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1 Proof of theorems

1.1 Proof of Theorem 1

Writing rn := {V (fn, Pn)− V (fn, P0)} − {V (f0, Pn)− V (f0, P0)}, we �rst decompose

vn − v0 = {V (f0, Pn)− V (f0, P0)}+ {V (fn, P0)− V (f0, P0)}+ rn .

In view of condition (A2), the functional delta method is applicable and yields that

V (f0, Pn)− V (f0, P0) = V̇ (f0, P0;Pn − P0) + oP (n−1/2)

=
1

n

n∑
i=1

V̇ (f0, P0; δZi − P0) + oP (n−1/2) ,

where V̇ (f0, P0;h) is the Gâteaux derivative of the mapping P 7→ V (f0, P ) at P0 in the direction h and

δz is the degenerate distribution on z. Under condition (A1), we have that |V (fn, P0) − V (f0, P0)| ≤

C‖fn − f0‖2F = oP (n−1/2) under condition (B1). It remains to show that rn = oP (n−1/2) as well. For

any given ε > 0, h ∈ Q and f ∈ F , we de�ne

R0(f, ε, h) :=
V (f, P0 + εh)− V (f, P0)

ε
− V̇ (f, P0;h) .
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Setting εn := n−1/2 and hn := n1/2(Pn − P0), we have that

n1/2rn =
[{V (fn, Pn)− V (fn, P0)} − {V (f0, Pn)− V (f0, P0)}]

εn

= {V̇ (fn, P0;hn) +R0(fn, εn, hn)} − {V̇ (f0, P0;hn) +R0(f0, εn;hn))} = An +Bn ,

where An := V̇ (fn, P0;hn) − V̇ (f0, P0;hn) and Bn := R0(fn, εn, hn) − R0(f0, εn, hn), and so, we can

write that P0

(
n1/2|rn| > ε

)
≤ P0 (|An| > ε/2) + P0 (|Bn| > ε/2). On one hand, since we can rewrite

An = V̇ (fn, P0;hn) − V̇ (f0, P0;hn) = n1/2
∫
gn(z)d(Pn − P0)(z), under conditions (B2) and (B3),

an application of Lemma 19.24 of van der Vaart (2000) yields that An = oP (1) under P0, and so,

P0(|An| > ε/2) −→ 0. On the other hand, we can write

P0 (|Bn| > ε/2) = P0 (|Bn| > ε/2, ‖fn − f0‖F < δ) + P0 (|Bn| > ε/2, ‖fn − f0‖F ≥ δ)

≤ P0

(
sup f∈F :‖f−f0‖F<δR0(f, εn, hn) > ε/4, ‖fn − f0‖F < δ

)
+ P0 (‖fn − f0‖F ≥ δ)

≤ P0

(
sup f∈F :‖f−f0‖F<δR0(f, εn, hn) > ε/4

)
+ P0 (‖fn − f0‖F ≥ δ) .

Since the �rst and second summands tend to zero by conditions (A2) and (B1), respectively, it follows

that P0 (|Bn| > ε/2) −→ 0. In summary, under conditions (A1)�(A2) and (B1)�(B3), we �nd that

vn − v0 =
1

n

n∑
i=1

V̇ (f0, P0; δZi − P0) + oP (n−1/2)

under sampling from P0, as claimed.

Now, we verify the claim of asymptotic e�ciency. Let s be any bounded element of L0
2(P0). We

construct the parametric submodel {P0,ε} with univariate index ε de�ned in a neighborhood of zero and

with corresponding distribution function de�ned pointwise as F0,ε(z) := F0(z) + ε
∫
(−∞,z] s(u)F0(du),

where F0 denotes the distribution function of P0 and (−∞, z] is interpreted as an orthant in the

dimension of Z. We note that z 7→
∫
(−∞,z] s(u)F0(du) induces a �nite signed measure h(s) ∈ R since

it is cadlag and has �nite total variation norm. We then write that

∣∣∣∣V (f0,ε, P0,ε)− V (f0, P0)

ε
− V̇ (f0, P0;h(s))

∣∣∣∣
≤
∣∣∣∣V (f0,ε, P0,ε)− V (f0,ε, P0) + V (f0,ε, P0)− V (f0, P0)

ε
− V̇ (f0,ε, P0;h(s)) + V̇ (f0,ε, P0;h(s))− V̇ (f0, P0;h(s))

∣∣∣∣
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≤ U1(ε) + U2(ε) + U3(ε) ,

where we have de�ned the summands

U1(ε) :=

∣∣∣∣V (f0,ε, P0,ε)− V (f0,ε, P0)

ε
− V̇ (f0,ε, P0;h(s))

∣∣∣∣ , U2(ε) :=

∣∣∣∣V (f0,ε, P0)− V (f0, P0)

ε

∣∣∣∣
and U3(ε) := |V̇ (f0,ε, P0;h(s)) − V̇ (f0, P0;h(s))|. By conditions (A1) and (A3), we can bound U2(ε)

above by C‖f0,ε−f0‖2F/ε = O(ε). By condition (A4), we have that U3(ε) = O(ε). Since ‖f0,ε−f0‖F =

O(ε) by condition (A3), then for small enough ε we have that

U1(ε) ≤ sup
f∈F :‖f−f0‖F≤δ

∣∣∣∣V (f, P0,ε)− V (f, P0)

ε
− V̇ (f, P0;h(s))

∣∣∣∣ ,
where the right-hand side of the inequality itself tends to zero as ε→ 0 in view of condition (A2). In

other words, we �nd that U1(ε) = O(ε). Thus, we �nd that

∣∣∣∣V (f0,ε, P0,ε)− V (f0, P0)

ε
− V̇ (f0, P0;h(s))

∣∣∣∣ = O(ε) ,

which implies that the derivative ε 7→ V (f0,ε, P0,ε) at ε = 0 equals V̇ (f0, P0;h(s)). In view of Frangakis

et al. (2015) and Luedtke et al. (2015), the evaluation of the nonparametric e�cient in�uence function

at observation value z is obtained by choosing s so that h(s) = δz − P0, establishing that vn is indeed

asymptotically e�cient relative to a nonparametric model.

1.2 Proof of Theorem 2

As before, we denote by Bn ∈ {1, . . . ,K}n a random vector generated by sampling uniformly from

{1, . . . ,K} with replacement, and by Dk the subset of observations with index in {i : Bn,i = k}

for k = 1, . . . ,K. Additionally, we denote by fk,n an estimator of f0 constructed using the data

in ∪j 6=kDj , and we write Pk,n for the empirical distribution estimator of P0 based on the data in

Dk. Recalling that v∗n = 1
K

∑K
k=1 V (fk,n, Pk,n), we note that v∗n − v0 = A1,K,n + A2,K,n + A3,K,n,

where A1,K,n := 1
K

∑K
k=1 {V (f0, Pk,n)− V (f0, P0)}, A2,K,n := 1

K

∑K
k=1 {V (fk,n, P0)− V (f0, P0)} and

A3,K,n := 1
K

∑K
k=1 rk,n with rk,n := {V (fk,n, Pk,n)− V (fk,n, P0)} − {V (f0, Pk,n)− V (f0, P0)}. We will

study separately each of these three summands.
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Under condition (A2), the functional delta method can be used to establish the representation

V (f0, Pk,n)−V (f0, P0) = V̇ (f0, P0;Pk,n−P0) + oP (n
−1/2
k ) = 1

nk

∑
i∈Dk V̇ (f0, P0; δZi −P0) + oP (n

−1/2
k )

for each k ∈ {1, . . . ,K}, from which it follows that

∣∣∣∣∣A1,K,n −
1

n

n∑
i=1

V̇ (f0, P0; δZi − P0)

∣∣∣∣∣ ≤ max
k

∣∣∣∣ n

Knk
− 1

∣∣∣∣ · 1

n

n∑
i=1

V̇ (f0, P0; δZi − P0) +
1

K

K∑
k=1

oP (n
−1/2
k )

= OP (n−1) + oP (n−1/2) = oP (n−1/2) .

