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Figure S1. Workflow for deriving HSPC fractions and verifying their identity. A) Gating 

strategy and representative sort gates for isolation of HSC-MPP, CMP, GMP, and MEP. B) 

Representative CFU assays using sorted HSC-MPP, CMP, GMP, and MEP populations. 
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Figure S2. Combinatorial binding of heptad transcription factors and PU.1. (A-B) composite 

graphs with three components; (upper) number of combinatorial binding peaks identified in 

the four cell types, for (middle) combinations of heptad factors and PU.1 and (lower) heatmap 

showing z-scores for the combinations presented above. A) 2 TF combinations including PU.1. 

B) 6, 7, 8 TF combinations of heptad TFs without and with PU.1.   
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Figure S3. Compartment switching and conserved TADs along blood stem cell 

differentiation. A) i) A k-means clustered heatmap of the PC1 values showing compartmental 

switches taking place between the four HSPC populations. Average H3K27ac signal in ii) 

Cluster C3 regions, and in iii) Cluster C4 regions among the four cell types. Significance scores 

were calculated using pairwise t tests (p < 0.0001). B) Pairwise comparisons of topological 

domain (TAD) boundaries between i) HSC-MPP and CMP, ii) HSC-MPP and GMP, iii) HSC-

MPP and MEP, and iv) GMP and MEP (domains identified using HOMER). 
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Figure S4. The genome architecture at heptad gene regulatory loci is conserved across 

HSPC subsets. Normalised HiC contact matrices at 10 kb resolution located at individual 

heptad genes’ regulatory loci – A) FLI1 locus (GRCh38 chr11:128511084-128978507), B) 

ERG locus (GRCh38 chr21:37370238-39198738), C) GATA2 locus 

(GRCh38 chr3:128262936-128761435), D) RUNX1 locus (GRCh38 chr21:34758869-

36011624), E) TAL1 locus (GRCh38 chr1:47168881-47340728), F) LYL1 locus 

(GRCh38 chr19:12787014-13852204), and G) LMO2 locus (GRCh38 chr11:33831641-

34445745), in HSC-MPP, CMP, GMP, and MEP respectively. Accompanying each triangular 

plot are ChIP-seq tracks showing normalized CTCF, STAG2, and PolII signal. 
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Figure S5. CTCF and STAG2 occupancy across cell types. Density plots showing CTCF (left) 

and STAG2 (right) signal in each cell type at CTCF peak regions (identified by macs2; p <1e-

5) in HSC-MPP, CMP, GMP, MEP. CTCF and STAG2 occupancy at CTCF-bound sites shows 

minimal variation between cell types.  
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Figure S6. H3K27ac HiChIP identifies cell-type specific interactions between heptad gene 

promoters and potential regulatory regions. A) i) Raw HiChIP contact matrix, CTCF, 

H3K4me3, H3K27ac, IgG, RNA-seq, and significant H3K27ac HiChIP interactions (FDR ≤ 

0.01) at the FLI1 locus (GRCh38 chr11:128511084-128978507). ii) Magnified view of the 

FLI1 locus, with potential regulators looping to the promoter shown in red and potential 

regulators engaged in indirect regulatory activities shown in black. iii) FLI1, ERG, GATA2, 

RUNX1, TAL1, LYL1, and LMO2 peaks at the regulatory regions defined in ii, are shown. B) 

i) Raw HiChIP contact matrix, CTCF, H3K4me3, H3K27ac, IgG, RNA-seq, and significant 

H3K27ac HiChIP interactions (FDR ≤ 0.01) at the GATA2 locus (chr3:128,262,936-

128,761,435). ii) Magnified view of the GATA2 locus, with potential regulators looping to the 

promoter shown in red and potential regulators engaged in indirect regulatory activities shown 

in black. iii) FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, and LMO2 peaks at the regulatory 

regions defined in ii, are shown. C) i) Raw HiChIP contact matrix, CTCF, H3K4me3, 

H3K27ac, IgG, RNA-seq, and significant H3K27ac HiChIP interactions (FDR ≤ 0.01) at the 

