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1 Proof of theorems

1.1 Proof of Theorem 1

Writing 7y, := {V (fn, Pn) = V(fn, Po)} — {V (fo, Pn) — V(fo, Po)}, we first decompose
vn —vo = {V (fo, Pn) = V(fo, Po)} +{V (fn, Po) = V(fo, Po)} +n -

In view of condition (A2), the functional delta method is applicable and yields that

V<f07 Pn) o V(fo’ PO) = V(va PO; Pn - PO) + OP(TL_l/Q)

1o
= ﬁZV(fojpo;cszi — Ry) +op(n”'?),
=1

where V (fo, Po; h) is the Gateaux derivative of the mapping P — V(fo, P) at Py in the direction h and
J. is the degenerate distribution on z. Under condition (A1), we have that |V (fy, Po) — V(fo, Po)| <
Clfn — foll% = op(n~/2) under condition (B1). It remains to show that r, = op(n~'/2) as well. For

any given € > 0, h € Q and f € F, we define

VP + ) =VIR)

€

RO(fveah') = (f7P07h) .



Setting €, := n~1/2 and h,, = nI/Q(Pn — Py), we have that

1/2 [{V(fm Pn) — V(fnv PO)} — {V(f()v Pn) — V(f07P0)}]

n'cr, =
€n

= {V(fa, Pos hn) + Ro(fns s hin)} — {V (fo, Poi hn) + Ro(fo, €n3 b))} = An + By

where A, := V(fn, Po; hn) — V(fo, Po; hn) and By, := Ro(fn, €n, hn) — Ro(fo, €n, hn), and so, we can
write that Py (n'/2|r,| > €) < Py (|An| > €/2) + Py (|Bn| > €/2). On one hand, since we can rewrite
Ay = V{(fn, Po;hn) — V(fo, Po; bn) = n'/? [ gn(2)d(P, — Po)(z), under conditions (B2) and (B3),
an application of Lemma 19.24 of van der Vaart (2000) yields that A, = op(1) under Py, and so,

Py(]An| > €/2) — 0. On the other hand, we can write

Po(|Bnl > €/2) = Po(|Bnl > €/2,[|fn = follz < 6) + Po(|Bn| > €/2, [ fn — foll7 = 0)

IA

Py (sup fer)f—folr<sRo(fy €ns hn) > €/4, || fn — foll 7 < 8) + Po (|l fn — foll7 > 0)

IN

Py (sup serf—folr<sRo(fs €ns hn) > €/4) + Po (| fu — foll7 > 6).

Since the first and second summands tend to zero by conditions (A2) and (B1), respectively, it follows

that Py (|By| > €/2) — 0. In summary, under conditions (A1)—(A2) and (B1)—(B3), we find that
1~
v = — ) Py; 67, — P —1/2
Un =0 = 2 V(fo, Po; 6z, — Po) + op(n™"/7)

under sampling from P, as claimed.

Now, we verify the claim of asymptotic efficiency. Let s be any bounded element of LY(P). We
construct the parametric submodel { Py ¢} with univariate index e defined in a neighborhood of zero and
with corresponding distribution function defined pointwise as Fy ((z) := Fp(z) + Gf(foo,z] s(u) Fo(du),
where Fy denotes the distribution function of Py and (—o0, 2] is interpreted as an orthant in the
dimension of Z. We note that z — f(—oo7Z} s(u)Fy(du) induces a finite signed measure h(s) € R since

it is cadlag and has finite total variation norm. We then write that

‘v<f0,€, Po,ae— VU 20 (g o i(s))

‘V(fo,e, Po.e) = V(foe, Po) + V(fo,e; Po) — V(fo, Po)

. — V(fo.es Poi h(8)) + V(fo.e, Pos h(s)) — V(fo, Po; h(s))

<




< Ui(e) + Ua(e) + Us(e)

where we have defined the summands

V(fo,e, Po) — V (fo, Po)

€

V(fO,E? PO,E) - V(f()&, P()) _ V

€

Ul(e) = (fO,evP[];h(s))

, Us(e) := '

and Us(€) := |V (fo.e, Po; h(s)) — V(fo, Po; h(s))|. By conditions (A1) and (A3), we can bound Us(e)
above by C|| fo.c — fol|%/e = O(e). By condition (A4), we have that Us(e) = O(e). Since || fo.e — fol x =

O(e) by condition (A3), then for small enough ¢ we have that

VI R =VIE )
© JeFNffolF<s €

(f, Po; h(s))

Ui(e) < sup

)

where the right-hand side of the inequality itself tends to zero as € — 0 in view of condition (A2). In

other words, we find that Uj(€) = O(e). Thus, we find that

V(f0,67 PO,e) - V(fo,PO) B V

€

(fo,Po;h(S))‘ —0(0).

which implies that the derivative € — V (fo., Po.) at € = 0 equals V (fo, Po; h(s)). In view of Frangakis
et al. (2015) and Luedtke et al. (2015), the evaluation of the nonparametric efficient influence function
at observation value z is obtained by choosing s so that h(s) = 4, — Py, establishing that v, is indeed

asymptotically efficient relative to a nonparametric model.

1.2 Proof of Theorem 2

As before, we denote by B,, € {1,...,K}" a random vector generated by sampling uniformly from
{1,..., K} with replacement, and by Dj the subset of observations with index in {i : B,; = k}
for k = 1,..., K. Additionally, we denote by fr, an estimator of fp constructed using the data
in Ujz,Dj, and we write Py, for the empirical distribution estimator of Py based on the data in
Dy. Recalling that v} = %Eszl V (fen> Pren), we note that v —wvg = Ay gn + Ao kn + As ko,
where Ay gn = & Sobey {V(for Pon) — V(fo, Po)}, Aoin = = S0y AV (frms Po) — V(fo, Po)} and
As i = 2 Sy Thon With 7 = {V (fins Pin) = V(fins Po)} = {V (fos Pen) — V(fo, Po)}. We will

study separately each of these three summands.