Under conditions (A1) and (B1'), we have that

|A2,K,n| ≤ max
k
|V (fk,n, P0)− V (f0, P0)| ≤ C max

k
‖fk,n − f0‖2F = oP (n−1/2) .

Finally, we show that |A3,K,n| = oP (n−1/2) by showing that |rk,n| = oP (n−1/2) for each k. Similarly

as in the proof of Theorem 1, setting εk,n := n
−1/2
k and hk,n := n

1/2
k (Pk,n − P0), we can write that

n
1/2
k rk,n = Ak,n +Bk,n, where we have de�ned the terms Ak,n := V̇ (fk,n, P0;hk,n)− V̇ (f0, P0;hk,n) and

Bk,n := R0(fk,n, εk,n, hk,n)−R0(f0, εk,n, hk,n). Following the same argument made for Bn in the proof

of Theorem 1, we can show that Bk,n = oP (1). We then note that Ak,n = n
1/2
k

∫
gk,n(z)d(Pk,n−P0)(z).

For any ε > 0, by Chebyshev's inequality, we have that

0 ≤ P0 (|Ak,n| > ε | ∪j 6=kDj) ≤
var0 [ gk,n(Z) | ∪j 6=k Dj ]

ε2
≤

P0g
2
k,n

ε2
.

Thus, by condition (B2'), we have that P0 (|Ak,n| > ε | ∪j 6=kDj) = oP (1). Since P0 (|Ak,n| > ε | ∪j 6=kDj)

is uniformly bounded by virtue of being a probability, this implies that E0[P0 (|Ak,n| > ε | ∪j 6=kDj)] =

o(1), and so, P0 (|Ak,n| > ε) = o(1). Thus, we �nd that Ak,n = oP (1). As such, we have found that

|rk,n| = oP (n
−1/2
k ), and since n/nk

P−→ K, this implies that |rk,n| = oP (n−1/2).

The proof of nonparametric asymptotic e�ciency is identical to that provided for Theorem 1.

1.3 Proof of Theorem 3

Fix an arbitrary h ∈ H, and let {P0,ε} ⊂ M be an arbitrary regular univariate parametric submodel

through P0 at ε = 0 and with score h for ε at ε = 0. Write f0,ε := fP0,ε for brevity. We note that

V (f0,ε, P0,ε)− V (f0, P0) = V (f0,ε, P0,ε)− V (f0, P0,ε) + V (f0, P0,ε)− V (f0, P0)
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= V (f0,ε, P0)− V (f0, P0) + V (f0, P0,ε)− V (f0, P0) + o(ε) , (S1)

where the second line follows from the �rst in view of condition (A5a). By the nonparametric pathwise

di�erentiability of P 7→ V (f0, P ) at P0, we have that V (f0, P0,ε) − V (f0, P0) = ε
∫
d0(z)h(z)dP0(z) +

O(ε2), where d0 is the nonparametric EIF of P 7→ V (f0, P ) at P0. Condition (A5b) and (A5c) together

indicate that

d

dε
V (f0,ε, P0)

∣∣∣∣
ε=0

= 0 ,

and furthermore, that V (f0,ε, P0) − V (f0, P0) = o(ε). So, in view of equation S1, we obtain the

representation V (f0,ε, P0,ε)−V (f0, P0) = ε
∫
d0(z)h(z)dP0(z) +o(ε), which implies that P 7→ V (fP , P )

is pathwise di�erentiable at P0 relative to the nonparametric modelM and has nonparametric EIF d0.

2 Explicit description of estimation procedure for Examples 1�4

In this section, we provide the explicit form of our proposed estimator for Examples 1�4. For each

example, we describe both the simple plug-in estimator and the cross-�tted estimator. When we

discuss cross-�tting, recall that we generate a random partition assignment vector Bn ∈ {1, . . . ,K}n

by sampling uniformly from {1, . . . ,K} with replacement, and denote by Dk the subset of observations

with index in {i : Bn,i = k} for k = 1, . . . ,K. For each k = 1, . . . ,K, we denote by fk,n and fk,n,s

estimators of f0 and f0,s, respectively, constructed on the data in
⋃
j 6=kDj , and we denote by Pk,n the

empirical distribution estimator of P0 based on the data in Dk.

Example 1: R2

The di�erence in R2 VIM estimator is

ψn,s =

[
1−

∑n
i=1{Yi − fn(Xi)}2∑n
i=1(Yi − Y n)2

]
−
[
1−

∑n
i=1{Yi − fn,s(Xi)}2∑n

i=1(Yi − Y n)2

]
,

where Y n := 1
n

∑n
i=1 Yi is the marginal empirical mean of Y . In this example, fn = µn and fn,s = µn,s,

where µn and µn,s are estimators of µ0 and µ0,s, respectively. For each k = 1, . . . ,K, the fold-speci�c

di�erence in R2 VIM estimator is

ψk,n,s =

[
1−

1
nk

∑
i∈Dk{Yi − fk,n(Xi)}2

1
nk

∑
i∈Dk(Yi − Y k,n)2

]
−

[
1−

1
nk

∑
i∈Dk{Yi − fk,n,s(Xi)}2

1
nk

∑
i∈Dk(Yi − Y k,n)2

]
,
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where nk :=
∑n

i=1 I(i ∈ Dk) is the number of observations in fold k, and Y k,n := 1
nk

∑n
i∈Dk Yi is the

marginal empirical mean of Y in fold k. The cross-�tted estimator is then ψ∗n,s = 1
K

∑K
k=1 ψk,n,s.

Example 2: deviance

The di�erence in deviance VIM estimator is

ψn,s =

[
1−

1
n

∑n
i=1{Yi log fn(Xi) + (1− Yi) log(1− fn(Xi))}

πn log(πn) + (1− πn) log(1− πn)

]

−

[
1−

1
n

∑n
i=1{Yi log fn,s(Xi) + (1− Yi) log(1− fn,s(Xi))}

πn log(πn) + (1− πn) log(1− πn)

]
,

where πn := 1
n

∑n
i=1 Yi is the empirical estimator of the marginal probability P0 (Y = 1). Again, in

this example, fn = µn and fn,s = µn,s. For each k = 1, . . . ,K, the fold-speci�c di�erence in deviance

VIM estimator is

ψk,n,s =

[
1−

1
nk

∑
i∈Dk{Yi log fk,n(Xi) + (1− Yi) log(1− fk,n(Xi))}
πk,n log(πk,n) + (1− πk,n) log(1− πk,n)

]

−

[
1−

1
nk

∑
i∈Dk{Yi log fk,n,s(Xi) + (1− Yi) log(1− fk,n,s(Xi))}

πk,n log(πk,n) + (1− πk,n) log(1− πk,n)

]
,

where πk,n := 1
nk

∑
i∈Dk Yi is the marginal estimator of P0 (Y = 1) in fold k. The cross-�tted estimator

is then ψ∗n,s = 1
K

∑K
k=1 ψk,n,s.

