type abundance phenotypes (CTAPs) based on hierarchical clustering on 
cell-type abundances for each CITE-seq patient sample. The differences across CTAPs are 
also reflected in the PCA space. We named each CTAP based on the cell types whose average 
proportions were higher among samples in the CTAP compared to their average across all 
samples (Supplementary Table 4). To assess the stability of CTAPs, 1) We first bootstrapped 
the patient samples and clustered the resampled dataset, 2) For every original CTAP subgroup, 
we found the most similar cluster (based on Jaccard similarity) in each resampled clustering and 
recorded that value, giving us the maximum Jaccard similarity coefficient for each CTAP. The 
Jaccard similarity coefficient can be a value between 0 and 1, where 1 indicates complete 
overlap and 0 indicates no overlap between two sets of the clustering results, 3) We repeated 
the above two steps 1e4 times and calculated the mean Jaccard similarity coefficient. We 
performed this process on different possible numbers of patient subgroups ranging from 2 to 10, 
and evaluated the statistical stability retaining in-group similarity. We selected six clusters as 
CTAPs because they gave us relatively high stability (mean Jaccard similarity coefficient=0.727) 
and also high granularity of biologically meaningful interpretations. 
 
Covarying neighborhood analysis (CNA) to identify cell populations associated with 
patient CTAP membership 
We evaluated whether the global RA CTAPs are associated with changes in the relative 
abundances of cell states within each of our six major cell types, which would indicate that these 
CTAP groupings reflect both coarse (relative abundance of major cell types) and fine-scale 
heterogeneity in synovial tissue composition. 
 
For each major cell type, we used CNA67 to associate sample-level attributes to the abundances 
of cell states within that cell type. CNA defines many small cell neighborhoods in the batch-
corrected low-dimensional space and stores that fractional abundance of cells from each 
sample in each neighborhood in a neighborhood abundance matrix (NAM). By decomposing the 
NAM with principal component analysis, CNA defines NAM-PCs within each cell type that 
capture axes of heterogeneity defined by groups of neighborhoods whose abundances vary in a 
coordinated manner. Here, we use CNA to test for associations between sample-level clinical 
characteristics and the abundance of covarying neighborhood groups. For associations with 
histologic metrics such as histology density and aggregate scores, we only used samples that 
passed histology-level QC grades (Grade A and B). We also use CNA to identify neighborhoods 
that are associated with one CTAP compared to other CTAPs. 
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To perform CNA, we used the tl.association() function in the cna Python package with default 
parameters and top four NAM-PCs as inputs, while controlling for the “age”, “sex”, and “number 
of cells per sample” as covariates. As CNA utilizes a permutation test, we determined a 
significant association based on a global permutation p < 0.05. For visualization of local 
associations, which indicate the particular neighborhoods driving a found global association, we 
used the 5% FDR threshold from CNA to determine which neighborhoods featured a locally 
significant correlation. In violin plots, we plotted this threshold as dotted lines. In UMAP plots, 
we colored neighborhoods that pass local significance based on the intensity of their correlation, 
with red indicating a higher positive correlation, while we colored neighborhoods that did not 
attain local significance as grey. We used a modified version of CNA, available on Github, which 
included the following features: 1) scaling the variance per neighborhood within the NAM 
inversely to the sample size of the source sample for that neighborhood’s anchor cell such that 
total variance across all neighborhoods anchored on cells from the same sample sums to 1, and 
2) the addition of a pseudo-count, a small number that was added to each entry in the NAM. 
Using CNA, we tested associations of cell neighborhoods that are associated with histology, 
ultrasound, clinical metrics, and also each CTAP group. The statistics are in Supplementary 
Table 7. 
 
Modeling histologic, clinical, and demographic characteristics using CTAPs 
We used linear mixed modeling to model each histologic parameter and clinical demographic 
variable using single-cell CTAPs. Only samples that passed histology-level QC (Grade A and B) 
were included to seek an association between molecular-level categories and histologic metrics. 
Taking histologic density - as an example, we fitted a mixed-effect model for each CTAP with 
the number of cells per sample as a cell-level fixed effect, age and sex as demographical level 
fixed effects, and clinical collection site as a random effect covariate:  

Full model: -# = 0 +∑ 2$3#,$$ + 2&'(3#,&'( +	2)(*3#,)(* +	2+(,-3#,+(,- 	+ 	(1|789:), 
Null model: -# = 0 + 2&'(3#,&'( +	2)(*3#,)(* +	2+(,-3#,+(,- 	+ 	(1|789:) 

 
where 2$ is the effect size for each CTAP ; for sample 8, 2&'( 	is a vector of age values and 2)(* 
is a vector of sex values, 2+(,- is a vector containing a technical covariate that captures the 
number of cells for each single sample, 3#,$ is the one-hot encoded variable for sample 8 in 
CTAP ; as appropriate, and (1|789:)	 is the random effect for clinical collection sites. Thus, we 
used the full model to calculate the corrected values of CTAPs accounting for these technical, 
cell-level, and donor-level covariates. For modeling age and disease duration, we used a similar 
model but we removed the age fixed effect from both the full and null model. We obtained 
percent of variance explained by the CTAPs only by subtracting the variance explained by the 
null model from the variance explained by the full model. ANOVA p-value was also calculated. 
The R package lme4 was used for the mixed effect modeling68. 
 
Classifying flow cytometry samples into RA CTAPs 
We provided a proof-of-concept framework to assign RA samples processed by other data 
modalities (e.g., flow cytometry) to the RA CTAPs generated from single-cell technology. 
Specifically for Fig. 5c, 1) we quantified the major cell type abundances in a sample using flow 
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cytometry based on cell type markers derived from the single-cell technology, then 2) we 
mapped each flow sample to the principal component space generated from the CITE-seq cell-
type abundances based on the same features. Here, the features are T, B, myeloid, stromal, 
endothelial, and NK cell canonical markers. Now that each flow sample has a loading in the 
original single-cell abundance space, 3) we built a Mahalanobis-distance-based nearest-
neighbor classifier to measure the distance of a flow sample to each of the CTAP centroids. We 
use Mahalanobis distance to handle the covariance, because our CTAP clusters in PC space 
are elliptical shaped covariances rather than circular shapes. 4) For each flow sample, we 
assigned a CTAP label based on which CTAP centroid had the smallest Mahalanobis distance. 
We calculated the accuracy of our classifications based on a subset (n = 15) of RA synovial 
tissues that were analyzed by both single-cell CITE-seq and flow cytometry. 
 
Pseudo-bulk analysis of soluble immune factors 
To perform the pseudo-bulk analysis of soluble immune factors, we summed and normalized 
the gene counts of the chosen 55 soluble immune mediators from KEGG gene set M980969 
across all cells within a sample, resulting in a soluble immune mediator count by sample matrix. 
We then performed principal component analysis (PCA) to obtain the resulting principal 
component embeddings shown in Extended Data Fig. 1g. Samples in the figure were colored 
by their original CTAP label defined by cell types. 
 
T cell functional assays 
T cells were isolated from cryopreserved RA donor PBMCs (n = 3) by thawing and subsequently 
staining directly with LIVE/DEAD Fixable Aqua Dead Cell Stain (1:1000, L34957, Invitrogen), 
anti-CD4 APC (1:100, RPA-T4, 300537), anti-CD8A BV711 (1:100, RPA-T8, 301044), anti-CD3 
APC-Cy7 (1:100, OKT3, 317342), anti-CD14 FITC (1:100, HCD14, 325604), anti-CD45RA 
BV605 (1:100, HI100, 304134), anti-CCR7 PE-Cy7 (1:100, G043H7, 353226) and anti-PD-1 
BV421 (1:100, EH12.2H7, 329920), all from Biolegend, and sorted with a 5-Laser BD FACS-
Aria Fusion cell sorter. T cells were sorted as follows: CD14-CD3+CD4+CD8-CD45RA-PD-1hi 
(TPH+TFH), CD14-CD3+CD4+CD8-CD45RA-PD-1- (PD-1- Memory CD4), CD14-CD3+CD4-

CD8+CD45RA- (Memory CD8), CD14-CD3+CD4-CD8+CD45RA+CCR7- (TEMRA CD8). Sorted T 
cell populations from RA donors were either plated immediately together with allogeneic 
memory B cells to assess B cells activation or rested overnight at 37°C for subsequent 
quantitation of cytotoxic activity.  
 