Under condition (A2), the functional delta method can be used to establish the representation

V(fo, Pin) — V(fo, Po) = V(fo, Po; P — Po) + Op(n;m) = ,le > ieDy V(fo, Po; 67, — Po) + OP(n;;m)
for each k € {1,..., K}, from which it follows that

n

< max
- Kny,

k

L
Al gkm — — ,Py; 67, — P,
1K, n;V(fo 050z, — o)

n K
1 . . 1 —1/2
_1‘-n;V(fQ,PO,(SZi—PU)-FK;Op(nk )

= Op(n™ Y +op(n™Y?) = op(n~'/?) .
Under conditions (Al) and (B1’), we have that

A cnl < max|V(fim Fo) = V(fo, Po)l < Cmax|fin = follz = op(n™'/?) .

Finally, we show that |A3 jc,n| = op(n™/2) by showing that || = op(n~'/?) for each k. Similarly

1/2

as in the proof of Theorem 1, setting €z, := n, '~ and hg, = n,lg/z(Pkm — Py), we can write that

n,lc/Zrk’n = Aj n + Byn, where we have defined the terms Ay, := V(flc,n, Po; hign) — V ( fo, Po; hi») and
By := Ro(fkns €kms> Pen) — Ro(fo, €kny hion). Following the same argument made for B, in the proof
of Theorem 1, we can show that By ,, = op(1). We then note that Ay, = n,lc/2 | 9kn(2)d(Pin— Po)(2)-
For any € > 0, by Chebyshev’s inequality, we have that

varg [gren(Z) | Ujzr Dj ] < Poglz,n
g2 - c2 ’

0 < Py(|Aknl >e|UjuDj) <

Thus, by condition (B2’), we have that Py (|Arn| > €| UjzxD;) = op(1). Since Py (|Agn| > €| UjzrDj)
is uniformly bounded by virtue of being a probability, this implies that Eo[FPy (|Axn| > € |UjzD;)] =
o(1), and so, Py (|Agn| >€) = o(1). Thus, we find that Ay, = op(1). As such, we have found that
|Tkm| = OP(nlzl/Q), and since n/ng 5 K, this implies that [rkn| = op(n™1/2).

The proof of nonparametric asymptotic efficiency is identical to that provided for Theorem 1.

1.3 Proof of Theorem 3

Fix an arbitrary h € H, and let {Py} C M be an arbitrary regular univariate parametric submodel

through Py at € = 0 and with score h for € at € = 0. Write fo . := fp,, for brevity. We note that

V(f(),ea PO,E) - V(f07 PO) = V(f0,€7 PO,e) - V(an PO,E) + V(f(), PO,e) - V(f07 PO)



= V(fo.e: Po) = V(fo, Po) + V(fo, Po.e) = V(fo, Po) + o(e) , (S1)

where the second line follows from the first in view of condition (A5a). By the nonparametric pathwise
differentiability of P — V(fo, P) at Py, we have that V(fo, Poe) — V (fo, Po) = € [ do(2)h(2)dPy(z) +
O(€?), where dj is the nonparametric EIF of P + V(fo, P) at Py. Condition (A5b) and (A5c) together

indicate that

d

7V 67P = ’
5V (fo, 0)620 0

and furthermore, that V(foe, Po) — V(fo, o) = o(e). So, in view of equation S1, we obtain the
representation V (fo, Po.c) — V (fo, Po) = € [ do(2)h(2)dPy(z) + o(€), which implies that P +— V(fp, P)

is pathwise differentiable at Py relative to the nonparametric model M and has nonparametric EIF d.

2 Explicit description of estimation procedure for Examples 1-4

In this section, we provide the explicit form of our proposed estimator for Examples 1-4. For each
example, we describe both the simple plug-in estimator and the cross-fitted estimator. When we
discuss cross-fitting, recall that we generate a random partition assignment vector B,, € {1,..., K}"
by sampling uniformly from {1,..., K'} with replacement, and denote by D}, the subset of observations
with index in {i : B, ; = k} for k = 1,..., K. For each k = 1,..., K, we denote by fy, and f s
estimators of fo and fo s, respectively, constructed on the data in U#k Dj, and we denote by P ,, the
empirical distribution estimator of Py based on the data in Dy.

Example 1: R?

The difference in R? VIM estimator is

Yoy = |1— > i {Yi— fn(Xi)}Q] _ [1 i Y fas(X0))?

Y (Y = Yn)? Y (Yi=Ya)? )
where Y, := %Z?:l Y; is the marginal empirical mean of Y. In this example, f,, = pp and fi, s = pin s,
where p,, and p, s are estimators of jio and pio s, respectively. For each k =1,..., K, the fold-specific

difference in R VIM estimator is

" 1 % ZieDk{Y; - fk,n(Xz)}2 1 nik ZieDk {Y; - fk,n,s(Xi)}2
k? ) = - XS - - X~ ’
" rle ieDk(Yi - Ykm)z 771,6 i€Dy, (Yi - Yk,n)Q



where ng := Y, I(i € Dy) is the number of observations in fold k, and Yy, := é Z?eDk Y; is the

marginal empirical mean of Y in fold k. The cross-fitted estimator is then ¢}, ; = % Z,]::l Vin,s-

FEzxample 2: deviance

The difference in deviance VIM estimator is

o= |1 LS {Vilog fo(Xi) + (1= Vi) log(1 — fu(X))}
" 7 log(my,) + (1 — mp) log(1 — 7y,)