Example 3: classi�cation accuracy

The di�erence in classi�cation accuracy VIM estimator is ψn,s = 1
n

∑n
i=1 I{Yi = fn(Xi)}− 1

n

∑n
i=1 I{Yi =

fn,s(Xi)}. Sensible estimators of f0 and f0,s are given by

fn : x 7→ I {µn(x) > 0.5} and fn,s : x 7→ I {µn,s(x) > 0.5} .

The fold-speci�c di�erence in classi�cation accuracy VIM estimator is

ψk,n,s =
1

nk

∑
i∈Dk

I{Yi = fk,n(Xi)} −
1

nk

∑
i∈Dk

I{Yi = fk,n,s(Xi)} .

The cross-�tted estimator is then ψ∗n,s = 1
K

∑K
k=1 ψk,n,s.
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Example 4: area under the ROC curve

The di�erence in AUC VIM estimator is

ψn,s =
1

n0n1

n∑
i=1

n∑
j=1

I{fn(Xi) < fn(Xj)}(1− Yi)Yj −
1

n0n1

n∑
i=1

n∑
j=1

I{fn,s(Xi) < fn,s(Xj)}(1− Yi)Yj ,

where n1 :=
∑n

i=1 Yi is the number of observations with corresponding Y = 1 and n0 := n − n1. As

above, in this example, we can take fn = µn and fn,s = µn,s. The fold-speci�c di�erence in AUC VIM

estimator is

ψk,n,s =
1

nk,0nk,1

∑
i∈Dk

∑
j∈Dk

I{fk,n(Xi) < fk,n(Xj)}(1− Yi)Yj

− 1

nk,0nk,1

∑
i∈Dk

∑
j∈Dk

I{fk,n,s(Xi) < fk,n,s(Xj)}(1− Yi)Yj ,

where nk,1 :=
∑

i∈Dk I(Yi = 1) is the number of observations with corresponding Y = 1 in fold k and

nk,0 := nk − nk,1. The cross-�tted estimator is then ψ∗n,s = 1
K

∑K
k=1 ψk,n,s.

3 Additional technical details

3.1 Bayes classi�er maximizes classi�cation accuracy

Suppose that Y ∈ {0, 1} is a binary random variable. De�ne the Bayes classi�er b0 : x 7→ I{µ0(x) >

1/2} with µ0(x) = E0(Y | X = x). For any �xed x ∈ X , we have that

P0{f(X) = Y | X = x} = P0{Y = 1, f(X) = 1 | X = x}+ P0{Y = 0, f(X) = 0 | X = x}

= f(x)P0(Y = 1 | X = x) + {1− f(x)}P0(Y = 0 | X = x)

= f(x)µ0(x) + {1− f(x)}{1− µ0(x)} ,

which allows us to write that

P0{f(X) = Y | X = x} − P0{b0(X) = Y | X = x}

= µ0(x){f(x)− b0(x)}+ {1− µ0(x)}[{1− f(x)} − {1− b0(x)}]

= {2µ0(x)− 1}{f(x)− b0(x)} ≤ 0
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by de�nition of b0. It follows then that

P0 {f(X) = Y } − P0 {b0(X) = Y } = E0 [P0{f(X) = Y | X}]− E0 [P0{b0(X) = Y | X}]

= E0 [P0{f(X) = Y | X} − P0{b0(X) = Y | X}] ≤ 0 ,

so that b0 is the maximizer of the classi�cation accuracy P0{Y = f(X)}.

3.2 Conditional mean maximizes the area under the ROC curve

Suppose that Y ∈ {0, 1} is a binary random variable. For a given function f ∈ F , we de�ne the

conditional distribution functions

F1(P0, f)(c) := P0 {f(X) ≤ c | Y = 1} and F0(P0, f)(c) := P0 {f(X) ≤ c | Y = 0} .

If Y denotes the presence of a disease, then 1 − F1(P0, f)(c) and F0(P0, f)(c) denote the sensitivity

and speci�city of a medical test that �ags the presence of disease if and only if f(X) > c. The AUC

value corresponding to f and P0 can be written as

P0 {f(X1) < f(X2) | Y1 = 0, Y2 = 1} =

∫ ∞
0
{1− F1(P0, f)(c)}F0(P0, f)(dc)

=

∫ 1

0

{
1− F1(P0, f)(F−10 (P0, f)(w))

}
dw .

For a �xed w, the integrand 1− F1(P0, f)(F−10 (P0, f)(w)) is the sensitivity of a test based on f and a

cuto� that results in speci�city w. By an application of the Neyman-Pearson Lemma, it is known that,

for any �xed speci�city level, any strictly increasing transformation of the likelihood ratio mapping

x 7→ P0 (Y = 1 | X = x) /P0 (Y = 0 | X = x) = µ0(x)/{1 − µ0(x)} gives an optimal choice of f . in

particular, the function f : x 7→ µ0(x) is optimal. Since this is true irrespective of the �xed speci�city

level, it holds uniformly across speci�city levels and hence also maximizes the AUC value, as claimed.

3.3 Veri�cation of conditions (A1) and (A2) for Examples 1�4

Example 1: R2

We have that |V (f, P0) − V (f0, P0)| = E0{f(X) − f0(X)}2/σ2(P0) so that |V (f, P0) − V (f0, P0)| =
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O(‖f−f0‖2F ) and condition (A1) holds. We can verify that V̇ (f, P0;h) = −
∫
{y−f(x)}2h(dz)/σ2(P0).

Since P 7→ EP {Y − f(X)}2 is linear and thus Hadamard di�erentiable uniformly in f , condition (A2)

can be shown to hold for any δ > 0 provided the marginal distribution of Y under P0 has bounded

support.

Example 2: deviance

Using that f0 = µ0 and setting a0 := −2/{logP0(Y = 0) + logP0(Y = 1)}, a standard argument based

on Taylor approximations allows to write that

|V (f, P0)− V (f0, P0)| = a0

∣∣∣∣E0

[
f0(X) log

{
f(x)

f0(x)

}
+ {1− f0(x)} log

{
1− f(x)

1− f0(x)

}]∣∣∣∣
≤ a0

2
E0

[
{f(x)− f0(x)}2

{
f0(x)

ξ0(x)
+

1− f0(x)

1− ξ1(x)

}]

for some ξ0, ξ1 : X → Y lying pointwise between f and f0. If f(X), f0(X) ∈ (δ, 1 − δ) almost surely

under P0, then we �nd that |V (f, P0) − V (f0, P0)| ≤ a0
(
1−δ
δ

)
‖f − f0‖2F . Thus, condition (A1) then

holds with α = 2. Since P 7→ EP [Y log f(X) + (1− Y ) log{1− f(X)}] is linear and thus Hadamard

di�erentiable uniformly in f , condition (A2) can again be shown to hold for any δ > 0.