For the B cell assays, B cells were isolated from thawed cryopreserved PBMCs from 
leukoreduction collars (n = 3) using a B cell isolation kit (MACS; Miltenyi) and subsequently 
sorted for memory B cells using LIVE/DEAD Fixable Aqua Dead Cell Stain (1:1000, L34957, 
Invitrogen), anti-CD19 PE (1:100, HIB19, 302208), anti-CD27 BV421 (1:100, M-T271, 356418), 
anti-CD3 FITC (1:100, OKT3, 317306) and anti-CD14 APC (1:100, HCD14, 325608) all from 
Biolegend, using a 5-Laser BD FACS-Aria Fusion cell sorter. Memory B cells from control 
donors and RA T cells were plated at a ratio of 10:1 and stimulated with staphylococcal 
enterotoxin B (SEB; 1μg/ml; Toxin Technology) for 5 days before analysis by flow cytometry. 
Cells were stained with anti-CD3 FITC (1:100, OKT3, 317306), anti-CD20 BV605 (1:100, 2H7, 
302334), anti-CD19 APC-Cy7 (1:100, HIB19, 302218), anti-CD27 PE-Cy7 (1:100, M-T271, 
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356412), anti-CD38 BV785 (1:100, HIT2, 303530), anti-CD11c PE (1:50, Bu15, 337206), and 
anti-CD21 PerCP-Cy5.5 (1:100, Bu32, 354908), all from Biolegend, and analyzed on a BD 
Fortessa analyzer. 
 
Cytotoxic capacity of RA T cells was measured with a novel cytotoxicity assay using CD32-
expressing L cells loaded with an agonist anti-CD3 antibody as target cells. T cells co-cultured 
with target cells then become stimulated resulting in target cell death measurable by AnnexinV 
positivity70. CD32-expressing L cells were incubated with an agonist anti-CD3 antibody (OKT3; 
50 ug/mL, BioXcell) on ice for 30 min and then plated with the sorted and rested RA T cells at a 
ratio of 1:5. Following a 3.5-hour incubation, the cells were removed from culture and stained 
with AnnexinV APC and 7-AAD (5 uL/100uL each, Biolegend) and analyzed immediately on a 
BD Canto II analyzer. 
 
In vitro modeling of macrophage phenotypes in CTAP-M and CTAP-TM 
Monocytes and CD8+ T cells were isolated from human donor PBMCs using anti-CD14 and anti-
CD8 magnetic microbeads (Miltenyi Biotec), respectively. Monocytes were isolated from three 
separate donors while the T cells were isolated from one of two donors. All cultures contained 
RPMI++ (RPMI medium (Corning), 10% fetal bovine serum (HyClone) and 1% L-glutamine 
(Gibco)). To generate a homogenous monocyte population, 1x106 cells/mL CD14+ cells were 
plated in a 24-well plate for 24 hours in RPMI++ with 50ng/mL M-CSF (Biolegend). To generate 
activated T cell-conditioned media, CD8+ T cells were rested overnight in RPMI++ and then 
activated for 6 hours using 1:1 cell:bead ratio of anti-CD3/anti-CD28 antibody-coated beads 
(Dynabeads, Gibco). Synovial fibroblast lines were generated from mildly inflamed rheumatoid 
arthritis arthroplasty tissue. To model CTAP-M, 6x105 monocytes were input into the upper 
chamber of a 24-well transwell (Celltreat) with 1mL RPMI++, containing 50ng/mL M-CSF and 
20ng/mL TGF-β (Biolegend), while 7.5x104 fibroblasts at passage 4 were plated in the lower 
chamber for 72 hours. The M-CSF-alone condition was prepared similarly, but with no cells in 
the bottom chamber. To model CTAP-TM, 6x105 macrophages were placed into the upper 
chamber of a 24-well transwell with 1mL T cell conditioned RPMI++ containing 50ng/mL M-CSF 
for 12 hours. The bottom chamber of the transwell was empty. All cells were collected in RLT 
with 1% beta-mercaptoethanol for bulk RNA-sequencing and purified RNA was prepared using 
the RNAeasy kit (Qiagen). Libraries were generated using the Illumina Stranded mRNA Prep, 
Ligation kit (20040534 v02). The sequencing was performed on an Illumina NovaSeq 6000 - S4 
Flow Cell (PE 2x100 cycles) at a depth of 40M reads per sample. 
 
Bulk RNA-seq analysis of monocyte differentiation experiments using linear discriminant 
analysis 
To perform the bulk RNA-seq analysis for the monocyte differentiation experiments, bulk 
FASTQ files were processed with default FastQC parameters, and then converted into a count 
matrix with default STAR alignment parameters using GRCh38 as the reference genome. We 
then inputted the bulk RNA-seq count matrix and our full CITE-seq count matrix into 
independent Seurat objects and log-normalized the count matrices with scale factors of 1e7 and 
1e4 for the bulk RNA-seq and CITE-seq matrices respectively. We then subsetted the CITE-seq 
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count matrix to only include cells in the monocyte and macrophage clusters (myeloid clusters 0, 
1, 2, 3, 4, 5, 6, and 7).  
 
To select genes for the linear discriminant analysis (LDA), we utilized the “wilcoxauc” function 
from the “presto” package to find the top 500 AUC genes for each CITE-seq cluster, resulting in 
3,001 unique genes. We then thresholded these genes such that we only kept genes with a 
mean > 0.25 expression in the CITE-seq dataset, resulting in 1,741 genes. Finally, these 
remaining genes were intersected with the genes measured in the bulk RNA-seq dataset, 
resulting in 1,713 unique genes. Both count matrices were then subsetted to include only these 
1,713 genes, and then each gene was scaled to have mean = 0 and variance = 1. 
 
To perform LDA, we utilized the “lda” function from the “MASS” package with the following 
parameters: the formula was “cluster ~ .”, the data was the CITE-seq scaled count matrix, and 
the prior was a uniform value of 0.125 (1 / (# of clusters) = 1 / 8). To predict posterior 
probabilities for the bulk RNA-seq data, we used the “predict” function with the following 
parameters: the object was the previously fitted LDA, and the new data was the bulk RNA-seq 
count matrix. Since clusters 5 and 7 had posterior probabilities equal to zero, the pie charts only 
include the posterior probabilities of clusters 0, 1, 2, 3, 4, and 6 
 
Associating imputed HLA-DRB1 alleles with RA CTAPs 
As described in Kang, et al., we genotyped donors in the AMP RA/SLE Network across three 
batches using the Illumina Multi-Ethnic Genotyping Array71. We used PLINK v1.90 to QC the 
data, including removing variants with high missing rates (--geno 0.01), low MAF (--maf 0.01), or 
violating Hardy-Weinberg equilibrium (--hwe 1e-6)72. After merging batches and applying 
additional filters, 820,019 genome-wide variants (10,159 in MHC) and 788 individuals passed 
QC, of which 78 individuals had paired CITE-seq data. For HLA imputation, we used  
SNP2HLA and a multi-ethnic reference panel (v2)73–75. We imputed MHC SNPs, classical HLA 
alleles at one- and two-field resolution (HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, and -
DRB1), and HLA amino acid positions. For the HLA-DRB1 genotype analysis, we used the  
imputed dosage (ranges from 0 to 2) for each two-field HLA-DRB1 allele. Then, to calculate the 
HLA RA risk score for each individual, we multiplied each of their variants’ dosage by the RA 
risk odds ratio from ACPA+ RA GWAS summary statistics76 and summed them. We incorporated 
46 overlapped alleles in our analyses. We associated HLA imputation RA risk scores with 
CTAPs using mixed effects linear modeling controlling age, sex, and site. 
 