RUNX1 locus (GRCh38 chr21:34758869-36011624). ii) Magnified view of the RUNX11 locus, 

with potential regulators looping to the promoter shown in red. iii) FLI1, ERG, GATA2, 

RUNX1, TAL1, LYL1, and LMO2 peaks at the regulatory regions defined in ii, are shown. D) 

i) Raw HiChIP contact matrix, CTCF, H3K4me3, H3K27ac, IgG, RNA-seq, and significant 

H3K27ac HiChIP interactions (FDR ≤ 0.01) at the TAL11 locus (GRCh38 chr1:47,168,881-

47,340,728). ii) Magnified view of the TAL11 locus, with potential regulators looping to the 

promoter shown in red. iii) FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, and LMO2 peaks at 

the regulatory regions defined in ii, are shown. E) i) Raw HiChIP contact matrix, CTCF, 

H3K4me3, H3K27ac, IgG, RNA-seq, and significant H3K27ac HiChIP interactions (FDR ≤ 

0.01) at the LYL1 locus (GRCh38 chr19:12787014-13852204). ii) Magnified view of the LYL1 

locus, with potential regulators looping to the promoter shown in red. iii) FLI1, ERG, GATA2, 
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RUNX1, TAL1, LYL1, and LMO2 peaks at the regulatory regions defined in ii, are shown. F) 

i) Raw HiChIP contact matrix, CTCF, H3K4me3, H3K27ac, IgG, RNA-seq, and significant 

H3K27ac HiChIP interactions (FDR ≤ 0.01) at the LMO2 (GRCh38 chr11:33831641-

34445745). ii) Magnified view of the LMO2 locus, with potential regulators looping to the 

promoter shown in red. iii) FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, and LMO2 peaks at 

the regulatory regions defined in ii, are shown.  

Only those HiChIP interactions where both interacting ends were found at the given locus are 

shown. In addition the ChIP-seq peaks shown are RPKM-normalised and white boxes indicate 

presence of a computationally called ChIP-seq peak at the specific region. 
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Figure S7. Gene regulatory network maps of the heptad genes in HSPC subsets. Heptad 

GRNs in A) HSC-MPP, B) CMP, C) GMP, and D) MEP, constructed using BioTapestry 

software. Boxes in bold show active regulators, and their interaction with respective promoters 

marked with solid black lines. Solid coloured lines indicate heptad factors binding to regulatory 

regions (FLI1-pink, ERG-red, GATA2-purple, RUNX1-dark blue, TAL1-green, LYL1-aqua, 

and LMO2-orange), while dashed lines link regulatory sub-circuits to individual genes. 
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Figure S8.  The role of heptad transcription factors in regulating lineage-specific gene 

expression.  Ingenuity pathway analysis performed in DEHGs: A) DEHGGMP, and B) 

DEHGMEP. 
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Figure S9. Cell-type specific binding patterns of heptad factors identified across stem cell 

specific genes. A) Genes associated with stem cell function. Left: k-means clustered heatmaps 

of TF binding intensity at promoters and distal regulatory regions. Profile plots show 

normalised signal for each TF in each cell type at the regions depicted in the heatmap. Right: 

z-score normalised heatmaps of RNA-seq counts (GSE75384) for the corresponding gene in 

each cell type. B-E) Normalised TF signal at all promoters and distal regulatory regions for 

myeloid, erythroid, and stem cell genes. P-values for all pairwise comparisons (paired t-test) 

are shown in Table S4. B) Boxplots showing normalised ERG signal at promoters and distal 

regulatory regions of myeloid, erythroid, and stem cell genes. C) Boxplots showing normalised 