Example 3: classi�cation accuracy

Using that f0 : x 7→ I{µ0(x) > 1/2} is an optimizer of accuracy, and writing any candidate prediction

function f : X → {0, 1} as f(x) = I{µ(x) > 1/2} for some function µ : X → [0, 1], we can write

0 ≤ P0 {Y = f0(X)} − P0 {Y = f(X)} = E0 [I {Y = f0(X)} − I {Y = f(X)}]

= P0 {Y = f0(X), Y 6= f(X)} − P0 {Y 6= f0(X), Y = f(X)}

= P0 {f0(X) = 1, f(X) = 0, Y = 1}+ P0 {f0(X) = 0, f(X) = 1, Y = 0}

− P0 {f0(X) = 0, f(X) = 1, Y = 1} − P0 {f0(X) = 1, f(X) = 0, Y = 0}

= [P0{Y = 1 | µ0(X) ≥ 1
2 > µ(X)} − P0{Y = 0 | µ0(X) ≥ 1

2 > µ(X)}]P0{µ0(X) ≥ 1
2 > µ(X)}

+ [P0{Y = 0 | µ(X) ≥ 1
2 > µ0(X)} − P0{Y = 1 | µ(X) ≥ 1

2 > µ0(X)}]P0{µ(X) ≥ 1
2 > µ0(X)}

= [2P0{Y = 1 | µ0(X) ≥ 1
2 > µ(X)} − 1]P{µ0(X) ≥ 1

2 > µ(X)}

+ [2P0{Y = 0 | µ(X) ≥ 1
2 > µ0(X)} − 1]P{µ(X) ≥ 1

2 > µ0(X)} .
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Now, on one hand, we note that

P0{Y = 1 | µ0(X) ≥ 1
2 > µ(X)} − 1

2 = E0{Y | µ0(X) ≥ 1
2 > µ(X)} − 1

2

= E0{µ0(X) | µ0(X) ≥ 1
2 > µ(X)} − 1

2 = E0{µ0(X)− 1
2 | µ0(X) ≥ 1

2 > µ(X)} ,

and so it follows that |P0{Y = 1 | µ0(X) ≥ 1
2 > µ(X)} − 1

2 | ≤ ‖µ − µ0‖∞. We can similarly show

that |P0{Y = 0 | µ(X) ≥ 1
2 > µ0(X)} − 1

2 | ≤ ‖µ − µ0‖∞. On the other hand, in view of the margin

condition we impose, we have that

P0{µ0(X) ≥ 1
2 > µ(X)} ≤ P0{|µ0(X)− 1

2 | < |µ(X)− µ0(X)|} ≤ κ‖µ− µ0‖∞

and similarly, P0{µ(X) ≥ 1
2 > µ0(X)} ≤ κ‖µ−µ0‖∞. Combining the inequalities we have derived, we

conclude that 0 ≤ P0{Y = f0(X)} − P0{Y = f(X)} ≤ 4κ‖µ− µ0‖∞.

Example 4: Area under the ROC curve

We begin by writing

0 ≤ P0 {f0(X1) < f0(X2), Y1 = 0, Y2 = 1} − P0 {f(X1) < f(X2), Y1 = 0, Y2 = 1}

= E0 [I {f0(X1) < f0(X2), Y1 = 0, Y2 = 1} − I {f(X1) < f(X2), Y1 = 0, Y2 = 1}]

= 1
2 E0 [I {f0(X1) < f0(X2), Y1 = 0, Y2 = 1}+ I {f0(X1) ≥ f0(X2), Y1 = 1, Y2 = 0}]

− 1
2 E0 [I {f(X1) < f(X2), Y1 = 0, Y2 = 1}+ I {f(X1) ≥ f(X2), Y1 = 1, Y2 = 0}]

= 1
2 E0 [(Y2 − Y1)I {f0(X1) < f0(X2), f(X1) ≥ f(X2)}]

+ 1
2 E0 [(Y1 − Y2)I {f0(X1) ≥ f0(X2), f(X1) < f(X2)}]

= 1
2 E0 [{f0(X2)− f0(X1)}I {f0(X1) < f0(X2), f(X1) ≥ f(X2)}]

+ 1
2 E0 [{f0(X1)− f0(X2)}I {f0(X1) ≥ f0(X2), f(X1) < f(X2)}]

≤ 1
2 E0 [|f0(X1)− f0(X2)|I {[f0(X1)− f0(X2)][f(X1)− f(X2)] < 0}] .

De�ning A := {f(X1)−f0(X1)}+{f0(X2)−f(X2)}, B := f0(X1)−f0(X2) and t : x 7→ |f(x)−f0(x)|,

we note that

{[f0(X1)− f0(X2)][f(X1)− f(X2)] < 0} = {B(A+B) < 0} = {(12A+B)2 − 1
4A

2 < 0}

10



= {|A| > |B|, AB < 0} ⊆ {|A| > |B|} ⊆ {|f0(X1)− f0(X2)| < t(X1) + t(X2)} .

Using this result and the inequality derived above, and de�ning α0 := {P0(Y = 1)P0(Y = 0)}−1, we

have that

0 ≤ AUC(f0, P0)−AUC(f, P0)

= α0 [P0 {f0(X1) < f0(X2), Y1 = 0, Y2 = 1} − P0 {f(X1) < f(X2), Y1 = 0, Y2 = 1}]

≤ 1
2α0E0 [|f0(X1)− f0(X2)|I {[f0(X1)− f0(X2)][f(X1)− f(X2)] < 0}]

≤ 1
2α0E0 [|f0(X1)− f0(X2)|I {|f0(X1)− f0(X2)| < t(X1) + t(X2)}]

≤ 1
2α0E0 [|f0(X1)− f0(X2)|I {|f0(X1)− f0(X2)| < 2‖t‖∞}]

≤ α0 ‖t‖∞ P0 {|f0(X1)− f0(X2)| < 2‖t‖∞} ≤ 2α0 κ ‖t‖2∞ ,

where the last inequality follows from the margin condition we impose.

3.4 Derivation of the EIFs for Examples 5 and 6

Example 5: Mean outcome under a binary intervention rule

The nonparametric EIF for this example is derived in, for example, Sections 2 and 3 of Luedtke

and van der Laan (2016) and in Section A.1 of its supplement.

Example 6: Classi�cation accuracy under outcome missingness

Recall that, in this example, the ideal-data structure consists of Z := (X,Y ) ∼ P, and the observed

data structure is Z := (X,∆, U), where ∆ is the indicator of having observed the outcome Y , and we

have de�ned U := ∆Y . The ideal-data nonparametric EIF at P, following Appendix A, is given by

φFP(x, y) = I{y = fP(x)} − V (fP ,P).

Based on results in Chapter 25.5.3 of van der Vaart (2000), the observed-data nonparametric EIF at

P is given by

φP (z) =
δ

gP (x)
φFP(z) +

{
1− δ

gP (x)

}
EP {φFP(Z) | ∆ = 1, X = x} . (S2)

11



Table S1: Approximate values of ψ0,s in the numerical experiments.

Importance measure Scenario X1 X2 X3 X4 (X1, X3) (X2, X4)

Accuracy
(1,2,3) 0.136 0.236 0 0 0.136 0.236
4 0.081 0.228 0 0 0.136 0.236

Area under the ROC curve
(1,2,3) 0.105 0.221 0 0 0.105 0.221
4 0.052 0.211 0 0 0.105 0.221

De�ning the nuisance function QP (x) := P{Y = fP (X) | ∆ = 1, X = x}, simple algebraic manipula-

tions then yield that EP {φFP(Z) | ∆ = 1, X = x} = QP (x)− V (fP , P ). Plugging this into (S2) yields

the desired form of the EIF.