Cross-cell-type communication analysis 
To provide a systematic evaluation of cell-cell cross-talk, we used CellChat77. We queried more 
than 2,000 ligand-receptor pairs collected from CellChatDB including secreted signaling, ECM-
receptor, and cell-cell contact using default parameters. 
 
Pre-processing PEAC and R4RA bulk RNA-seq data, and converting our CITE-seq data 
into pseudo-bulk data  
To pre-process PEAC bulk samples, metadata and FASTQ files were downloaded from the 
ArrayExpress link provided by Lewis et al. Cell Reports 2019 (Accession Number: E-MTAB-
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6141). FASTQ files were analyzed with default FastQC parameters, and then converted into a 
count matrix with default STAR alignment parameters using GRCh38 as the reference genome, 
resulting in a gene count by sample matrix. Furthermore, seven unpublished bulk samples from 
this cohort that derive from the same patient and biopsy procedure as seven CITE-seq dataset 
samples were added in order to validate the concordance of our CTAP classification algorithm-
based label with a sample’s cell type proportion-based CTAP label. These unpublished samples 
were processed, sequenced, and aligned as previously described6. 
 
To pre-process R4RA bulk samples, metadata and FASTQ files for each of the 178 samples 
from 133 patients were downloaded from the ArrayExpress link provided by Rivellese, Surace, 
et al. Nature Medicine 2022 (Accession Number: E-MTAB-11611). FASTQ files were analyzed 
with default FastQC parameters, and then converted into a count matrix with default STAR 
alignment parameters, using GRCh38 as the reference genome, resulting in a gene count by 
sample matrix.  
 
To pre-process our CITE-seq data into pseudo-bulk samples, each gene’s total counts across 
all cells within a sample were summed. We performed this count summation for each of the 70 
RA samples in the CITE-seq data. Overall, this resulted in a gene count by sample matrix (70 
samples). 
 
 
Assigning CTAP labels to bulk RNA-seq samples with CCA and a k-nearest neighbor 
classifier 
To assign CTAP labels to PEAC bulk RNA-seq samples, the genes in the PEAC and pseudo-
bulk AMP gene count by sample matrices were filtered within each dataset respectively such 
that they retained only genes with non-zero expression in every bulk sample. After filtering each 
gene count by sample matrix, we took the intersection of both dataset’s genes, and filtered the 
matrices such that they retained only intersecting genes. Each gene count by sample matrix 
was then inserted into an individual Seurat object. Each matrix was then log-normalized with the 
''NormalizeData'' function, with a scaling factor of 1e7. Variablef features were identified with the 
''vst'' method of the ''FindVariableFeatures'' function (nfeatures = 4500).  The variable features 
of each dataset were then intersected, the normalized data was retrieved from each Seurat 
object, and each gene was scaled such that the mean and variance of a gene across samples 
were 0 and 1 respectively. After pre-processing, the resulting gene count by sample matrices 
consisted of scaled gene expression. 
 
To map our CITE-seq dataset and the PEAC dataset into the same shared embedding, we input 
each scaled gene count by sample matrix into the ''cc'' function from the ''CCA'' package in 
order to obtain a CCA list. The loadings for each dataset contain embeddings for each sample 
into the shared CCA space. Loadings from the CCA list were extracted from the “scores” slot. 
Loadings for each dataset (corr.X.xscores and corr.Y.xscores) were then concatenated into the 
same dataframe. To assign CTAP labels to a bulk PEAC sample, we used a k-nearest neighbor 
classifier. Based on the top 8 CVs—because the correlation explained after the first 8 CVs 
noticeably decreased—we used Seurat’s FindNeighbors function to identify the 5 nearest CITE-
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seq pseudo-bulk samples for each PEAC bulk sample, and then classified the PEAC bulk 
sample based on a majority vote of the CTAP labels of its CITE-seq pseudo-bulk neighbors. 
 
To map our CITE-seq dataset and the R4RA dataset into the same embedding, we performed 
the same steps as previously described for the PEAC dataset.  Note that because some of the 
bulk R4RA samples were from multi-visit patients (biopsied after 16 weeks of treatment), only 
the baseline week 0 samples were used for the logistic regression analyses that utilizes pre-
treatment CTAP assignment to predict responder status. Likewise, for the analyses that 
compare pre-treatment CTAP labels with post-treatment CTAP labels, only samples from multi-
visit patients were used. 
 
Linking RA causal genes to CTAP-associated cell states by cell type 
We first identified likely causal genes from a recent genetic study of RA with >250,000 
individuals from five ancestry groups45 (Supplementary Table 11). We identified RA genes as 
those that either (1) had a RA risk allele that conferred a nonsynonymous change, (2) had an 
eQTL in GTEx or Blueprint that colocalized with an RA risk allele, (3) had a high probability fine-
mapped causal variant (posterior probability >0.5) within a promoter, intron or exon or (4) had a 
rare nonsynonymous risk allele implicated through a recent sequencing study46. Second, we 
examined the genes expressed by more than 5% of the cells in a given cell-type (e.g. B cells). 
For genes expressed in a cell type, we assessed if loadings from CNA for specific CTAPs were 
correlated with expression. A positive correlation indicates that a cell state expanded within a 
CTAP specifically expresses an RA risk gene (Fig. 5d). Lastly, we defined significance by 
comparing to genes with matched expression within the same cell type (one-tailed p < 0.05). 
Taking gene IL6R as an illustration, we identified a gene list < (n = 192) whose genes have 
similar expression levels with IL6R in T cells (Supplementary Fig. 13b). We created a 
distribution of the Spearman correlations between genes in list < and the CTAP-TB associated T 
cell neighborhood loadings.  We determined significance by comparing the number of genes 
with expression patterns significantly correlated with CTAP-associated cell states in one or more 
cell types to the number of such genes that we expect by chance (median = 34 genes) through 
an 1e3 permutation test (permutation p < 0.01). 
 
 

16



Single-cell CITE-seq antibody vs flow cytometry

Supplementary Figure 1
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Supplementary Fig. 1. Detailed single-cell CITE-seq quality control. a. Quality of the cells 
based on number of genes detected and percent mitochondrial UMIs (%MT), b. Percentage of 
good quality cells for sample-level QC, c. Doublet detection using Scrublet, d. UMAP of the 
number of genes detected, e, Number of cells remaining after each step of QC, f. Distributions 
of cell type lineage antibody staining from CITE-seq determine percentage of major cell types 
based on the thresholds (red line) including % CD45+ cells, % T cells based on CD3+, % B cells 
based on CD20+, % macrophages based on CD14+, % endothelial cells based on CD146+, 
and % fibroblasts based on PDPN+, g. Representative gating of flow cytometry data to quantify 
selected synovial cell populations, h. The proportion of cells within 15 lineage gates in single-
cell CITE-seq antibody staining with an analogous gating schema for flow cytometry (N=18, 
median Pearson r=0.88). For flow gating, we determined % CD45+ based on CD45+ over all live 
cells, % T cells based on CD45+CD3+ over all live cells, % B cells based on CD45+CD3-CD14-

CD20+, % macrophages based on CD45+CD14+, % fibroblasts based on CD45-CD146-CD31-, % 
endothelial cells based on CD45-CD146+CD31+, % CD4+ T cells based on CD45+CD3+CD4+, % 
HLA+ CD4+ T cells based on CD45+CD3+CD4+HLA-DR+, % CD8+ T cells based on 
CD45+CD3+CD8+, % HLA+ CD8+ T cells based on CD45+CD3+CD8+HLA-DR+, % PD1+ CD4+ T 
cells based on CD45+CD3+CD4+PD1+, % HLA+ fibroblasts based on CD45-CD146-CD31-