[y i {Yilog fa,s(X0) + (1= Yi) log(l — fn,s(X0))}
Tn, IOg(ﬂ-n) + (1 - 7Tn) IOg(l - Wn)

where 7, = %2?21 Y; is the empirical estimator of the marginal probability Py (Y =1). Again, in
this example, f, = pup and f, s = pns. For each k =1,..., K, the fold-specific difference in deviance

VIM estimator is

. [1 e Die, {Yilog fin(Xi) + (1 Y3) log(1 — fk,n<Xi))}]
k,n,s — -

Tk,n log(ﬂ'k,n) + (1 - 7Tk:,n) log(l - ﬂk,n)
Tle ZiEDk {Y;, log fk,n,s(Xi) + (1 - YZ) log(l - fk,n,s(Xl))}
e, 108 (o) + (1 — e ) 10g (1 — ) ’

1—

where 7, ,, == n—lk >_iep, Yi is the marginal estimator of Py (Y = 1) in fold k. The cross-fitted estimator

. K
is then w;’;,s = % Zk:l wk,n,&

Example 3: classification accuracy

The difference in classification accuracy VIM estimator is i, s = 2 30 | I{Y; = f,,(X;)}—2 30 | I{Y; =

n

fn,s(Xi)}. Sensible estimators of fp and fy s are given by
fonix—=T{p,(z) > 0.5} and frs:x— I {pys(x) > 0.5}.

The fold-specific difference in classification accuracy VIM estimator is

1 1
Yms = 1o D IV = Frn(X0} = = 3 H{Yi = fens(X0)} -

i€Dy k ieDy

The cross-fitted estimator is then 1y ¢ % Zlf:l Vin,s-



Example 4: area under the ROC curve
The difference in AUC VIM estimator is

) < I = YY) = s ST S H{fa(X0) < FuaX))H1L- VY,
=1 j=1 =1 j=1

where ny := Y7 | Y; is the number of observations with corresponding ¥ =1 and ng := n —ny. As
above, in this example, we can take f, = p, and f,, ¢ = pn 5. The fold-specific difference in AUC VIM

estimator is

¢k,n,s: Nkon kleZD JEZDkI{fkn <fk’n( )}(I_Y)Y?
nkO kllezD: jez’;k-[{fkns <fl€ns( )}(1_}/2)}/])

where ny1 := 3 ,cp, I(Y; = 1) is the number of observations with corresponding Y = 1 in fold k and

nk,o := N — ng1. The cross-fitted estimator is then wn s R Zk 1 Vkon,s-

3 Additional technical details

3.1 Bayes classifier maximizes classification accuracy

Suppose that Y € {0,1} is a binary random variable. Define the Bayes classifier by : @ +— I{uo(z) >
1/2} with po(z) = Eo(Y | X = ). For any fixed z € X', we have that

P{f(X)=Y | X =a} = R{Y =L {(X)=1| X =a} + Po{Y = 0,f(X) = 0| X = 2}
— J@P(Y =1| X =2)+ {1 - f@)}P(Y =0| X = 2)

= f(@)po(x) + {1 — f(x)H{1 — po(x)} ,
which allows us to write that

P{f(X) =Y | X =2} — Pyf{bo(X) = Y | X =2}
— jo(@){F(@) — bol@)} + {1 — po(a) {1 — F(@)} — {1 — bo(a)}]
— {2u0(x) — 1}{ () — bo(w)} < 0



by definition of by. It follows then that

Po{f(X) =Y}~ Po{bo(X) =Y} = Eo[Po{f(X)=Y | X}| - Ep[Po{bo(X) =Y | X}]

= Eo[P{f(X) =Y [ X} = Po{bo(X) =Y | X}] < 0,
so that by is the maximizer of the classification accuracy Po{Y = f(X)}.

3.2 Conditional mean maximizes the area under the ROC curve

Suppose that Y € {0,1} is a binary random variable. For a given function f € F, we define the

conditional distribution functions
Fi(Py, f)(c) == Po{f(X) <c|Y =1} and Fy(Py, f)(c) =P {f(X)<ec|Y =0} .

If Y denotes the presence of a disease, then 1 — Fy (P, f)(c) and Fy(Pp, f)(c) denote the sensitivity
and specificity of a medical test that flags the presence of disease if and only if f(X) > ¢. The AUC

value corresponding to f and Py can be written as

Py{f(X1) < f(Xa) | Yi=0,Ys =1} = /0 T (1= Ru(Po, £)(©)) Fo(Po, £)(de)

1
- /0 (1= Fi(Po. ) (F5 (Po, ) (w)) } du

For a fixed w, the integrand 1 — Fy(Py, f)(Fy *(Po, f)(w)) is the sensitivity of a test based on f and a
cutoff that results in specificity w. By an application of the Neyman-Pearson Lemma, it is known that,
for any fixed specificity level, any strictly increasing transformation of the likelihood ratio mapping
x— P Y =1|X=2)/P(Y=0|X=x) = puo(z)/{l — po(x)} gives an optimal choice of f. in
particular, the function f : x — po(x) is optimal. Since this is true irrespective of the fixed specificity

level, it holds uniformly across specificity levels and hence also maximizes the AUC value, as claimed.

3.3 Verification of conditions (A1) and (A2) for Examples 1-4

Example 1: R?