4 Additional numerical experiments

4.1 Replicating all numerical experiments

All numerical experiments presented here and in the main manuscript can be replicated using code

available on GitHub. In all cases, we generate data by:

1 : drawing X ∼MVN(0,Σ)

2 : drawing ε ∼ N(0, 1) independent of X, and setting Y = I{xβ0 + ε > 0} given X = x,

where Σ is the p× p identity matrix and β0 = (2.5, 3.5, 0, . . . , 0)>. The dimension p is determined by

the scenario. The approximate true values of variable importance based on accuracy and AUC under

all scenarios considered here are provided in Table S1. The speci�cation of each individual algorithm

for estimating f0 and f0,s is provided in Table S2, while the speci�cation of the candidate algorithms

used in the Super Learner is provided in Table S3.

4.2 Properties of our proposal under the alternative hypothesis

In this section, we present additional results under Scenario 1. In this case, p = 2. For each scenario

presented here, we generated 1000 random datasets of size n ∈ {100, 500, 1000, . . . , 4000}, and consid-

ered the importance of both X1 and X2. We highlight results for both features using the AUC and

for X1 using accuracy, and we provide the coverage of nominal 95% con�dence intervals. We assess

performance in the same way as in the main manuscript.
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Algorithm R Tuning Parameter(s) Tuning parameter
Implementation and possible values description

Generalized linear models glm � �

Generalized additive models mgcv method = "GCV.Cp" Smoothing parameter
(Wood, 2011) estimation method

Random forests ranger ntree‡ Number of variables
(Wright and Ziegler, 2017) to possibly split

at in each node
max.depth‡ Maximum tree depth

min.node.size‡ Minimum node size

Table S2: Individual algorithms considered with their R implementation, tuning parameter values,
and description of the tuning parameters. All tuning parameters besides those listed here are set to
their default values. In particular, the random forests are grown with 500 trees, mtry =

√
p †, and

a subsampling fraction of 1; �ve-fold cross-validation over the grid de�ned by (ntree, max.depth,
min.node.size) was used to select the tuning parameter combination that minimized log-likelihood
loss.
†: p denotes the total number of predictors.
‡: For setting 1, ntree ∈ {100, 500, 1000}, max.depth = 5, min.node.size = 1; for all other settings,
ntree ∈ {500, 1000, 1500, 2000, 5000}, max.depth ∈ {1, 3, 5}, min.node.size = 10.

Candidate Learner R Tuning Parameter Tuning parameter
Implementation and possible values description

Generalized linear models glm � �

Generalized additive models gam degree = 2 Degree of smooth terms
(Hastie, 2019)

Random forests ranger mtry =
√
p † Number of variables

(Wright and Ziegler, 2017) to possibly split
at in each node

Gradient boosted xgboost max.depth = 1 Maximum tree depth
trees (Chen et al., 2019)

Elastic net‡ glmnet mixing parameter α Trade-o� between
(Friedman et al., 2010) = 1 `1 and `2 regularization

Table S3: Candidate learners in the Super Learner ensemble along with their R implementation,
tuning parameter values, and description of the tuning parameters. All tuning parameters besides
those listed here are set to their default values. In particular, the random forests are grown with 500
trees, a minimum node size of 5 for continuous outcomes and 1 for binary outcomes, and a subsampling
fraction of 1; the boosted trees are grown with a maximum of 1000 trees, shrinkage rate of 0.1, and
a minimum of 10 observations per node; and the lasso `1 tuning parameter is chosen using 10-fold
cross-validation.
†: p denotes the total number of predictors.
‡: lasso is only included in cases where p ≥ 4.
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Figure S1: Performance of plug-in estimators for estimating (non-zero) importance of X1 in terms of
accuracy under Scenario 1 (all features have non-zero importance). Clockwise from top left: empirical
bias of the proposed plug-in estimator scaled by n1/2; empirical variance scaled by n; empirical coverage
of nominal 95% con�dence intervals; and width of these intervals. Circles, triangles, squares, and plus
symbols denote estimators based on the use of generalized additive models (GAMs), probit regression
(GLM), random forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote
non-cross-�tted and cross-�tted estimators, respectively. This �gure appears in color in the electronic
version of this article.

We present results for AUC and for the accuracy-based importance of X1 in Figures S1�S3. The

results for both features and both importance measures are largely similar to those presented in Section

5.2 of the main manuscript. The need for cross-�tting is particularly striking in Figure S3, where we

observed coverage near zero for intervals based on a non-cross-�tted random forest estimator of the

oracle prediction functions. In Figure S4, we show the coverage of nominal 95% intervals based on

the non-cross-�tted standard error estimator. Here, we observe reduced coverage in some cases com-

pared to the results presented above. Taken together, these results highlight that when using simple

estimators of the conditional mean functions (e.g., estimators based on correctly-speci�ed parametric

models), using cross-�tting appears to have minimal impact on the performance of the proposed infer-

ential procedures and is therefore not needed. In contrast, when �exible nuisance estimators are used,

it appears important to use cross-�tting when estimating VIM values and standard errors. The elimina-

tion of the constraint on nuisance estimator complexity (i.e., the Donsker class condition) achieved via

cross-�tting does appear to translate into substantially improved practical performance when complex

nuisance estimators are used.
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Figure S2: Performance of plug-in estimators for estimating (non-zero) importance of X1 in terms of
AUC under Scenario 1 (all features have non-zero importance). Clockwise from top left: empirical bias
of the proposed plug-in estimator scaled by n1/2; empirical variance scaled by n; empirical coverage
of nominal 95% con�dence intervals; and width of these intervals. Circles, triangles, squares, and plus
symbols denote estimators based on the use of generalized additive models (GAMs), probit regression
(GLM), random forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote
non-cross-�tted and cross-�tted estimators, respectively. Coverage of intervals based on the non-cross-
�tted RF-based estimator never exceeds 0.5 and is as low as zero in some cases. This �gure appears
in color in the electronic version of this article.
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Figure S3: Performance of plug-in estimators for estimating (non-zero) importance of X2 in terms of
AUC under Scenario 1 (all features have non-zero importance). Clockwise from top left: empirical bias
of the proposed plug-in estimator scaled by n1/2; empirical variance scaled by n; empirical coverage
of nominal 95% con�dence intervals; and width of these intervals. Circles, triangles, squares, and plus
symbols denote estimators based on the use of generalized additive models (GAMs), probit regression
(GLM), random forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote
non-cross-�tted and cross-�tted estimators, respectively. Coverage of intervals based on the non-cross-
�tted RF-based estimator never exceeds 0.5 and is as low as zero in some cases. This �gure appears
in color in the electronic version of this article.
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Figure S4: Empirical coverage of con�dence intervals based on the non-cross-�tted standard error
estimator under Scenario 1 (all features have non-zero importance). The rows correspond to the
feature of interest, while the columns correspond to accuracy and AUC, respectively. Circles, triangles,
squares, and plus symbols denote estimators based on the use of generalized additive models (GAMs),
probit regression (GLM), random forests (RF) or the Super Learner (SL), respectively. Blue and green
symbols denote non-cross-�tted and cross-�tted VIM estimators, respectively. Coverage of intervals
based on the non-cross-�tted RF-based estimator (panels b and d) never exceeds 0.5 and is as low as
zero in some cases. This �gure appears in color in the electronic version of this article.
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4.3 Properties of our proposal under the null hypothesis

In this section, we present additional results under Scenario 2. In this case, p = 4. We again generated

1000 random datasets of size n ∈ {100, 500, 1000, . . . , 4000}, and considered the importance of both X2

(a non-null feature) and X3 (a null feature). Here, we highlight results for both features based on the

AUC and for X2 based on accuracy, and we provide the coverage of nominal 95% con�dence intervals

and proportion of tests rejected. We assess performance in the same way as in the main manuscript.