HLA+, % sublining fibroblast based on CD45-CD146-CD31-CD90+, % CD27+ B cells based on 
CD45+CD3-CD14-CD20+CD27+, and % CD11c+ B cells based on CD45+CD3-CD14-

CD20+CD11c+, respectively. R is the Pearson correlation coefficient and p-values are from two-
sided t-tests. Shaded regions represent 95% confidence intervals. 
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Supplementary Fig. 2. Single-cell CITE-seq integrative analysis. a. CCA-based pipeline for 
integrating mRNA and protein expressions, b. Concordance between average mRNA 
expression and the correlations of corresponding protein and mRNA expression. Black line 
represents the linear best fit line and the shaded region represents the 95% confidence interval, 
c. Sample sources (n=82) in the UMAP space, paired with sensitivity analyses of Harmony 
parameters based on LISI scores to measure mixture levels on d. samples and e. cell types, f. 
The effect of varying the selected number of antibodies based on each antibody’s specificity: KL 
divergence equals 0.5 (25 proteins), 0.3 (36 proteins), and 0 (58 proteins), while also varying 
the number of highly variable genes used: 500/sample (3,164 genes in total) and 1,000/sample 
(5,751 genes in total) on the mRNA and protein integrative analysis. We used the top 1,000 
most variable genes per sample and 36 most specific proteins because it best recovered major 
cell types and more clearly identified rare cell types, g. Gene expression of cell-type lineage 
signatures, h. Pseudo-bulk expression of surface proteins in each cluster. Expression levels are 
based on pseudo-bulk log2(CPM)-normalized values, scaled across clusters for each marker.  
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Supplementary Figure 3
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Supplementary Fig. 3. Alternative cluster schemes largely reproduce the CTAP 
classifications. a, PCA of the pseudo-bulk analysis for the full transcriptomes of the 70 RA 
samples, with samples colored by original CTAP classification. b, Heatmap visualizing 
concordance of the pseudo-bulk classification (columns) and original CTAP classification (rows) 
for each sample, c, PCA of the abundance analysis using the fine-grained cell states for the 70 
RA samples, with samples colored by original CTAP classification. d, Heatmap visualizing 
concordance of the fine-grained cell states-driven classification (columns) and original CTAP 
classification (rows) for each sample, e, PCA of the abundance analysis using 7 cell populations 
including fibroblasts, endothelial cells, myeloid cells, T cells, NK cells, B cells, and plasma cells 
for the 70 RA samples, f, Heatmap visualizing concordance of the 7-cell population-driven 
classification (columns) and original CTAP classification (rows) for each sample. g, Heatmap 
depicting average proportions of each of the seven major cell types among samples in each of 
the original CTAPs.  
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Supplementary Fig. 4 is provided separately.  
 
Supplementary Fig. 4. Representative histology images for each CTAP.  Representative 
fragments from patients in each CTAP, showing composite and individual staining of each 
marker in the lymphocyte panel (a, c, e, g, i, k) or stromal cell panel (b, d, f, h, j, l). A total of 
150 fragments from 36 individuals (mean 4.2 fragments per individual, range 2-9 fragments per 
individual) were stained in batches and analyzed as a single cohort. A high-resolution version of 
this figure is available at https://doi.org/10.5281/zenodo.8364277. 
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Supplementary Fig. 5 Surface protein specificity and selection for integrative analysis. 
Kullback-Leibler divergence measures the specificity of each protein across a, all cells, b, T 
cells, and c, B/plasma cells. Proteins to the left of the red line were chosen for the CCA 
integration of each cell type. Canonical correlations for each of the top 20 canonical variates 
(CVs) from canonical correlation analysis of d, all cells, e, T cells and f, B/plasma cells, 
respectively.  
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Supplementary Fig. 6. Correlations between gene and protein features and top 20 
integrative CVs. Correlation z-scores for genes (top) and proteins (bottom) in a, T cells, and b, 
B/plasma cells. 
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Supplementary Fig. 7. CITE-seq RA reference atlas to query other cells. a, We used 
Symphony66 to map synovial cells from the AMP phase I RA dataset (Zhang, et al., 2019) 8 onto 
this AMP phase II single-cell RA reference (current study), b, Barplot of number of cells per cell 
type in Phase I and Phase II. c, Cells from Phase I (query) and Phase II (reference) plotted in 
the same UMAP coordinates and colored by cell type. d, Barplot of reference-based cell-type-
assignment (maximum of 5-nearest neighbors) for cells from the Phase I query, stratified by 
originally annotated cell state, e, We further used Symphony to map AMP Phase I cells from 
each cell type including B/plasma cells (n=1,142), T cells (n=1,529), fibroblasts (n=1,844), and 
macrophages (n=750) onto the corresponding cell-type-specific references from Phase II 
(B/plasma cell, T cell, stromal cell, and myeloid cell). Heatmaps show results for each major cell 
type, with rows corresponding to cell states from the Phase II reference and columns 
corresponding to cell states from Phase I. Blue-red color scale indicates the log(OR) for 
mapping a cell from the Phase I cluster to the Phase II cluster vs. mapping other Phase I cells to 
this Phase II cluster. Higher values indicate larger overlap between the corresponding Phase I 
and Phase II clusters. 
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Supplementary Fig. 8. Representative flow cytometry gating for T-B cell co-culture assays. a,  
Representative gating of fluorescence-associated cell sorting of PD-1hi Tph and Tfh cells, PD-
1low memory CD4 T cells, TemRA CD8 T cells and non-TemRA memory CD8 T cells. B,  
Representative gating of flow cytometry data to quantify B cell subsets after co-culture of B cells 
with T cells. Data are representative of three independent experiments, each with one T cell 
donor and one B cell donor. 
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Supplementary Fig. 9. Clinical and histologic association results using CNA. a, 
Representative histologic images illustrating different levels of density and aggregation scores, 
b, For each broad cell type, the UMAP is colored by the results of CNA testing associations with 
histologic density and/or aggregation scores, controlling age, sex, and number of cells per 
sample. The red/blue color scale represents positive/negative associations whose correlations 
are FDR < 0.05;global p-values were obtained from permutation tests.  
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Supplementary Fig. 10. Cellular sources for cytokine/receptor RNA. Z-scored pseudo-bulk 
expression across the identified 77 cell states of a curated cytokine and receptor list from KEGG 
(M9809)69 is shown. 138 cytokines and receptors that are expressed in more than 3% of total 
single cells are shown here. 
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Supplementary Fig. 11. Inferred cell-cell interactions based on ligand-receptor analysis. 
Outgoing (left) and incoming (right) cell-state interaction patterns identified with CellChat. Boxes 
are colored based on the relative strength of the signaling molecule in that cluster. 
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Supplementary Fig. 12. Classification of repeat biopsies and flow cytometry into CTAPs. 
a, Mapping three repeated biopsy samples onto CTAP PC space based on the cell-type 
abundance, b, Histogram of Mahalanobis distance between 10,000 random samples to the 
baseline samples, c, Flow cytometry samples plotted in the same PCA coordinates as originally 
used to cluster CITE-seq samples into CTAPs, d, Mahalanobis distance between each flow 
sample and each CTAP centroid. The original CTAP of the single-cell samples from the same 
donors are labeled as red. 
 