We have that ’V(f, P()) — V(fo,Po)’ = Eo{f(X) — f()(X)}Q/O'Q(Po) so that ‘V(f, P()) - V(f(),PU)’ =



O(||f - fol%) and condition (A1) holds. We can verify that V(f, Po;h) = — [{y— f(z)}*h(dz)/c*(Py).
Since P +— Ep{Y — f(X)}? is linear and thus Hadamard differentiable uniformly in f, condition (A2)
can be shown to hold for any § > 0 provided the marginal distribution of ¥ under Py has bounded

support.

Ezxample 2: deviance
Using that fo = uo and setting ag := —2/{log Py(Y = 0) +log Py(Y = 1)}, a standard argument based

on Taylor approximations allows to write that

\V(f, Po) = V(fo, Po)l

ao

o ()0 =111

)

IN

for some &y,& : X — Y lying pointwise between f and fo. If f(X), fo(X) € (0,1 — §) almost surely
under Py, then we find that |V (f, Py) — V(fo, Po)| < ao (1%5) |f = foll%. Thus, condition (A1) then
holds with a = 2. Since P — Ep[Ylog f(X) + (1 —Y)log{1l — f(X)}] is linear and thus Hadamard

differentiable uniformly in f, condition (A2) can again be shown to hold for any § > 0.

Example 3: classification accuracy
Using that fo : 2 — I{uo(z) > 1/2} is an optimizer of accuracy, and writing any candidate prediction

function f: X — {0,1} as f(z) = I{u(x) > 1/2} for some function p: X — [0, 1], we can write

0 < B{Y =/fo(X)} =R {Y =f(X)} = Eo[I{Y = fo(X)} = I{Y = f(X)}]
= P {Y = fo(X),Y # f(X)} = P {Y # fo(X),Y = f(X)}
= Po{fo(X)=1f(X)=0Y =1} + P {fo(X) =0, f(X) =1,Y =0}
=P {fo(X)=0,f(X)=1Y =1} - B {fo(X) =1, f(X) =0,Y = 0}
= [P{Y = 1| po(X) > § > (X))} = Po{Y = 0] po(X) > 3 > p(X)}] Po{po(X) > 3 > p(X)}
FIRLY =0 p(X) 2 1> po(X)} = PofY = 1] u(X) 2 § > o (X} Pofu(X) 2 § > po(X)}
— RR{Y = 1] po(X) > 3 > p(X)} — 1] Plio(X) > § > u(X)}

+2PY = 0] pu(X) = & > po(X)} = 1 PLu(X) = & > po(X)} -



Now, on one hand, we note that

Po{Y =1]po(X) > 5> p(X)} =5 = Bo{Y [ no(X) > 5 > u(X)} — 3

= Eo{uo(X) | uo(X) = 4 > p(X)} =4 = Bofuo(X) = & | mo(X) = & > u(X)}

and so it follows that [Po{Y =1 | po(X) > & > u(X)} — 3| < |l — polls- We can similarly show
that [Py{Y = 0| u(X) > 2 > po(X)} — 3| < |l — polloc- On the other hand, in view of the margin

condition we impose, we have that

Po{po(X) = 5 > u(X)} < Po{lpo(X) — 5] < [u(X) = po(X)[} < #llu— pollo

and similarly, Po{p(X) > £ > p10(X)} < k|t — f1o]lso. Combining the inequalities we have derived, we
conclude that 0 < Py{Y = fo(X)} — Po{Y = f(X)} < 4k|p — polloo-

Ezample 4: Area under the ROC curve

We begin by writing

0 < Po{fo(X1) < fo(X2),Y1=0,Ya =1} = P {f(X1) < f(X2),V1=0,Y2 =1}
= Bo[I{fo(X1) < fo(X2),Y1 =0,Y2 =1} = I {f(X1) < f(X2),Y1 =0,Y2 = 1}]
= 3 Bo[[{fo(X1) < fo(X2), Y1 =0,Y2 = 1} + I {fo(X1) > fo(X2),Y1 = 1,Y2 = 0}]
— 3 Eo[I{f(X1) < f(X2),Y1=0,Ya =1} + I {f(X1) > f(X2),Y1 = 1,Ys = 0}]
= § Eo[(Ya = YD) {fo(X1) < fo(X2), f(X1) = f(X2)}]
+ 3 Eo[(Y1 — Y2)I {fo(X1) > fo(X2), f(X1) < f(X2)}]
= 5 Eo[{fo(X2) — fo(X1)} {fo(X1) < fo(X2), f(X1) > f(X2)}]
+ 5 Bo [{fo(X1) = fo(X2)H {fo(X1) = fo(X2), f(X1) < f(X2)}]

< 3 Eo[|fo(X1) — fo(X2) [T {[fo(X1) — fo(X2)][f(X1) — f(X2)] <0}].

Defining A := {f(X1) — fo(X1)} + {fo(X2) = f(X2)}, B := fo(X1) = fo(X2) and T : @ = [f(2) — fo(z)],

we note that

{[fo(X1) — fo(X2)][f(X1) — f(X2)] <0} = {B(A+B) <0} = {(}4+B)*- 14> <0}

10



= {[Al>|B|,AB <0} € {[A]>B|} € {[fo(X1) = fo(X2)| < t(X1) +1(X2)} .

Using this result and the inequality derived above, and defining ag := {Py(Y = 1)Py(Y = 0)} 71, we

have that

0 < AUC(fo, Py) — AUC(S, Py)
= ag [Po{fo(X1) < fo(X2), Y1 =0,Y2 =1} = Py {f(X1) < f(X2),V1 = 0,Y2 = 1}]
300 Eo [ fo(X1) = fo(X2)|T {[fo(X1) = fo(X2)][f(X1) — f(X2)] < 0}]
300 Bo [| fo(X1) = fo(X2) I {|fo(X1) — fo(X2)| < t(X1) + t(X2)}]
300 Eo [| fo(X1) = fo(X2)II {| fo(X1) — fo(X2)] < 2[t]|0}]

ao ltlleo Po {Ifo(X1) = fo(X2)| < 2[ltllc} < 200 x[t]]3,

IN - IN A

IN

where the last inequality follows from the margin condition we impose.