We present the results based on a cross-�tted standard error estimator in Figures S5�S7. In

Figures S5 and S6, we observe high power across all sample sizes. We again observe residual bias

for the non-cross-�tted VIM estimators based on �exible nuisance estimation (random forests and the

Super Learner). In Figure S7, the cross-�tted VIM estimator based on random forests exhibits some

residual bias but coverage and type I error are still near the nominal level. It is possible that this bias

could be mitigated with cross-validation over a richer grid of tuning parameters. Similarly as in the

main manuscript, since the bias for estimating the null feature appears to be small for the non-cross-

�tted estimators, type I error is not in�ated in these simulations. However, we expect in most cases

that cross-�tting will yield a more adequate type I error control. Indeed, we see that this is the case

by comparing the results for the cross-�tted estimator and cross-�tted versus non-cross-�tted standard

error estimators (Figure S8). Here, we see a vastly in�ated type I error for the cross-�tted random

forests-based estimator, re�ecting that in this case the non-cross-�tted standard error appears to be

too small.

4.4 Using the bootstrap for interval estimation

In some cases, particularly those with limited sample sizes, it may be of interest to use a bootstrap

scheme for interval estimation rather than a Wald construction using an in�uence function-based

estimator of the asymptotic variance. Because estimation of f0 and f0,s only contributes to the second-

order behavior of the plug-in VIM estimator, a valid nonparametric bootstrap here would consist of

bootstrapping the empirical distribution Pn but �xing the nuisance estimators fn and fn,s across all

bootstrap runs. Not having to re-�t estimators of the nuisance functions on each bootstrap sample

makes this scheme particularly e�cient to implement. Additionally, since we only use the bootstrap for

interval estimation, we do not need to bootstrap the cross-�tting procedure. Our proposed bootstrap

procedure in a case with no sample-splitting (i.e., under the alternative hypothesis) is as follows:
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Figure S5: Performance of plug-in estimators for estimating (non-zero) importance of X2 in terms of
accuracy under Scenario 2. Clockwise from top left: empirical bias of the proposed plug-in estimator
scaled by n1/2; empirical variance scaled by n; empirical coverage of nominal 95% con�dence intervals;
and empirical power of the proposed hypothesis test. Circles, triangles, squares, and plus symbols
denote estimators based on the use of generalized additive models (GAMs), probit regression (GLM),
random forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote non-cross-
�tted and cross-�tted estimators, respectively. This �gure appears in color in the electronic version of
this article.
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Figure S6: Performance of plug-in estimators for estimating (non-zero) importance of X2 in terms of
AUC under Scenario 2. Clockwise from top left: empirical bias of the proposed plug-in estimator scaled
by n1/2; empirical variance scaled by n; empirical coverage of nominal 95% con�dence intervals; and
empirical power of the proposed hypothesis test. Circles, triangles, squares, and plus symbols denote
estimators based on the use of generalized additive models (GAMs), probit regression (GLM), random
forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote non-cross-�tted
and cross-�tted estimators, respectively. Coverage of intervals based on the non-cross-�tted RF-based
estimator never exceeds 0.5 and is as low as zero in some cases. This �gure appears in color in the
electronic version of this article.
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Figure S7: Performance of plug-in estimators for estimating (zero) importance of X3 in terms of AUC
under Scenario 2. Clockwise from top left: empirical bias of the proposed plug-in estimator scaled
by n1/2; empirical variance scaled by n; empirical coverage of nominal 95% con�dence intervals; and
empirical type I error of the proposed hypothesis test. Circles, triangles, squares, and plus symbols
denote estimators based on the use of generalized additive models (GAMs), probit regression (GLM),
random forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote non-cross-
�tted and cross-�tted estimators, respectively. This �gure appears in color in the electronic version of
this article.
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Figure S8: Empirical coverage of con�dence intervals (A) and proportion of tests rejected (B) based
on the non-cross-�tted standard error estimator under Scenario 2. The rows correspond to X2 and
X3, respectively, while the columns correspond to accuracy (a,c) and AUC (b,d), respectively. Circles,
triangles, squares, and plus symbols denote estimators based on the use of generalized additive models
(GAMs), probit regression (GLM), random forests (RF) or the Super Learner (SL), respectively. Blue
and green symbols denote non-cross-�tted and cross-�tted estimators, respectively. Coverage of inter-
vals based on the non-cross-�tted RF-based estimator of importance of X2 (panel bA) never exceeds
0.5 and is as low as zero in some cases. This �gure appears in color in the electronic version of this
article.

1. obtain estimator ψn,s or ψ
∗
n,s of ψ0,s;

2. obtain estimators fn and fn,s of f0 and f0,s based on the entire dataset;

3. create B bootstrap resamples of the original dataset;

4. For b = 1, 2, . . . , B:

(a) obtain vn,b := V (fn, Pn,b) and vn,s,b := V (fn,s, Pn,b) using the nuisance functions estimated

on the entire dataset and the bootstrap empirical distribution Pn,b;

(b) set ψn,s,b := vn,b − vn,s,b;

5. compute bootstrap variance estimator τ2n,s,B := 1
B

∑B
b=1

(
ψn,s,b − 1

B

∑B
b=1 ψn,s,b

)2
and resulting

Wald-type con�dence intervals (using ψ∗n,s or ψn,s), or form a percentile-based con�dence interval

with endpoints given by the 5th and 95th sample percentiles of {ψn,s,1, ψn,s,2, . . . , ψn,s,B}.

We consider again Scenario 1, where p = 2. For each scenario presented here, we generated 1000

random datasets of size n ∈ {100, 500, 1000, . . . , 4000}, and considered the importance of both X1
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Figure S9: Performance of plug-in estimators for estimating (non-zero) importance of X1 in terms
of accuracy under Scenario 1, using the bootstrap for interval estimation. Clockwise from top left:
empirical bias of the proposed plug-in estimator scaled by n1/2; empirical variance scaled by n; empirical
coverage of nominal 95% con�dence intervals; and average width of these intervals. Circles, triangles,
squares and plus symbols denote estimators based on the use of generalized additive models (GAMs),
probit regression (GLM), random forests (RF), and the Super Learner (SL), respectively. Blue and
green symbols denote non-cross-�tted and cross-�tted estimators, respectively. This �gure appears in
color in the electronic version of this article.

and X2. We assess performance in the same way as in the main manuscript, though we use the

bootstrap-based intervals in place of those based on the in�uence function. We present the results of

this experiment in Figures S9�S12. The results for bias and variance are unchanged from the previous

experiments. Encouragingly, both coverage and width for the bootstrap-based intervals are similar

to the coverage and width of the IF-based intervals, though in the smaller sample size settings the

bootstrap-based intervals are slightly narrower than the IF-based intervals.

4.5 Higher dimensions and correlated features

We now consider two scenarios under increasing dimension, both with and without correlated features.