FLI1 and RUNX1 signal at promoters and distal regulatory regions of myeloid, erythroid, and 

stem cell genes. D) Boxplots showing normalised GATA2, LYL1, and LMO2 signal at 

promoters and distal regulatory regions of myeloid, erythroid, and stem cell genes. E) Boxplots 

showing normalised TAL1 signal at promoters and distal regulatory regions of myeloid, 

erythroid, and stem cell genes. 
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Figure S10. Sites bound by single heptad factors in HSC-MPPs are commonly bound by 

additional heptad factors in committed progenitors and mature cells. A-C) Density plots 

showing enrichment of TFs in A) HSC-MPPs B) GMPs C) MEPs at regions called as peaks 

for one heptad factor in HSC-MPP.  TAL1 had only 54 peaks in HSC-MPPs which precluded 

analysis using this method. Columns show peak regions that are unique to the indicated heptad 

factor in HSC-MPP, rows show signal density of the indicated TF across those regions.  D) 

Density plots showing enrichment of PU.1 in dendritic cells (DC) (GSE58864) and GATA1 in 

proerythroblasts (ProE) (GSE36985) at regions called as peaks for one heptad factor in HSC-

MPP.  



20 
 

 

  



21 
 

 

 

Figure S11. Transcription factor signal enrichment at ATAC regions in HSPCs. A) 

Individual violin plots show normalized transcription factor signals for FLI1, ERG, GATA2, 

RUNX1, TAL1, LYL1, and LMO2, in each of the 13 derived clusters for the four cell types 

studied. B) UMAPs showing heptad-factor-, PU.1-, and CTCF-normalized signals at accessible 

regions in i) HSC-MPP, ii) CMP, iii) GMP, and iv) MEP. C) UMAPs colored based on log2 
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fold change of binding of heptad transcription factors and PU.1 in pairwise comparisons 

between i) HSC-MPP and GMP, and ii) HSC-MPP and MEP. 
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Figure S12. Cell-type specificity of regulatory elements is encoded in the underlying motif 

composition. (A-C) Heatmaps showing cpm-normalised RNA-seq counts (GSE75384) for 

selected genes in HSC-MPPs, CMPs, GMPs, MEPs, monocytes (Mono), erythroblasts (Ery). 

Genes shown correspond to motifs with positive SHAP values (Figure 7) for A) HSC-MPP 

model, B) GMP model, C) MEP model. Only genes expressed in at least one cell type are 

shown. D) UMAP representation of ATAC-seq regions in CD34+ cells (grey) with regions 

corresponding to late γ retroviral integration sites (γRV-IS, n = 2111) colored in black. Late 

γRV-IS integration sites correspond to functionally defined regulatory regions in long term 

repopulating human HSCs 1. E) Graphs showing predicted probabilities that γRV-IS are HSC-

MPP-, GMP-, or MEP-specific for n = 1674 γRV-IS. Sites that overlapped the model training 

data were excluded from prediction analysis.  
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Supplemental Methods 

Antibodies, key reagents, and software 

 A complete list of key reagents is available in Table S9. 

 

Biological samples 

Mobilized peripheral blood samples were collected with patient consent in accordance 

with the Declaration of Helsinki, and used with institutional ethics approval ref:08/190 from 

South Eastern Sydney Local Health District, NSW, Australia. 

 

Isolation of CD34+ cells from cryopreserved apheresis packs 

Cryopreserved cells were thawed, diluted 1:4 in 2.5% dextran/12.5% human albumin 

in 0.9% saline, centrifuged 200g/15 min/room temperature (RT) and resuspended in 

phosphate-buffered saline (DPBS) containing 10% fetal bovine serum (FBS). Cells were 

underlaid with lymphoprep, centrifuged 800g/30 min/RT, and mononuclear cells (MNCs) 

collected from the interface and washed with DPBS. MNCs were resuspended in ice cold 

CliniMACS buffer supplemented with 0.5% human albumin or AutoMACS running buffer 

then labelled with anti-CD34 microbeads according to manufacturer’s instructions (Miltenyi 

Biotec). CD34+ cells were enriched using either a CliniMACS Plus (Miltenyi Biotec) using 

standard clinical parameters or an AutoMACS (Miltenyi Biotec) using the program posseld2.  

 

Labelling and sorting of CD34+ cells. 