  

39



IL6R

p = 5e-4

CTAP-TB correlation distribution for genes
with similar expression levels with IL6R
(n=192)

Genes with similar expression levels in T cells
(n=192)

IL6R

Supplementary Figure 1�

25

50

75

EFM F M TB TF TM

CTAP

%
 V

EG
FA

 e
xp

re
ss

in
g 

ce
lls

 
  o

ve
r m

ye
lo

id
 p

er
 C

TA
P

Probability to observe 
p < 0.05 genetic 
associations (n=48)
permutation p = 0.01

Probability to observe 
p < 0.01 genetic 
associations (n=15)
permutation p = 0.003

ï���

���

���
r

CTAP-TB association IL6R expression

Define
Significance

r = 0.26

IL6R expression

IL6R expression in T cells

C
TA

P
-T

B
 a

ss
oc

ia
tio

n

P2R
Y10

)&
5/
�

TPD52
CCR6

$)
)�BLK

PLC
L2

CCDC88
B

TNF$
,3�

PSTPIP1

TRAF1

8%
$6
+�
$

STA
T4
GAT

$�GFI1

PTPN22

PRKCH
LE

F1
CTLA

4

ANKRD55
YDJC

JA
DE2

DDX6

CASP8A
P2
ARID2

IFNGR2
IL6

R
IRAK1

IRF5

FCGR2A
ZGLP

1

6+
�%
�
TYK2

TEC

JA
RID2

)&
*5
�$
5,1

�

ACOXL

TXNDC11
7/
(�

WDFY4

ICOSLG

ANTXR2

SYNGR1
PA

DI4

INPP5B

C2o
rf4

2

DLG
AP1

KMT2B
77
&�
�

TCTE1

TSSK6
AIRE

CCL2
1
SYN2

'1
$6
(�
/�

&�
RUI
��

PRR14

ARID5B
COG6

HOXA5

AHNAK2
NAB1

RNF40
KSR1

TPR
PLC

L1

TDRD10
NCK1

TNIP2

Cell
 ty

pe

Cell type
B/plasma cell
Stromal cell
Endothelial cell
Myeloid cell
T cell
NK cell

CTAP
M
TM
TB
TF
F
EFM

CTAP

0

2

Pseudo-bulk
expression

D

E

F     

G            H      I      J

M
ye

lo
id

B/
pl

as
m

a
St

ro
m

al
En

do
th

el
ia

l
T 

ce
ll

NK
 c

el
l

EFM
F
M
TF
TB
TM
EFM

F

M
TF

TB

TM

EFM

F

M

TF

TB

TM

EFM
M
TF

TB

TM

F

EFM

M

TF

TB

TM

F

EFM

M
TF

TB

TM
F

HLA
-D

RB1

40



Supplementary Fig. 13. Expression of RA GWAS-implicated genes. a, Heatmap of pseudo-
bulk normalized expression of genes implicated in RA GWAS studies in cells from each 
indicated cluster and CTAP combination. Color scale ranges from brown (high) to turquoise 
(low) and is scaled across cluster+CTAP combinations shown. b, Statistical strategy to correlate 
RA-associated genes with CTAP-associated cells. Briefly, we measured the Pearson correlation 
coefficient between an RA GWAS gene’s normalized expression and the cell-neighborhood 
correlations with a CTAP (left). To define significance, we compared this correlation to the 
correlations computed between other genes of similar expression level and the same CTAP 
(right). c, Histogram of number of RA genes significantly correlated with CTAP-associated cells 
in at least one CTAP/cell type pair in null simulations. Significance threshold for correlation is p 
< 0.05 (left) or p < 0.01 (right). P-values are calculated with permutation tests (n=1,000). d-f. 
UMAPs colored by normalized expression of selected RA-associated genes in myeloid cells 
(d,f) or endothelial cells. g, Box plot of percent of myeloid cells expressing VEGFA in each 
CTAP. Points represent individuals (N=70); EFM (N=7), F (N=11), TF (N=8), TB (N=14), TM 
(n=12), M (N=18). Box plots show median (vertical bar), 25th and 75th percentiles (lower and 
upper bounds of the box, respectively) and 1.5 x IQR (or minimum/maximum values; end of 
whiskers). 
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Supplementary Table 1a. Demographic, clinical, and histology metrics for the study cohort (stratified by treatment group)
DMARD naive MTX inadequate TNFi inadequate P-value Missing %

N 28 27 15
Age in years, mean (SD) 56.43 (15.98) 52.11 (16.33) 63.20 (7.90)  0.074  0.0
Female, N (%) 18 (64.3) 22 (81.5) 12 (80.0)  0.293  0.0
Race and ethnicity, N (%)  0.0
  White 16 (57.1) 19 (70.4) 14 (93.3)  0.047
  Black or African American 7 (25.0) 5 (18.5) 1 (6.7)  0.338  0.0
  Hispanic 4 (14.3) 12 (44.4) 4 (26.7)  0.046  0.0
Years since diagnosis, mean (SD) 2.64 (8.33) 7.42 (8.80) 12.58 (8.79)  0.002  0.0
CRP (mg/dL), mean (SD) 2.09 (2.84) 2.40 (4.01) 1.08 (1.27)  0.468 10.0
ESR, mean (SD) 44.00 (29.66) 40.59 (30.96) 26.33 (20.58)  0.211 14.3
DAS28-CRP3, mean (SD) 4.84 (1.38) 5.08 (1.57) 4.55 (1.15)  0.561 10.0
CDAI, mean (SD) 32.25 (16.95) 39.69 (16.04) 29.69 (12.24)  0.093  0.0
Number of tender joints, mean (SD) 11.00 (8.52) 12.70 (9.29) 8.60 (6.88)  0.331  0.0
Number of swollen joints, mean (SD)  9.00 (8.16) 14.30 (6.69) 9.00 (5.44)  0.013  0.0
Patient global assessment, mean (SD)  6.33 (2.26) 5.25 (2.32) 6.03 (1.98)  0.227  8.6
Physician global assessment, mean (SD)  6.09 (1.67) 6.32 (1.59) 5.75 (1.70)  0.569  0.0
Serology
  Seropositive, N (%) 24 (85.7) 21 (77.8) 14 (100.0)  0.159  1.4
  RF+, N (%) 21 (75.0) 18 (66.7) 11 (84.6)  0.471  2.9
  anti-CCP+, N (%) 21 (75.0) 20 (74.1) 13 (92.9)  0.332  1.4
  anti-CCP+ (u/mL), mean (SD) 165.22 (126.51) 158.68 (102.07) 269.47 (246.44)  0.059  0.0
Comorbidity, N (%) 13 (46.4) 7 (25.9) 6 (40.0)  0.281  0.0
Histology, mean (SD)
   Krenn lining 1.15 (0.61) 0.92 (0.56) 0.79 (0.43) 0.114 5.7
   Krenn inflammation 2.07 (0.73) 1.62 (1.06) 1.50 (1.02) 0.100 4.3
   Density 1.88 (0.65) 1.42 (0.55) 1.29 (0.65) 0.005 1.4
   Aggregates 1.57 (1.29) 0.96 (1.19) 1.21 (1.12) 0.186 1.4
   Pathotype 2.46 (0.64) 2.26 (0.66) 2.36 (0.74) 0.525 1.4

          P-values are from one-way ANOVAs for continuous variables and chi-squared tests for binary variables. 
Note: Comorbidities include diabetes, cardiovascular disease, pulmonary disease, autoimmune thyroid disease, inflammatory 
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Supplementary Table 1b: Demographic, clinical, and histology metrics for the study cohort (stratified by disease activity)