Here, p ∈ {50, 100, 200} and Σ is either a p × p identity matrix (Scenario 3) or a p × p diagonal

matrix with 1 on the diagonal and all o�-diagonal elements equal to zero except Σ1,3 = Σ3,1 = 0.7

and Σ2,4 = Σ4,2 = 0.2 (Scenario 4). Thus, in Scenario 4, X3 and X4 are not directly important for

predicting the outcome, but might be found to be important in isolation due to their correlation with

the important features X1 and X2. In these experiments, we considered n ∈ {500, 3000} for each
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Figure S10: Performance of plug-in estimators for estimating (non-zero) importance of X2 in terms
of accuracy under Scenario 1, using the bootstrap for interval estimation. Clockwise from top left:
empirical bias of the proposed plug-in estimator scaled by n1/2; empirical variance scaled by n; empirical
coverage of nominal 95% con�dence intervals; and average width of these intervals. Circles, triangles,
squares and plus symbols denote estimators based on the use of generalized additive models (GAMs),
probit regression (GLM), random forests (RF), and the Super Learner (SL), respectively. Blue and
green symbols denote non-cross-�tted and cross-�tted estimators, respectively. This �gure appears in
color in the electronic version of this article.

24



Figure S11: Performance of plug-in estimators for estimating (non-zero) importance of X1 in terms of
AUC under Scenario 1, using the bootstrap for interval estimation. Clockwise from top left: empirical
bias of the proposed plug-in estimator scaled by n1/2; empirical variance scaled by n; empirical coverage
of nominal 95% con�dence intervals; and average width of these intervals. Circles, triangles, squares
and plus symbols denote estimators based on the use of generalized additive models (GAMs), probit
regression (GLM), random forests (RF), and the Super Learner (SL), respectively. Blue and green
symbols denote non-cross-�tted and cross-�tted estimators, respectively. Coverage of intervals based
on the non-cross-�tted RF-based estimator never exceeds 0.5 and is as low as zero in some cases. This
�gure appears in color in the electronic version of this article.

25



Figure S12: Performance of plug-in estimators for estimating (non-zero) importance of X2 in terms of
AUC under Scenario 1, using the bootstrap for interval estimation. Clockwise from top left: empir-
ical bias of the proposed plug-in estimator scaled by n1/2; empirical variance scaled by n; empirical
coverage of nominal 95% con�dence intervals; and average width of these intervals. Circles, triangles,
squares and plus symbols denote estimators based on the use of generalized additive models (GAMs),
probit regression (GLM), random forests (RF), and the Super Learner (SL), respectively. Blue and
green symbols denote non-cross-�tted and cross-�tted estimators, respectively. In this experiment, the
coverage of non-cross-�tted RF was never above 0.5, and was as low as zero. This �gure appears in
color in the electronic version of this article.
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p, and assessed the importance of each individual feature as well as the feature groups (X1, X3) and

(X2, X4), again using both accuracy and AUC. We use cross-�tting to estimate the VIM value in all

cases, and we use the Super Learner with candidate library consisting of boosted trees, random forests,

and the lasso to estimate f0 and f0,s. We then compute the empirical bias scaled by n1/2, the empirical

variance scaled by n, the empirical coverage of nominal 95% con�dence intervals, and the proportion

of tests rejected.

We display the results under Scenario 3 in Figures S13 and S14. Here, we �nd that at the smaller

sample size (n = 500), there is some excess bias for the features with non-null importance, and that

this bias increases with increasing p; this is accompanied by a decrease in coverage. However, with a

larger sample size (n = 3000), we recover similar performance to that observed in Section ?? of the

main manuscript and the preceeding sections of this supplement. Type I error is controlled at the

nominal level in all cases.

We display the results under Scenario 4 in Figures S15 and S16. We �nd similar results overall

to those from Scenario 3. In smaller samples, it appears to be advantageous to consider groups of

correlated features rather than the features alone; this is particularly striking in Figure S16. As the

sample size grows, the di�erence in performance diminishes.

Overall, the statistical performance of our procedure appear to be impacted more strongly by

noise covariates in small samples than in large samples, regardless of the level of correlation among

covariates. It is possible that this performance could be improved in small samples by including more

aggressive sparsity-inducing algorithms in our ensemble. Indeed, the performance of our estimator of

each VIM value depends on the rate at which the nuisance functions can be estimated, and this rate

certainly slows down as the number of covariates grows, unless we can leverage stronger structure. We

note that, while perhaps minimally impacting the statistical performance of our procedure, correlated

features nevertheless render the interpretation of individual-variable importance more challenging: the

population-level importance value itself changes in the presence of correlation. This di�culty can be

partially mitigated by assessing group variable importance instead; however, this requires groups to

either be known a priori (as in Section 6 of the main manuscript) or estimated, and in this latter case,

further work must be done to ensure that the desired inferential properties (e.g., correct coverage) are

preserved.
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Figure S13: Performance of plug-in estimators for estimating importance in terms of accuracy under
Scenario 3 (all features are independent). Clockwise from top left: empirical bias for the proposed
plug-in estimator scaled by n1/2; empirical variance scaled by n; empirical coverage of nominal 95%
con�dence intervals for the true importance; and empirical type I error of the proposed hypothesis test.
The di�erent symbols denote the feature(s) of interest.
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Figure S14: Performance of plug-in estimators for estimating importance in terms of AUC under
Scenario 3 (all features are independent). Clockwise from top left: empirical bias for the proposed
plug-in estimator scaled by n1/2; empirical variance scaled by n; empirical coverage of nominal 95%
con�dence intervals for the true importance; and empirical type I error of the proposed hypothesis test.
The di�erent symbols denote the feature(s) of interest.
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Figure S15: Performance of plug-in estimators for estimating importance in terms of accuracy under
Scenario 4 (some features are correlated). Clockwise from top left: empirical bias for the proposed
plug-in estimator scaled by n1/2; empirical variance scaled by n; empirical coverage of nominal 95%
con�dence intervals for the true importance; and empirical type I error of the proposed hypothesis test.
The di�erent symbols denote the feature(s) of interest.
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Figure S16: Performance of plug-in estimators for estimating importance in terms of AUC under
Scenario 4 (some features are correlated). Clockwise from top left: empirical bias for the proposed
plug-in estimator scaled by n1/2; empirical variance scaled by n; empirical coverage of nominal 95%
con�dence intervals for the true importance; and empirical type I error of the proposed hypothesis test.
The di�erent symbols denote the feature(s) of interest.
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Figure S17: Variable importance measured by accuracy (panel A) and AUC (panel B) for the groups
de�ned in panel C. Stars denote importance deemed statistically signi�cantly di�erent from zero at
the 0.0038 (0.05 / 13) level.

5 Additional details for the study of an antibody against HIV-1

5.1 Harmonized analysis with Magaret et al. (2019)

In Figure S17, we display the results of an analysis harmonized to use the same outcome as in Magaret

et al. (2019). This sensitivity outcome is the indicator of whether or not the IC50 value was right-

censored. Viruses with right-censored IC50 values are thought to be resistant to VRC01, while viruses

with non-censored IC50 values may instead be more sensitive to VRC01. In this case, we consider

the conditional importance of each group of features relative to the remaining features. Overall, these

results are largely in line with both Magaret et al. (2019) and with the results presented in the main

manuscript. However, we see here that only the VRC01 binding footprint has p-value less than 0.0038

(denoted by stars in Figure S17; this value results from a Bonferroni correction from testing 13 groups

and an initial level of 0.05), and only for the AUC measure. The exact p-value is given by 6.1× 10−4.