3.4 Derivation of the EIFs for Examples 5 and 6

Ezample 5: Mean outcome under a binary intervention rule
The nonparametric EIF for this example is derived in, for example, Sections 2 and 3 of Luedtke

and van der Laan (2016) and in Section A.1 of its supplement.

Erample 6: Classification accuracy under outcome missingness
Recall that, in this example, the ideal-data structure consists of Z := (X,Y) ~ PP, and the observed
data structure is Z := (X, A, U), where A is the indicator of having observed the outcome Y, and we

have defined U := AY. The ideal-data nonparametric EIF at P, following Appendix A, is given by

oh(z,y) = Hy = fp(x)} = V(fp, P).

Based on results in Chapter 25.5.3 of van der Vaart (2000), the observed-data nonparametric EIF at

P is given by

bEriob(2)| A= 1X =1}, (52)

11



Table S1: Approximate values of 1)y s in the numerical experiments.

Importance measure Scenario | X3 X X3 Xy (X1,X3) (Xo,Xy)
. (1,2,3) | 0.136 023 0 0  0.136 0.236
y 4 0.081 0228 0 0  0.136 0.236
(1,2,3) 0105 0221 0 0 0105 0.221
Area under the ROC curve 0052 0211 0 0  0.105 0.221

Defining the nuisance function Qp(x) := P{Y = fp(X) | A = 1, X = x}, simple algebraic manipula-
tions then yield that Ep{¢L(Z) | A=1,X =2} = Qp(z) — V(fp, P). Plugging this into (S2) yields
the desired form of the EIF.

4 Additional numerical experiments

4.1 Replicating all numerical experiments

All numerical experiments presented here and in the main manuscript can be replicated using code

available on GitHub. In all cases, we generate data by:

1: drawing X ~ MV N(0,X)

2 : drawing € ~ N(0,1) independent of X, and setting Y = I{zf8y + € > 0} given X = x,

where ¥ is the p x p identity matrix and 3y = (2.5,3.5,0,...,0)". The dimension p is determined by
the scenario. The approximate true values of variable importance based on accuracy and AUC under
all scenarios considered here are provided in Table S1. The specification of each individual algorithm
for estimating fo and fo s is provided in Table S2, while the specification of the candidate algorithms

used in the Super Learner is provided in Table S3.

4.2 Properties of our proposal under the alternative hypothesis

In this section, we present additional results under Scenario 1. In this case, p = 2. For each scenario
presented here, we generated 1000 random datasets of size n € {100, 500, 1000, ...,4000}, and consid-
ered the importance of both X; and Xo. We highlight results for both features using the AUC and
for X using accuracy, and we provide the coverage of nominal 95% confidence intervals. We assess

performance in the same way as in the main manuscript.

12
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Algorithm R Tuning Parameter(s) Tuning parameter
Implementation and possible values description
Generalized linear models glm - -
Generalized additive models ngecv method = "GCV.Cp" Smoothing parameter
(Wood, 2011) estimation method
Random forests ranger ntreet Number of variables
(Wright and Ziegler, 2017) to possibly split
at in each node
max .depth? Maximum tree depth

min.node.sizef

Minimum node size

Table S2: Individual algorithms considered with their R implementation, tuning parameter values,
and description of the tuning parameters. All tuning parameters besides those listed here are set to
their default values. In particular, the random forests are grown with 500 trees, mtry = ,/p . and
a subsampling fraction of 1; five-fold cross-validation over the grid defined by (ntree, max.depth,
min.node.size) was used to select the tuning parameter combination that minimized log-likelihood

loss.

t. p denotes the total number of predictors.
i For setting 1, ntree € {100,500, 1000}, max.depth — 5, min.node.size = 1; for all other settings,

ntree € {500, 1000, 1500, 2000, 5000}, max.depth € {1,3,5}, min.node.size = 10.

Candidate Learner R Tuning Parameter Tuning parameter
Implementation and possible values description
Generalized linear models glm - -
Generalized additive models gam degree = 2 Degree of smooth terms
(Hastie, 2019)
Random forests ranger mtry = ./p f Number of variables

(Wright and Ziegler, 2017)

to possibly split
at in each node

Gradient boosted xgboost max.depth =1 Maximum tree depth
trees (Chen et al., 2019)
Elastic net glmnet mixing parameter o Trade-off between

(Friedman et al., 2010)

=1

£1 and {5 regularization

Table S3: Candidate learners in the Super Learner ensemble along with their R implementation,
tuning parameter values, and description of the tuning parameters. All tuning parameters besides
those listed here are set to their default values. In particular, the random forests are grown with 500
trees, a minimum node size of 5 for continuous outcomes and 1 for binary outcomes, and a subsampling
fraction of 1; the boosted trees are grown with a maximum of 1000 trees, shrinkage rate of 0.1, and
a minimum of 10 observations per node; and the lasso ¢; tuning parameter is chosen using 10-fold

cross-validation.

f: p denotes the total number of predictors.
1. lasso is only included in cases where p > 4.
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Figure S1: Performance of plug-in estimators for estimating (non-zero) importance of Xj in terms of

accuracy under Scenario 1 (all features have non-zero importance). Clockwise from top left: empirical

bias of the proposed plug-in estimator scaled by n!/2; empirical variance scaled by n; empirical coverage

of nominal 95% confidence intervals; and width of these intervals. Circles, triangles, squares, and plus
symbols denote estimators based on the use of generalized additive models (GAMs), probit regression
(GLM), random forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote
non-cross-fitted and cross-fitted estimators, respectively. This figure appears in color in the electronic
version of this article.