Remission Low disease activity
Moderate disease 

activity
High disease 

activity P-value Missing %
N 3 4     29     27     
Age in years, mean (SD) 49.00 (23.30) 68.00 (9.90)  56.28 (13.68)  56.22 (17.08) 0.414  0.0
Female, N (%) 3 (100.0) 3 (75.0)     21 (72.4)     19 (70.4) 0.749  0.0
Race and ethnicity, N (%)
  White 1 (33.3) 3 (75.0)     22 (75.9)     18 (66.7) 0.462  0.0
  Black or African American 2 (66.7) 0 (0.0)      4 (13.8)      5 (18.5) 0.103  0.0
  Hispanic 0 (0.0) 0 (0.0)      7 (24.1)     10 (37.0) 0.252  0.0
Years since diagnosis, mean (SD) 2.11 (1.93) 11.56 (19.62)   7.49 (8.89)   4.94 (8.52) 0.424  0.0
CRP (mg/dL), mean (SD) 0.00 (0.00) 0.55 (0.58)   1.07 (1.08)   3.43 (4.22) 0.012 10.0
ESR, mean (SD) 20.67 (5.77) 17.25 (10.75)  37.82 (28.54)  47.08 (31.25) 0.151 14.3
DAS28-CRP3, mean (SD) 2.36 (0.16) 2.89 (0.27)   4.17 (0.57)   6.18 (0.81) <0.001 10.0
CDAI, mean (SD) 14.40 (3.50) 19.12 (3.97)  25.12 (8.90)  48.89 (12.95) <0.001  0.0
Number of tender joints, mean (SD) 1.33 (1.15) 1.00 (1.41)   6.28 (4.49)  18.70 (6.68) <0.001  0.0
Number of swollen joints, mean (SD) 5.00 (5.20) 7.25 (6.70)   6.90 (5.31)  16.59 (6.86) <0.001  0.0
Patient global assessment, mean (SD) 2.50 (2.29) 5.38 (1.80)   5.70 (2.26)   6.36 (1.91) 0.032  8.6
Physician global assessment, mean (SD) 4.07 (1.10) 5.50 (2.08)   5.80 (1.70)   6.72 (1.41) 0.019  0.0
Serology
  Seropositive, N (%) 3 (100.0) 3 (75.0)     24 (82.8)     23 (85.2) 0.831  1.4
  RF+, N (%) 3 (100.0) 1 (25.0)     20 (69.0)     20 (76.9) 0.120  2.9
  anti-CCP+, N (%) 3 (100.0) 3 (75.0)     21 (72.4)     21 (77.8) 0.752  1.4
  anti-CCP+ (u/mL), mean (SD) 247.67 (80.83) 137.62 (130.32) 181.00 (211.69) 174.89 (109.79) 0.854  0.0
Comorbidity, N (%) 1 (33.3) 3 (75.0)      8 (27.6)     13 (48.1) 0.194  0.0
Histology, mean (SD)
   Krenn lining 1.00 (0.00) 1.50 (0.58) 0.93 (0.65) 0.96 (0.46) 0.312 5.7
   Krenn inflammation 2.00 (1.00) 2.00 (0.82) 1.79 (1.03) 1.81 (0.98) 0.966 4.3
   Density 1.56 (0.51) 1.75 (0.50) 1.56 (0.72) 1.61 (0.70) 0.964 1.4
   Aggregates 2.00 (1.73) 1.00 (1.15) 1.25 (1.29) 1.33 (1.21) 0.754 1.4
   Pathotype 2.67 (0.58) 2.50 (0.58) 2.32 (0.67) 2.33 (0.73) 0.831 1.4

             P-values are from one-way ANOVAs for continuous variables and chi-squared tests for binary variables. 
Note: Comorbidities include diabetes, cardiovascular disease, pulmonary disease, autoimmune thyroid disease, inflammatory bowel 
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Supplementary Table 2: Antibodies used for CITE-seq panel

Category Barcode Specificity Clone Barcode Sequence
Amount of antibody per 
100 uL staining volume 

(dilution)
Vendor Catalog number

TotalSeq™-A 0155 CD107a (LAMP-1) H4A3 CAGCCCACTGCAATA 0.2ug (1:250) BioLegend 328647
TotalSeq™-A 0165 CD314 (NKG2D) 1D11 CGTGTTTGTTCCTCA 0.2ug (1:250) BioLegend 320835
TotalSeq™-A 0050 CD19 HIB19 CTGGGCAATTACTCG 0.2ug (1:250) BioLegend 302259
TotalSeq™-A 0080 CD8a RPA-T8 GCTGCGCTTTCCATT 0.2ug (1:250) BioLegend 301067
TotalSeq™-A 0181 CD21 Bu32 AACCTAGTAGTTCGG 0.2ug (1:250) BioLegend 354915
TotalSeq™-A 0375 IgG Fc M1310G05 CTGGAGCGATTAGAA 0.2ug (1:250) BioLegend 410725
TotalSeq™-A 0597 CD209 (DC-SIGN) 9E9A8 TCACTGGACACTTAA 0.2ug (1:250) BioLegend 330119
TotalSeq™-A 0132 EGFR AY13 GCTTAACATTGGCAC 0.2ug (1:250) BioLegend 352923
TotalSeq™-A 0143 CD196 (CCR6) G034E3 GATCCCTTTGTCACT 0.2ug (1:250) BioLegend 353437
TotalSeq™-A 0160 CD1c L161 GAGCTACTTCACTCG 0.2ug (1:250) BioLegend 331539
TotalSeq™-A 0362 CD309 (VEGFR2) 7D4-6 TTCACGCAGTAAGAT 0.2ug (1:250) BioLegend 359919
TotalSeq™-A 0390 CD127 (IL-7Rα) A019D5 GTGTGTTGTCCTATG 0.2ug (1:250) BioLegend 351352
TotalSeq™-A 0008 CD273  (B7-DC, PD-L2) 24F.10C12 TCAACGCTTGGCTAG 0.2ug (1:250) BioLegend 329619
TotalSeq™-A 0805 CD226 (DNAM-1) TX25 AGACCAACTCATTCA 0.2ug (1:250) BioLegend 337111
TotalSeq™-A 0171 CD278 (ICOS) C398.4A CGCGCACCCATTAAA 0.2ug (1:250) BioLegend 313555
TotalSeq™-A 0219 CD119 (IFN-γ R α chain) GIR-208 TGTGTATTCCCTTGT 0.2ug (1:250) BioLegend 308607
TotalSeq™-A 0007 CD274 (B7-H1, PD-L1) 29E.2A3 GTTGTCCGACAATAC 0.2ug (1:250) BioLegend 329743
TotalSeq™-A 0034 CD3 UCHT1 CTCATTGTAACTCCT 0.2ug (1:250) BioLegend 300475
TotalSeq™-A 0383 CD55 JS11 GCTCATTACCCATTA 0.2ug (1:250) BioLegend 311317
TotalSeq™-A 0136 IgM MHM-88 TAGCGAGCCCGTATA 0.2ug (1:250) BioLegend 314541
TotalSeq™-A 0023 CD155 (PVR) SKII.4 ATCACATCGTTGCCA 1ug (1:50) BioLegend 337623
TotalSeq™-A 0024 CD112 (Nectin-2) TX31 AACCTTCCGTCTAAG 1ug (1:50) BioLegend 337417
TotalSeq™-A 0045 CD4 SK3 GAGGTTAGTGATGGA 1ug (1:50) BioLegend 344649
TotalSeq™-A 0053 CD11c S-HCL-3 TACGCCTATAACTTG 1ug (1:50) BioLegend 371519
TotalSeq™-A 0054 CD34 581 GCAGAAATCTCCCTT 1ug (1:50) BioLegend 343537
TotalSeq™-A 0060 CD90 (Thy1) 5E10 GCATTGTACGATTCA 1ug (1:50) BioLegend 328135
TotalSeq™-A 0063 CD45RA HI100 TCAATCCTTCCGCTT 1ug (1:50) BioLegend 304157
TotalSeq™-A 0083 CD16 3G8 AAGTTCACTCTTTGC 1ug (1:50) BioLegend 302061
TotalSeq™-A 0087 CD45RO UCHL1 CTCCGAATCATGTTG 1ug (1:50) BioLegend 304255
TotalSeq™-A 0100 CD20 2H7 TTCTGGGTCCCTAGA 1ug (1:50) BioLegend 302359
TotalSeq™-A 0127 Podoplanin NC-08 GGTTACTCGTTGTGT 1ug (1:50) BioLegend 337019
TotalSeq™-A 0128 CD140a (PDGFRα) 16A1 ATGCGCCGAGAATTA 1ug (1:50) BioLegend 323509
TotalSeq™-A 0134 CD146 P1H12 CCTTGGATAACATCA 1ug (1:50) BioLegend 361017
TotalSeq™-A 0141 CD195 (CCR5) J418F1 CCAAAGTAAGAGCCA 1ug (1:50) BioLegend 359135
TotalSeq™-A 0146 CD69 FN50 GTCTCTTGGCTTAAA 1ug (1:50) BioLegend 310947
TotalSeq™-A 0149 CD161 HP-3G10 GTACGCAGTCCTTCT 1ug (1:50) BioLegend 339945
TotalSeq™-A 0159 HLA-DR L243 AATAGCGAGCAAGTA 1ug (1:50) BioLegend 307659
TotalSeq™-A 0162 CD64 10.1 AAGTATGCCCTACGA 1ug (1:50) BioLegend 305037
TotalSeq™-A 0180 CD24 ML5 AGATTCCTTCGTGTT 1ug (1:50) BioLegend 311137
TotalSeq™-A 0242 CD192 (CCR2) K036C2 GAGTTCCCTTACCTG 1ug (1:50) BioLegend 357229
TotalSeq™-A 0358 CD163 GHI/61 GCTTCTCCTTCCTTA 1ug (1:50) BioLegend 333635
TotalSeq™-A 0073 CD44 IM7 TGGCTTCAGGTCCTA 1ug (1:50) BioLegend 103045
TotalSeq™-A 0163 CD141 (Thrombomodulin) M80 GGATAACCGCGCTTT 1ug (1:50) BioLegend 344121
TotalSeq™-A 0191 CD27 LG.3A10 CAAGGTATGTCACTG 1ug (1:50) BioLegend 124235
TotalSeq™-A 0205 CD206 (MMR) 15-2 TCAGAACGTCTAACT 1ug (1:50) BioLegend 321143
TotalSeq™-A 0427 Folate Receptor β (FR-β) 94b/FOLR2 TGTGGCTAGTCAGTT 1ug (1:50) BioLegend 391707
TotalSeq™-A 0048 CD45 2D1 TCCCTTGCGATTTAC 1ug (1:50) BioLegend 368543
TotalSeq™-A 0124 CD31 WM59 ACCTTTATGCCACGG 1ug (1:50) BioLegend 303137
TotalSeq™-A 0161 CD11b ICRF44 GACAAGTGATCTGCA 1ug (1:50) BioLegend 301353
TotalSeq™-A 0234 CD68 Y1/82A CGGTGTTTGTAGCAA 1ug (1:50) BioLegend custom conjugate
TotalSeq™-A 0389 CD38 HIT2 TGTACCCGCTTGTGA 1ug (1:50) BioLegend 303541
TotalSeq™-A 0400 CD144 (VE-Cadherin) BV9 TCCACTCATTCTGTA 1ug (1:50) BioLegend 348517
TotalSeq™-A 0406 CD304 (Neuropilin-1) 12C2 GGACTAAGTTTCGTT 1ug (1:50) BioLegend 354525
TotalSeq™-A 0006 CD86 IT2.2 GTCTTTGTCAGTGCA 1ug (1:50) BioLegend 305443
TotalSeq™-A 0088 CD279 (PD-1) EH12.2H7 ACAGCGCCGTATTTA 1ug (1:50) BioLegend 329955
TotalSeq™-A 0179 CX3CR1 K0124E1 AGTATCGTCTCTGGG 1ug (1:50) BioLegend 355709
TotalSeq™-A 0047 CD56 (NCAM) QA17A16 TCCTTTCCTGATAGG 1ug (1:50) BioLegend custom barcode
TotalSeq™-A 0081 CD14 63D3 TCTCAGACCTCCGTA 1ug (1:50) BioLegend custom barcode
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Supplementary Table 3: Parameters for single-cell integration and clustering