5.2 Library of candidate learning algorithms

In this section, we describe the library of candidate learning algorithms used in our analysis replicating

the results of Magaret et al. (2019). We used a wide array of �exible machine learning-based algorithms

in the hope that this large library would yield a cross-validated algorithm with good predictive perfor-
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Table S4: Library of canididate learners for the Super Learner with descriptions.

Function name Description

SL.mean intercept only regression

SL.xgboost1 boosted regression trees with maximum depth of 1

SL.xgboost2 boosted regression trees with maximum depth of 2

SL.xgboost4 boosted regression trees with maximum depth of 4

SL.xgboost6 boosted regression trees with maximum depth of 6

SL.xgboost8 boosted regression trees with maximum depth of 8

SL.ranger.small random forest with mtry equal to one-half times square root of number of predictors

SL.ranger.reg random forest with mtry equal to square root of number of predictors

SL.ranger.large random forest with mtry equal to two times square root of number of predictors

SL.glmnet.0 GLMNET with lambda selected by 5-fold CV and alpha equal to 0

SL.glmnet.25 GLMNET with lambda selected by 5-fold CV and alpha equal to 0.25

SL.glmnet.50 GLMNET with lambda selected by 5-fold CV and alpha equal to 0.5

SL.glmnet.75 GLMNET with lambda selected by 5-fold CV and alpha equal to 0.75

SL.glmnet.1 GLMNET with lambda selected by CV and alpha equal to 1

mance. The particular machine learning techniques included were: the lasso with logit link function

(implemented in the glmnet R package), random forests (implemented in the ranger R package), and

gradient boosted decision trees (implemented in the xgboost R package), each with a variety of choices

for the tuning parameters. In Table S4, we provide a description of each candidate learning algorithm

in our library. Our �nal estimator is the convex combination of these algorithms chosen to minimize

the ten-fold cross-validated negative log likelihood. In all cases, we adjusted for geographic region as

a potential confounding variable.

5.3 Super Learner performance

We now describe the empirical performance of the Super Learner in this application for both the

outcome considered in the main manuscript (IC50 < 1) and the IC50 censored outcome described

above. In Table S5, we show the coe�cients of each candidate learner in the �nal Super Learner

ensemble for each outcome. The rows of this table are each of the ten cross-validation folds broken

down by outcome, while the columns are the individual learners. Here, we see that for the IC50

censored outcome, the most commonly chosen algorithms in the �nal ensemble were boosted trees with

maximum depth of 2 or 4, random forests with a large number of features chosen at each split, and the

elastic net with various values of α. For the IC50 < 1 outcome, the most commonly chosen algorithms

were again boosted trees with maximum depth of 2, 4, or 6, random forests with a medium and large

number of features chosen at each split; the elastic net was often not chosen by the Super Learner.
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Table S5: Table of Super Learner weights for each outcome, candidate learner and cross-validation
fold. We have removed `SL.' from the name of each learner.

mean xgboost1 xgboost2 xgboost4 xgboost6 xgboost8 ranger.small ranger.reg ranger.large glmnet.0 glmnet.25 glmnet.50 glmnet.75 glmnet.1 fold

IC50 censored

0 0 0.05 0.00 0.00 0.00 0 0.00 0.74 0 0.00 0.21 0.00 0.00 1

0 0 0.08 0.00 0.00 0.00 0 0.00 0.62 0 0.00 0.30 0.00 0.00 2

0 0 0.01 0.00 0.00 0.00 0 0.00 0.50 0 0.48 0.00 0.00 0.00 3

0 0 0.00 0.08 0.00 0.00 0 0.00 0.51 0 0.40 0.00 0.00 0.00 4

0 0 0.00 0.04 0.00 0.00 0 0.00 0.58 0 0.00 0.38 0.00 0.00 5

0 0 0.11 0.00 0.00 0.00 0 0.00 0.62 0 0.27 0.00 0.00 0.00 6

0 0 0.11 0.00 0.00 0.00 0 0.00 0.51 0 0.07 0.00 0.31 0.00 7

0 0 0.05 0.00 0.00 0.00 0 0.00 0.74 0 0.00 0.14 0.00 0.08 8

0 0 0.01 0.01 0.00 0.00 0 0.00 0.62 0 0.23 0.00 0.12 0.00 9

0 0 0.07 0.00 0.00 0.00 0 0.00 0.36 0 0.27 0.00 0.00 0.31 10

IC50 < 1

0 0 0.00 0.13 0.00 0.00 0 0.00 0.87 0 0.00 0.00 0.00 0.00 1

0 0 0.00 0.18 0.00 0.00 0 0.00 0.82 0 0.00 0.00 0.00 0.00 2

0 0 0.00 0.00 0.16 0.00 0 0.00 0.84 0 0.00 0.00 0.00 0.00 3

0 0 0.00 0.06 0.06 0.00 0 0.00 0.89 0 0.00 0.00 0.00 0.00 4

0 0 0.02 0.12 0.05 0.00 0 0.00 0.82 0 0.00 0.00 0.00 0.00 5

0 0 0.11 0.00 0.00 0.03 0 0.00 0.86 0 0.00 0.00 0.00 0.00 6

0 0 0.05 0.00 0.00 0.00 0 0.11 0.84 0 0.00 0.00 0.00 0.00 7

0 0 0.00 0.00 0.07 0.03 0 0.00 0.90 0 0.00 0.00 0.00 0.00 8

0 0 0.12 0.00 0.00 0.00 0 0.39 0.41 0 0.00 0.00 0.07 0.00 9

0 0 0.00 0.00 0.07 0.00 0 0.00 0.93 0 0.00 0.00 0.00 0.00 10

In Figure S18, we display the cross-validated AUC and 95% con�dence intervals (obtained on the

logit scale and then inverted; thus, the intervals may not be symmetric about the point estimate of

AUC) for both outcomes and each of the candidate learning algorithms in the Super Learner, along with

the Super Learner ensemble algorithm and the classical cross-validated selector (the �discrete Super

Learner�). We used the R package cvAUC to compute these point and interval estimates. Similarly

to Magaret et al. (2019), we see that, of all the individual algorithms, random forests have the best

performance in this application for both outcomes, followed by the lasso and boosted trees (for the

IC50 censored outcome) and the reverse for the IC50 < 1 outcome. Additionally, we estimate the

cross-validated AUC of the overall Super Learner to be 0.90 for the IC50 censored outcome, with a 95%

con�dence interval of (0.87, 0.94). For the IC50 < 1 outcome, we estimate the cross-validated AUC

of the overall Super Learner to be 0.83 (0.80, 0.86). Magaret et al. (2019) performed an analysis for

IC50 censored separately on two independent splits of these data, and obtained cross-validated AUCs

of 0.86 (0.81, 0.92) and 0.87 (0.81, 0.93) on these two subsets.

In Figure S19, we display cross-validated ROC curves for the Super Learner, discrete Super Learner,

and the top-performing individual algorithm. These ROC curves are similar to those presented in

Magaret et al. (2019) � in both analyses, we see a large cross-validated true positive rate for each

chosen cross-validated false positive rate. These results suggest that for both outcomes, our predictor

is well-calibrated for discriminating between the outcome classes.
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Figure S18: Point estimates of cross-validated AUC with 95% con�dence intervals for each candidate
learning algorithm in the Super Learner for each outcome.

Figure S19: Cross-validated ROC curves for each outcome for the Super Learner (light green), discrete
Super Learner (gray), and top-performing individual algorithm (random forests). IC50 censored is
displayed in panel A, while IC50 < 1 is displayed in panel B.
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