We present results for AUC and for the accuracy-based importance of X in Figures S1-S3. The
results for both features and both importance measures are largely similar to those presented in Section
5.2 of the main manuscript. The need for cross-fitting is particularly striking in Figure S3, where we
observed coverage near zero for intervals based on a non-cross-fitted random forest estimator of the
oracle prediction functions. In Figure S4, we show the coverage of nominal 95% intervals based on
the non-cross-fitted standard error estimator. Here, we observe reduced coverage in some cases com-
pared to the results presented above. Taken together, these results highlight that when using simple
estimators of the conditional mean functions (e.g., estimators based on correctly-specified parametric
models), using cross-fitting appears to have minimal impact on the performance of the proposed infer-
ential procedures and is therefore not needed. In contrast, when flexible nuisance estimators are used,
it appears important to use cross-fitting when estimating VIM values and standard errors. The elimina-
tion of the constraint on nuisance estimator complexity (i.e., the Donsker class condition) achieved via
cross-fitting does appear to translate into substantially improved practical performance when complex

nuisance estimators are used.
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Figure S2: Performance of plug-in estimators for estimating (non-zero) importance of X; in terms of
AUC under Scenario 1 (all features have non-zero importance). Clockwise from top left: empirical bias
of the proposed plug-in estimator scaled by n!/?; empirical variance scaled by n; empirical coverage
of nominal 95% confidence intervals; and width of these intervals. Circles, triangles, squares, and plus
symbols denote estimators based on the use of generalized additive models (GAMSs), probit regression
(GLM), random forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote
non-cross-fitted and cross-fitted estimators, respectively. Coverage of intervals based on the non-cross-
fitted RF-based estimator never exceeds 0.5 and is as low as zero in some cases. This figure appears

in color in the electronic version of this article.
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Figure S3: Performance of plug-in estimators for estimating (non-zero) importance of Xs in terms of
AUC under Scenario 1 (all features have non-zero importance). Clockwise from top left: empirical bias
of the proposed plug-in estimator scaled by n!/?; empirical variance scaled by n; empirical coverage
of nominal 95% confidence intervals; and width of these intervals. Circles, triangles, squares, and plus
symbols denote estimators based on the use of generalized additive models (GAMSs), probit regression
(GLM), random forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote
non-cross-fitted and cross-fitted estimators, respectively. Coverage of intervals based on the non-cross-
fitted RF-based estimator never exceeds 0.5 and is as low as zero in some cases. This figure appears

in color in the electronic version of this article.

16



COVERAGE

a COVERAGE b

1.0 -..AA ®0Ah | eoar %4, Gohdy +ooddy +e 1'01 0gh, ab yve LYY +
Q L 1+.___.;.__.__'_4-.__!__;__!_}.__!.;._-_ ..-_:—-% ks _ sods _ Sofa _ e0al _eeMh 00 heead el
© 094 T m . . @ 0.9 + + +
= " o + + + o+ -+
G>J n G>.) n
O 0.81 " O 0.81 u
o O ]
So07{ = 8071 .
a a
£ 0.61 £ 0.61 ]
L L

0.51 0.51

250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
n

c COVERAGE d COVERAGE

1.0 1 “ _ e 1.0 1
o ook’ _ eedh  _jeoda | S0Th oM etas _heess _peedt i T L OOA_ SeAd . geah _peess _Sehs
& 0.9 B e e w0 8091
) . u ) .
> i " . > i + + + =t 5 +
8 0.8 ) . 8 0.8 + + .
8071 . 8071 —
a a
£ 0.61 £ 0.6 1
L L "

0.51 0.51

250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
n n

. . GAM L] RF . ° Not cross-fitted

Estimator R GLM + SL Cross-fitting . Cross-fitted

Figure S4: Empirical coverage of confidence intervals based on the non-cross-fitted standard error
estimator under Scenario 1 (all features have non-zero importance). The rows correspond to the
feature of interest, while the columns correspond to accuracy and AUC, respectively. Circles, triangles,
squares, and plus symbols denote estimators based on the use of generalized additive models (GAMs),
probit regression (GLM), random forests (RF) or the Super Learner (SL), respectively. Blue and green
symbols denote non-cross-fitted and cross-fitted VIM estimators, respectively. Coverage of intervals
based on the non-cross-fitted RF-based estimator (panels b and d) never exceeds 0.5 and is as low as
zero in some cases. This figure appears in color in the electronic version of this article.
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4.3 Properties of our proposal under the null hypothesis

In this section, we present additional results under Scenario 2. In this case, p = 4. We again generated
1000 random datasets of size n € {100, 500, 1000, . ..,4000}, and considered the importance of both Xy
(a non-null feature) and X3 (a null feature). Here, we highlight results for both features based on the
AUC and for X5 based on accuracy, and we provide the coverage of nominal 95% confidence intervals
and proportion of tests rejected. We assess performance in the same way as in the main manuscript.
We present the results based on a cross-fitted standard error estimator in Figures S5-S7. In
Figures S5 and S6, we observe high power across all sample sizes. We again observe residual bias
for the non-cross-fitted VIM estimators based on flexible nuisance estimation (random forests and the
Super Learner). In Figure S7, the cross-fitted VIM estimator based on random forests exhibits some
residual bias but coverage and type I error are still near the nominal level. It is possible that this bias
could be mitigated with cross-validation over a richer grid of tuning parameters. Similarly as in the
main manuscript, since the bias for estimating the null feature appears to be small for the non-cross-
fitted estimators, type I error is not inflated in these simulations. However, we expect in most cases
that cross-fitting will yield a more adequate type I error control. Indeed, we see that this is the case
by comparing the results for the cross-fitted estimator and cross-fitted versus non-cross-fitted standard
error estimators (Figure S8). Here, we see a vastly inflated type I error for the cross-fitted random
forests-based estimator, reflecting that in this case the non-cross-fitted standard error appears to be

too small.