Cell type
Number of variable genes 
selected per sample

Total number of 
variable genes

KL divergence threshold 
for proteins

Number of proteins 
selected for CCA

Harmony 
theta

Louvain clustering 
resolution

Global 1000 5751 0.3 36 1 NULL
B and plasma 400 6647 0.025 23 0 0.6
T cell 400 6603 0.025 21 1 1.6

Cell type
Number of variable genes 
selected per sample

Total number of 
variable genes

KL divergence threshold 
for proteins

Number of proteins 
selected for CCA

Harmony 
theta

Louvain clustering 
resolution

Endothelial 400 5993 NULL NULL 1 0.3
Stromal 400 3758 NULL NULL 1 0.6
Myeloid 400 3547 NULL NULL 1 0.6
NK 300 4987 NULL NULL 1 0.8
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Supplementary Table 4: Percentages of cell types by CTAP

CTAP Endothelial Stromal Myeloid T cell B cell NK cell
EFM 29% 28% 29% 11% 1% 2%
F 10% 51% 17% 14% 6% 2%
M 8% 11% 44% 26% 9% 3%
TB 4% 6% 11% 50% 23% 5%
TF 5% 30% 7% 44% 10% 3%
TM 8% 6% 27% 48% 8% 3%
Overall 11% 22% 25% 30% 10% 3%
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Supplementary Table 5: Differentially expressed genes per CITE-seq cluster 
 
 
This table is provided separately in .xlsx format 
 
  

47



Pr
e-

id
en

tif
ie

d 
RA

 ex
pa

nd
ed

 cl
us

te
rs

de
fin

ed
 b

y L
eu

ko
cy

te
-ri

ch
 R

A 
vs

 Le
uk

oc
yt

e-
po

or
 R

A 
an

d 
OA

Od
ds

 R
at

io
 (C

I)
M

AS
C 

p-
va

lu
e

Od
ds

 R
at

io
 (C

I)
M

AS
C 

p-
va

lu
e

HL
A+

 fi
br

ob
la

st
 (S

C-
F2

)
71

9
F-

5,
 F-

8
68

60
2.

7 
(1

.1
-6

.9
)

0.
04

3.
3 

(1
.9

-5
.8

)
5E

-0
5

Tp
h/

Tf
h 

(S
C-

T3
)

70
T-

3,
 T-

7
89

66
1.

9 
(1

.0
-3

.6
)

0.
04

1.
63

 (1
.1

-2
.4

)
0.

01
AB

Cs
 (S

C-
B3

)
48

B-
5

19
65

2.
5 

(1
.3

-4
.9

)
8E

-0
3

1.
9 

(1
.2

-2
.9

)
5E

-0
3

IL
1B

+ (
SC

-M
1)

34
9

M
-1

, M
-7

, M
-8

, M
-1

4
21

21
9

1.
6 

(0
.9

-2
.9

)
0.

06
3.

1 
(1

.9
-5

.1
)

1E
-0

4
IF

N-
ac

tiv
at

ed
 (S

C-
M

4)
71

M
-6

17
15

2.
9 

(1
.6

-5
.3

)
2E

-0
3

2.
4 

(1
.6

-3
.5

)
3E

-0
5

RA
 vs

 O
A 

Le
uk

oc
yt

e-
ric

h 
RA

 vs
 Le

uk
oc

yt
e-

po
or

 R
A 

an
d 

OA

Su
pp

le
m

en
ta

ry
 Ta

bl
e 

6:
 A

ss
oc

ia
tio

ns
 o

f p
re

vi
ou

sly
 id

en
tif

ie
d 

RA
 ce

ll 
st

at
es

95
%

 co
nf

id
en

ce
 in

te
rv

al
 (C

I) 
fo

r t
he

 o
dd

s r
at

io
 (O

R)
 an

d 
on

e-
sid

ed
 M

AS
C 

(﻿m
ix

ed
-e

ffe
ct

s m
od

el
in

g o
f a

ss
oc

ia
tio

ns
) p

-v
al

ue
 ar

e s
ho

w
n.