CD34+ cells were resuspended in FACS buffer (5% FBS/1mM EDTA in DPBS) 
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containing 1/10 diluted FcBlock at a concentration of 107 cells/100 µL and stained on ice for 

30 min with a cocktail of antibodies (CD34 subset markers – CD38, CD38, CD123, CD45RA, 

CD90: Lineage markers (LIN) – CD2, CD3, CD4, CD7, CD8a, CD10, CD11b, CD14, CD19, 

CD20, CD56, GlyA/GPA/CD235ab). Cells were sorted using a BD FACS ARIA II into the 

following populations: HSC-MPP (LIN-, CD34+, CD38lo, CD45RA-), CMP (LIN-, CD34+, 

CD38+, CD45RA-, CD123+), GMP (LIN-, CD34+, CD38+, CD45RA+, CD123+), MEP (LIN-, 

CD34+, CD38+, CD45RA-, CD123-) (Figure S1A). Population gates were set using 

fluorescence minus one controls, and phenotypic purity checks were performed on collected 

cell fractions.  

Functional validation of cell purity was carried out for a subset of experiments. Sorted 

cells were resuspended 1% methylcellulose supplemented with cytokines as described 2, then 

plated in triplicate at 500 cells per dish and incubated in a humidified 37oC incubator with 5% 

CO2 for 14 days. Three major types of colonies were counted: erythroid-lineage (BFU-E) 

colonies, myeloid-lineage (GM) colonies, and colonies with mixed-potential (GEMM) 

(Figure S1B).  

 

Crosslinking and preparation of nuclei 

Sorted cells were incubated in freshly prepared 1% formaldehyde in DPBS for 10 min 

at RT. Crosslinking was quenched by adding glycine to a final concentration of 0.125 M and 

incubating for 5 min at RT. Subsequent steps were performed at 4oC with cold buffers. Cells 

were washed then resuspended in cell lysis buffer (10mM Tris-Cl pH 8.0, 10mM NaCl, 0.2% 

Tergitol, supplemented with 1µg/mL leupeptin, 1mM Pefabloc SC, 10mM sodium butyrate) 

and incubated on ice for 10 minutes. Nuclei were centrifuged 1450g/10 min/4°C then snap 

frozen and stored at -80oC for later use. 
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Chromatin Immunoprecipitation (ChIP) 

ChIP for H3K27ac and H3K4me3 was carried out essentially as described 3. Nuclei 

(2–5 × 106/IP) were resuspended in 0.65mL nuclei lysis buffer (50mM Tris-Cl pH 8.0, 10mM 

EDTA, 1% SDS, protease inhibitors), incubated on ice for 10 minutes, with 0.4mL IP dilution 

buffer (20mM Tris-Cl pH 8.0, 2mM EDTA, 150mM NaCl, 1% Triton X-100, 0.01% SDS) 

and sonicated for 10 cycles in a Bioruptor Pico™ sonicator (Diagenode). Cleared supernatants 

were further diluted with 2.2mL IP dilution buffer, precleared with rabbit IgG then incubated 

overnight at 4oC with 5–10 µg of antibody. Antibody-chromatin complexes were recovered 

using protein G-agarose beads (Roche). After washing, immunoprecipitated DNA was eluted 

from beads, crosslinks reversed, and DNA purified using phenol-chloroform-isoamyl alcohol. 

ChIP libraries were prepared by a commercial supplier (Novogene). Donor cells used in each 

experiment are listed in Table S1. 

 

ChIPmentation 

ChIPmentation (CM) was carried out as described 4 with minor modifications. 

Biological triplicate experiments were performed for TFs except where noted otherwise 

(Table S2). Five million nuclei were resuspended in 100µL sonication buffer (10mM Tris pH 

8.0, 2mM EDTA, 0.25% SDS), sonicated for 10 cycles in a Bioruptor Pico™ sonicator 

(Diagenode) and diluted 1:1.5 in equilibrium buffer (10mM Tris pH 8.0, 233mM NaCl, 1.66% 

Triton X-100, 0.166% sodium deoxycholate, 1mM EDTA). Cleared supernatants were 

incubated overnight at 4oC with 2µg of antibody, and antibody-chromatin complexes 

recovered using protein A/G magnetic beads. To improve signal to noise ratio for ERG CM 

only, we used a modified pull down protocol with two major differences: 1) nuclei lysates 
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were not cleared by centrifugation after sonication, and 2) anti-ERG antibody was pre-

conjugated to magnetic protein A/G beads, and then incubated with nuclear lysate overnight 

at 4oC to recover antibody-chromatin complexes. 