4.4 Using the bootstrap for interval estimation

In some cases, particularly those with limited sample sizes, it may be of interest to use a bootstrap
scheme for interval estimation rather than a Wald construction using an influence function-based
estimator of the asymptotic variance. Because estimation of fo and fy s only contributes to the second-
order behavior of the plug-in VIM estimator, a valid nonparametric bootstrap here would consist of
bootstrapping the empirical distribution P, but fixing the nuisance estimators f, and f, s across all
bootstrap runs. Not having to re-fit estimators of the nuisance functions on each bootstrap sample
makes this scheme particularly efficient to implement. Additionally, since we only use the bootstrap for
interval estimation, we do not need to bootstrap the cross-fitting procedure. Our proposed bootstrap

procedure in a case with no sample-splitting (i.e., under the alternative hypothesis) is as follows:
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Figure S5: Performance of plug-in estimators for estimating (non-zero) importance of Xs in terms of
accuracy under Scenario 2. Clockwise from top left: empirical bias of the proposed plug-in estimator
scaled by n'/?; empirical variance scaled by n; empirical coverage of nominal 95% confidence intervals;
and empirical power of the proposed hypothesis test. Circles, triangles, squares, and plus symbols
denote estimators based on the use of generalized additive models (GAMs), probit regression (GLM),
random forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote non-cross-
fitted and cross-fitted estimators, respectively. This figure appears in color in the electronic version of

this article.
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Figure S6: Performance of plug-in estimators for estimating (non-zero) importance of Xs in terms of
AUC under Scenario 2. Clockwise from top left: empirical bias of the proposed plug-in estimator scaled
by n'/2; empirical variance scaled by n; empirical coverage of nominal 95% confidence intervals; and
empirical power of the proposed hypothesis test. Circles, triangles, squares, and plus symbols denote
estimators based on the use of generalized additive models (GAMSs), probit regression (GLM), random
forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote non-cross-fitted
and cross-fitted estimators, respectively. Coverage of intervals based on the non-cross-fitted RF-based
estimator never exceeds 0.5 and is as low as zero in some cases. This figure appears in color in the

electronic version of this article.

20



A BIAS g VARIANCE

< 8
c 3
g 14 g
= g
o Z 21
E_ 0 Oghi-ly Sohbmat “__'L: __H A H H-ooh ||S
€ = 4
S - g’
E( X () {e0AAET 00AAREH- 00AART 00AAgEH- 0oAAREH S0AAEE - G0AAgE eoAAmEH-
250 500 750 1000 1250 1500 1750 2000 - 250 500 750 1000 1250 1500 1750 2000
n
c COVERAGE 3D TYPE | ERROR
[$]
:% :)g .‘A—'.:::;‘“"*3‘“%1%‘“‘!"*"“-..—*%"*“"“% 0.3
g 997 + ¥ 2
308 Ll I o+ 48024
= s +
E:S 0.7 g o Lt + + + + +
g 0.6 .g .AA_._¥_.5‘H— #_..“I._ _F!O—A‘gl.— ‘F_.._A‘-._ - orhim - _F_...AAJ._ ok
w 0.5 a 0.0 L]
250 500 750 1000 1250 1500 1750 2000 x 250 500 750 1000 1250 1500 1750 2000
n n
Estimator * GAM " RF Cross-fittin ° Not cross-fitted
A GLM + SL g U Cross-fitted

Figure S7: Performance of plug-in estimators for estimating (zero) importance of X3 in terms of AUC
under Scenario 2. Clockwise from top left: empirical bias of the proposed plug-in estimator scaled
by n'/2; empirical variance scaled by n; empirical coverage of nominal 95% confidence intervals; and
empirical type I error of the proposed hypothesis test. Circles, triangles, squares, and plus symbols
denote estimators based on the use of generalized additive models (GAMs), probit regression (GLM),
random forests (RF) or the Super Learner (SL), respectively. Blue and green symbols denote non-cross-
fitted and cross-fitted estimators, respectively. This figure appears in color in the electronic version of

this article.
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Figure S8: Empirical coverage of confidence intervals (A) and proportion of tests rejected (B) based
on the non-cross-fitted standard error estimator under Scenario 2. The rows correspond to Xs and
X3, respectively, while the columns correspond to accuracy (a,c) and AUC (b,d), respectively. Circles,
triangles, squares, and plus symbols denote estimators based on the use of generalized additive models
(GAMSs), probit regression (GLM), random forests (RF) or the Super Learner (SL), respectively. Blue
and green symbols denote non-cross-fitted and cross-fitted estimators, respectively. Coverage of inter-
vals based on the non-cross-fitted RF-based estimator of importance of Xo (panel bA) never exceeds
0.5 and is as low as zero in some cases. This figure appears in color in the electronic version of this
article.