Zh
an

g,
 et

 al
, 2

01
9 

(p
ha

se
 1

)
Th

is 
st

ud
y (

ph
as

e 2
)

# c
el

ls
M

at
ch

ed
 cl

us
te

rs
 

# c
el

ls

48



Supplementary Table 7: Statistics of single-cell associations with CTAPs and histologic 
parameters 
 
 
This table is provided separately in .xlsx format 
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Supplementary Table 8. Percentages of cell types within each CTAP 

This table is provided separately in .xlsx format 
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Supplementary Table 9: Demographic, clinical, and histologic metrics across RA CTAPs

CTAP-EFM CTAP-F CTAP-M CTAP-TB CTAP-TF CTAP-TM P-value Missing %
N 7 11 18 14 8 12
Age in years, mean (SD) 66.57 (7.11) 56.18 (14.43) 56.17 (20.79) 54.50 (12.87) 58.00 (9.07) 51.08 (14.44) 0.435 0.0
Female, N (%) 6 (85.7) 7 (63.6) 13 (72.2) 11 (78.6) 6 ( 75.0) 9 (75.0) 0.934 0.0
Race and ethnicity, N (%)
  White 5 (71.4) 7 (63.6) 12 (66.7) 11 (78.6) 5 ( 62.5) 9 (75.0) 0.949 0.0
  Black or African American 1 (14.3) 4 (36.4) 2 (11.1) 2 (14.3) 1 ( 12.5) 3 (25.0) 0.587 0.0
  Hispanic 1 (14.3) 3 (27.3) 4 (22.2) 5 (35.7) 4 ( 50.0) 3 (25.0) 0.655 0.0
Years since diagnosis, mean (SD) 12.08 (8.79) 4.39 (7.36) 8.36 (13.33) 7.42 (7.87) 5.85 (8.32) 2.41 (3.01) 0.281 0.0
CRP (mg/dL), mean (SD) 0.61 (0.41) 0.85 (0.72) 2.23 (3.98) 2.28 (2.72) 5.02 (6.34) 1.99 (2.14) 0.251 10.0
ESR, mean (SD) 24.17 (22.52) 40.22 (28.03) 41.44 (31.77) 37.45 (21.13) 48.80 (45.48) 40.36 (29.54) 0.813 14.3
DAS28-CRP3, mean (SD) 4.47 (0.71) 4.80 (1.46) 4.61 (1.34) 4.81 (1.29) 5.34 (2.56) 5.43 (1.49) 0.626 10.0
CDAI, mean (SD) 28.86 (10.45) 34.87 (16.55) 31.74 (13.96) 30.28 (15.55) 40.98 (21.88) 42.62 (16.01) 0.241 0.0
Number of tender joints, mean (SD) 9.00 (4.04) 12.45 (9.36) 8.67 (6.93) 9.86 (7.34) 13.12 (12.18) 15.08 (10.00) 0.363 0.0
Number of swollen joints, mean (SD) 7.71 (6.02) 12.36 (7.86) 10.06 (7.28) 9.57 (7.23) 12.88 (9.01) 13.75 (7.35) 0.469 0.0
Patient global assessment, mean (SD) 4.83 (1.40) 4.82 (1.65) 6.03 (2.58) 5.12 (2.78) 7.75 (1.56) 6.55 (1.12) 0.031 8.6
Physician global assessment, mean (SD) 6.21 (1.91) 5.37 (1.78) 6.35 (1.57) 5.64 (1.51) 6.91 (1.50) 6.37 (1.59) 0.308 0.0
Serology 
  Seropositive, N (%) 6 (85.7) 9 (81.8) 13 (72.2) 13 (92.9) 7 (100.0) 11 (91.7) 0.435 1.4
  RF+, N (%) 5 (71.4) 7 (63.6) 10 (55.6) 11 (84.6) 7 (100.0) 10 (83.3) 0.187 2.9
  anti-CCP+, N (%) 6 (85.7) 9 (81.8) 9 (50.0) 13 (92.9) 7 (100.0) 10 (83.3) 0.027 1.4
  anti-CCP+ (u/mL), mean (SD) 203.51 (94.45) 186.95 (100.33) 86.91 (101.88) 243.46 (266.58) 262.12 (52.79) 200.15 (113.68) 0.041 0.0
Comorbidity, N (%) 3 (42.9) 3 (27.3) 7 (38.9) 3 (21.4) 3 ( 37.5) 7 (58.3) 0.498 0.0
Histology, mean (SD)
   Krenn lining 0.57 (0.53) 1.00 (0.45) 1.29 (0.59) 0.62 (0.51) 1.33 (0.82) 1.00 (0.00) 0.003 5.7
   Krenn inflammation 1.14 (1.07) 1.10 (0.74) 2.00 (0.94) 2.07 (1.00) 1.75 (0.71) 2.09 (0.83) 0.033 4.3
   Density 0.83 (0.45) 1.19 (0.48) 1.81 (0.60) 1.74 (0.68) 1.65 (0.62) 1.71 (0.63) 0.005 1.4
   Aggregates 0.67 (0.82) 0.55 (1.04) 1.17 (1.25) 1.57 (1.22) 1.62 (1.06) 1.75 (1.42) 0.117 1.4
   Pathotype 2.17 (0.75) 2.00 (0.63) 2.39 (0.50) 2.43 (0.76) 2.75 (0.46) 2.42 (0.79) 0.238 1.4
Medication, N (%) 
  Corticosteroid 1 (14.3) 3 (27.3) 4 (22.2) 4 (28.6) 4 ( 50.0) 4 (33.3) 0.700 0.0
  Any DMARD 6 (85.7) 7 (63.6) 7 (38.9) 9 (64.3) 4 ( 50.0) 8 (66.7) 0.319 0.0
  Methotrexate 1 (14.3) 4 (36.4) 6 (33.3) 7 (50.0) 3 ( 37.5) 5 (41.7) 0.734 0.0
  TNFi 3 (42.9) 1 (9.1) 1 ( 5.6) 2 (14.3) 0 (  0.0) 2 (16.7) 0.157 0.0
Treatment group, N (%)            0.152 0.0
  DMARD naive 1 (14.3) 5 (45.5) 9 (50.0) 5 (35.7) 4 ( 50.0) 4 (33.3)
  Methotrexate naive 1 (14.3) 5 (45.5) 7 (38.9) 7 (50.0) 2 ( 25.0) 5 (41.7)
  TNFi inadequate 5 (71.4) 1 (9.1) 2 (11.1) 2 (14.3) 2 ( 25.0) 3 (25.0)

              P-values are from one-way ANOVAs for continuous variables and chi-squared tests for binary variables. 
Note: Comorbidities include diabetes, cardiovascular disease, pulmonary disease, autoimmune thyroid disease, inflammatory bowel disease, psoriasis, multiple sclerosis, 
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Supplementary Table 10: Antibodies used in synovial tissue flow cytometry panel

Marker Clone Fluorochrome Vendor Catalog number Dilution
CD146 P1H12 BV421 BioLegend 361004 1:200

CD8 SK1 BV510 BioLegend 344732 1:100
CD3 UCHT1 BV605 BioLegend 300460 1:50
PD-1 EH12.2H7 BV650 BioLegend 329950 1:50

HLA-DR L243 BV711 BioLegend 307644 1:50
CD19 HIB19 BV785 BioLegend 302240 1:50
CD45 HI30 FITC BioLegend 304006 1:200

CD11c 3.9 PerCP Cy5.5 BioLegend 301624 1:50
CD27 M-T271 PE BioLegend 356406 1:100
CD14 M5E2 PE Dazzle 594 BioLegend 301852 1:200
CD90 5E10 PE Cy7 BioLegend 328124 1:200
CD4 OKT4 APC BioLegend 317416 1:50

CD31 WM59 Alexa 700 BioLegend 303134 1:200
CD235a 11E4B-7-6 (KC16) APC-Alexa 750 Beckman Coulter A89314 1:100
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