After extensive washing, bead-bound complexes were resuspended in tagmentation 

mixture (25µL reaction containing 1 µL of enzyme in 1X buffer, Illumina) and incubated at 

37°C for 25minutes. Crosslinking was reversed and DNA purified using a MinElute PCR 

Purification Kit (Qiagen). Barcoding/adapter primers (Table S10) and KAPA™ HiFi HotStart 

Ready Mix (Roche) were used to amplify libraries; the number of PCR cycles used was 

empirically determined for each reaction. Amplified DNA was purified then size selected 

using AMPure XP beads (Beckman) and sequenced using a standard Illumina 2 x 150bp PE 

pipeline (Novogene).  

 

HiC and HiChIP 

Duplicate HiC and HiChIP libraries for each cell type were generated using the Arima 

Genomics HiC+ kit (Arima cat#A101020). Nuclei were lysed and chromatin digested with a 

restriction enzyme cocktail prior to end-filling with biotinylated nucleotides and ligation of 

proximal ends. For HiChIP, ligated fragments were then immunoprecipitated with the 

H3K27ac antibody. Biotinylated fragments were enriched and sheared prior to library 

preparation which was performed using Accel NGS 2S Plus DNA Library kit (Swift 

Biosciences).  

 

Bioinformatic processing 

Analyses were run using default parameters for each tool unless otherwise indicated. 

Bigwig files were visualized using the UCSC browser 5. Reads were aligned to the GRCh38 
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genome accession GCF_000001405.26 

(https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/). Heatmaps were plotted 

using seaborn unless otherwise indicated. 

 

Processing ATAC sequencing data 

SRA files were downloaded from GEO (GSE74912), converted to fastq format, and 

aligned to the GRCh38 genome. Mitochondrial and duplicate reads were removed 

(respectively) , reads shifted to account for Tn5-mediated excision, peaks called, and bigwig 

files generated (pipeline: SRA tools  - BWA  - samtools - picard MarkDuplicates - 

alignmentSieve - macs2 with a minimal threshold p-value of 1x10-5 - deeptools 

bamCoverage)6,7. To obtain a composite of all accessible regions in HSPCs, ATAC peaks 

from HSC-MPP, CMP, GMP, and MEP were merged using bedtools 8. 

 

Processing ChIP sequencing data 

ChIP fastq files were analysed as single end data. fastq files were processed to remove 

adapter sequences (cutadapt)9, trimmed to 100 bp (Trim Galore), then aligned to GRCh38 

(BWA). Reads were sorted (samtools) and duplicates removed (picard MarkDuplicates), then 

bam files from replicates merged (samtools merge). IgG bam files from the four cell types 

were merged to generate a single IgG control. Peaks were called (macs2 with a minimal 

threshold p-value of 1 x 10-5 and using the IgG track as the control), and RPKM-normalized 

bigwig files generated and plotted (deeptools bamCoverage, plotHeatmap) 10. Composite 

plots showing ChIPseq signal at specific genomic regions were plotted in python as 

previously described 11. 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
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Motif enrichment analysis  

 Motif enrichment analysis was performed using the FIMO tool from the MEME 

analysis suite 12 using ETS, GATA, RUNX, and E-Box motifs sourced from JASPAR 13 as a 

position weight matrix.  

 

Analysis of combinatorial binding 

 Genomic locations with occupancy of multiple heptad TFs were identified by 

intersecting ChIP peak coordinates (bedtools intersect). To assess the significance of each 

combination we performed a bootstrapping analysis essentially as previously described 14. 

Briefly, we applied a permutation test to address significance of combinatorial binding events 

between the seven transcription factors for all 119 possible binding patterns. We chose the 

merged ATAC peak set of 85,117 peaks to estimate the background distribution of 

combinatorial binding events. The standardized z-score metric was used to express the 

deviation of the combinatorial binding events in high confidence peaks from the expected mean 

(normalized by the standard deviation) of the background distribution.  

 

Analysis of HiC and HiChIP data 

HiChIP and HiC fastq files were processed and mapped to GRCh38, then PCR 

duplicates removed and contact matrices generated from the merged valid-pairs files (HiC-

Pro hicpro2juicebox) 15. Contact matrices (.hic files) were visualized using juicebox 16. 

HOMER was used to identify compartments and TADs from balanced HiC-Pro contact 

matrices. The first principal component (PC1) was generated using runHiCpca.pl at 50 kb 
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bins. In addition, H3K4me3 and H3K27me3 bed files from the respective cell types were used 

to assign accurate compartment labelling. To further identify TADs, findTADsAndLoops.pl 

function was used to generate TAD calls for each replicate separately – and merge2Dbed.pl 

to generate a union of TADs identified in each replicate. HiChIP contact matrices were used 

to generate interaction pairs at 5 kb resolution (MaxHiC)17 and the WashU browser was used 

for loop visualization 18. Most interactions spanned distances >10 kb.  

High confidence interactions (FDR ≤ 0.01) were used to generate a final list of 

promoter–regulator interactions. To map promoter-regulator interactions at heptad gene loci 

we identified HiChIP fragments which overlapped known promoters. Distal fragments that 

were linked to these promoters were intersected with ATAC peaks from the relevant 

populations to precisely map the contact region within 5kb HiCHIP fragments (Table S3). 

Contact regions were named according to their linear genomic distance upstream (-) or 

downstream (+) from the transcriptional start site (TSS).  

 

Visualization of gene regulatory networks (GRNs) 

GRNs were visualized with BioTapestry 19 using ChIPseq peak calls and HiChIP-

derived promoter–regulatory links to construct the network maps. 

 

Identifying differentially bound regions 

Candidate regulatory elements (REs) were defined as regions displaying 

combinatorial binding of heptad factors with a positive z-score, indicating that the 

combination is observed at higher frequency than expected by random chance. DiffBind was 

used to identify regions showing a significantly higher (FDR ≤ 0.05) combinatorial TF signal 

in one cell type compared to all others 20. Two criteria were used for linking differentially 
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bound REs with genes: the presence of a RE at a gene promoter, or within a HiChIP fragment 

that was in turn linked to a gene promoter. Gene lists derived using this method were 

subsequently used for GSEA, IPA, and single cell RNAseq analysis (Figure 4). 

 

Analysis of bulk RNAseq data 

Fastq files and count tables were downloaded from GEO (GSE75384) and fastq files 

aligned to GRCh38 (STAR) 21. edgeR was used to normalise the count table and calculate 

log2 CPM values 22 then derive a z-score of RNA expression. 

 

Analysis of single cell RNAseq data 

SCANPY 23 was used to process existing single-cell RNA sequencing data 24. The 

SCANPY score_genes tool was used to generate a score for our gene sets, which was ultimately 

plotted on the original tSNE map generated by those authors. 

 

TF occupancy at specific gene regulatory regions 

Lists of genes associated with stem, myeloid, or erythroid function (Table S5B) were 

compiled from MSigDB genesets25 (stem cell function – EPPERT_HSC_R26, 

IVANOVA_HEMATOPOIESIS_STEM_CELL27: myeloid cell development - 

BIOCARTA_MONOCYTE_PATHWAY, BIOCARTA_GRANULOCYTES_PATHWAY, 

GOBP_GRANULOCYTE_DIFFERENTIATION, 

GOBP_GRANULOCYTE_MIGRATION, GOBP_GRANULOCYTE_ACTIVATION: 

erythroid cell development - HALLMARK_HEME_METABOLISM28, 

 GNATENKO_PLATELET_SIGNATURE29, 
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BIOCARTA_PLATELETAPP_PATHWAY). Curated lists may not comprehensively 

catalogue every lineage specific gene. For this analysis promoter regions for each gene were 

defined as the ATAC peak occurring up to 10 kb upstream of the TSS. Distal fragments that 

were linked to these promoters in HiChIP datasets were intersected with ATAC peaks from 

the relevant population to define the distal regulatory element. Gene promoters lacking a 

looped distal region were excluded from this analysis.  To determine the heptad TF signal for 

each distal region, we added together the average signal across each region from log2-

normalised bigwig tracks from each TF (bigWigAverageOverBed).  If a looped distal 

regulator contained more than one ATAC peak, the TF signal from each peak region was 

averaged. We performed k-means clustering on the derived data using SciPy 30 and plotted 

the resulting heatmaps with seaborn.  

 

Clustering analysis 

The merged set of ATAC peaks which represent open chromatin regions across 

HSPCs were annotated using ChIP (heptad, PU.1, CTCF, ATAC, H3K27ac, H3K4me3, and 

H3K27me3) and ATAC signal from each individual cell type to create a dataframe of 85,100 

rows and 52 columns, and the regions clustered with SCANPY using the Louvain method 

23,31. Gene associations for each ATAC region were predicted with the Genomic Regions of 

Enrichment Analysis Tool (GREAT) using the basal plus extension method with default 

parameters 32,33. To identify regulatory regions preferentially used in specific cell types we 

compared TF signal at each region in HSC-MPP versus GMP, HSC-MPP versus MEP, and 

GMP versus MEP. We classified regions with log2 fold change > 2 for each heptad factor in 

a cell type as cell-specific-regions. Regions identified by this method were subsequently used 

for machine learning models (Figure 7). 
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Machine learning analysis to predict cell type 

We trained models using the R package XGBoost 34. Briefly, we read a table of motif 

counts across the individual cell-specific-regions and took 70% of the peaks at random as the 

training set. We removed motifs with low variability and retained the remaining 30% of peaks 

as the test set. During the training, a series of decision trees were created such that a “loss 

function” was reduced (binary logistic in our case), to minimize cell type prediction error. Post 

training, prediction was performed on the test set. SHapley Additive exPlanation (SHAP) 

scores were calculated for every motif and peak used in the training set to indicate their 

respective contribution to the classification. A positive SHAP score for any given motif 

indicates that the presence of that motif in a region increases the probability that region belongs 

to the target cell type while a negative score indicates that the presence of that motif in a region 

increases the probability that region belongs to the background set (i.e., one of the other cell 

types). We then ranked motifs according to their importance by adding the absolute SHAP 

scores for every motif. To identify the direction of enrichment, we calculated the mean number 

of counts of every motif in the peaks that come from the target cell type or from the background 

peaks separately; if the mean was higher in the peaks from the target cell type those motifs 

were indicated as enriched in the target cell type and vice versa for the background set.  

 

Analysis of γ retroviral integration site data 

Late γ retroviral integration cluster genomic coordinates 1, representing viral integration 

sites (and thus potentially active regulatory elements) in long term repopulating human HSCs, 

were first overlapped with our merged ATAC peaks to generate genomic regions to use with 

our machine learning models (late γRV-IS, n = 2111). Of these, 395 (18.7%) corresponded to 

HSC-MPP-specific ATAC regions identified in our analysis; conversely 9.8% of our HSC-
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MPP-specific sites corresponded to late γRV-IS. We next filtered out any regions that were 

part of the training sets for our models, leaving 1674 regions representing functionally 

validated regulatory regions that are active in hematopoietic stem cells with the capacity to 

engraft humans in a gene therapy setting (late γRV-IS).  Late γRV-IS regions were scored 

against each machine learning model, and the predicted probabilities for each model plotted. 

 

Data availability 

A UCSC browser session for visualisation of chromatin occupancy and looping data is 

provided at http://genome.ucsc.edu/s/PimandaLab/Heptad_Regulome. We also provide a web 

tool for data exploration (http://unsw-data-analytics.shinyapps.io/CD34_Heptad_Regulome). 

Raw and processed sequencing files have been uploaded to GEO with accession # GSE231486. 

  

http://genome.ucsc.edu/s/PimandaLab/Heptad_Regulome
http://unsw-data-analytics.shinyapps.io/CD34_Heptad_Regulome
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