1. obtain estimator 1, s or ¥y, ¢ of Yo s;

2. obtain estimators f, and f, s of fo and fo s based on the entire dataset;
3. create B bootstrap resamples of the original dataset;

4. Forb=1,2,...,B:

(a) obtain vy, p := V (fn, Pop) and vy, sp := V(fns, Pnp) using the nuisance functions estimated
on the entire dataset and the bootstrap empirical distribution P, p;
(b) set wn,s,b = Unb — Un,s,b;
2
5. compute bootstrap variance estimator 7'72”, B = % 25:1 (1/1,17871, — % Zle 1/Jn,s,b> and resulting

Wald-type confidence intervals (using 1, ; or 1, 5), or form a percentile-based confidence interval

with endpoints given by the 5th and 95th sample percentiles of {¢, 51, Vns2,- - ¥ns.B}-

We consider again Scenario 1, where p = 2. For each scenario presented here, we generated 1000

random datasets of size n € {100,500, 1000,...,4000}, and considered the importance of both X;
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Figure S9: Performance of plug-in estimators for estimating (non-zero) importance of Xj in terms

of accuracy under Scenario 1, using the bootstrap for interval estimation. Clockwise from top left:

empirical bias of the proposed plug-in estimator scaled by n'/2; empirical variance scaled by n; empirical

coverage of nominal 95% confidence intervals; and average width of these intervals. Circles, triangles,
squares and plus symbols denote estimators based on the use of generalized additive models (GAMs),
probit regression (GLM), random forests (RF), and the Super Learner (SL), respectively. Blue and
green symbols denote non-cross-fitted and cross-fitted estimators, respectively. This figure appears in
color in the electronic version of this article.

and Xo. We assess performance in the same way as in the main manuscript, though we use the
bootstrap-based intervals in place of those based on the influence function. We present the results of
this experiment in Figures S9-S12. The results for bias and variance are unchanged from the previous
experiments. Encouragingly, both coverage and width for the bootstrap-based intervals are similar
to the coverage and width of the IF-based intervals, though in the smaller sample size settings the

bootstrap-based intervals are slightly narrower than the IF-based intervals.

4.5 Higher dimensions and correlated features

We now consider two scenarios under increasing dimension, both with and without correlated features.
Here, p € {50,100,200} and X is either a p X p identity matrix (Scenario 3) or a p x p diagonal
matrix with 1 on the diagonal and all off-diagonal elements equal to zero except ¥13 = ¥31 = 0.7
and Y94 = 342 = 0.2 (Scenario 4). Thus, in Scenario 4, X3 and X, are not directly important for
predicting the outcome, but might be found to be important in isolation due to their correlation with

the important features X; and X5. In these experiments, we considered n € {500,3000} for each
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Figure S10: Performance of plug-in estimators for estimating (non-zero) importance of Xo in terms
of accuracy under Scenario 1, using the bootstrap for interval estimation. Clockwise from top left:
empirical bias of the proposed plug-in estimator scaled by n'/2; empirical variance scaled by n; empirical
coverage of nominal 95% confidence intervals; and average width of these intervals. Circles, triangles,
squares and plus symbols denote estimators based on the use of generalized additive models (GAMs),
probit regression (GLM), random forests (RF), and the Super Learner (SL), respectively. Blue and
green symbols denote non-cross-fitted and cross-fitted estimators, respectively. This figure appears in

color in the electronic version of this article.
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Figure S11: Performance of plug-in estimators for estimating (non-zero) importance of X; in terms of
AUC under Scenario 1, using the bootstrap for interval estimation. Clockwise from top left: empirical
bias of the proposed plug-in estimator scaled by n'/?; empirical variance scaled by n; empirical coverage
of nominal 95% confidence intervals; and average width of these intervals. Circles, triangles, squares
and plus symbols denote estimators based on the use of generalized additive models (GAMs), probit
regression (GLM), random forests (RF), and the Super Learner (SL), respectively. Blue and green
symbols denote non-cross-fitted and cross-fitted estimators, respectively. Coverage of intervals based
on the non-cross-fitted RF-based estimator never exceeds 0.5 and is as low as zero in some cases. This

figure appears in color in the electronic version of this article.

25



VARIANCE

A BIAS B
e g 05 T
é 2 § 0.4 .+ + + + + + +
5 '] 203 -
o = = L] ] L} [ ] n " = . = L [ ] - ™1 u
é‘ U e e s :j‘.§ 0.2 dooas  Teoan Tosan FeeAh Ll Teess Feoah o, +
S 2 o1 CRRL E
£ 24 . u u " " - - : 0.0 -

250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
n n
c COVERAGE <D WIDTH
©
© 1.0 e -~ . IR LAkl v
£ 09 Al el —heetis —ptebs et ek 8% i (100
808 + + + ~ = =t = '+:':§ 0.075 e i Pvre m
T 07 . 8 0.050 Tt e ettt et
506 . 8 0.025
£ 3
w05 £ 0.000
250 500 750 1000 1250 1500 1750 2000 © 250 500 750 1000 1250 1500 1750 2000
n n

Estimator * GAM " RF Cross-fittin o Not cross-fitted

SHmato N GLM + sL ossting . Cross-fitted

Figure S12: Performance of plug-in estimators for estimating (non-zero) importance of Xs in terms of
AUC under Scenario 1, using the bootstrap for interval estimation. Clockwise from top left: empir-
ical bias of the proposed plug-in estimator scaled by nl/2: empirical variance scaled by n; empirical
coverage of nominal 95% confidence intervals; and average width of these intervals. Circles, triangles,
squares and plus symbols denote estimators based on the use of generalized additive models (GAMs),
probit regression (GLM), random forests (RF), and the Super Learner (SL), respectively. Blue and
green symbols denote non-cross-fitted and cross-fitted estimators, respectively. In this experiment, the
coverage of non-cross-fitted RF was never above 0.5, and was as low as zero. This figure appears in
color in the electronic version of this article.
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p, and assessed the importance of each individual feature as well as the feature groups (X1, X3) and
(X9, X4), again using both accuracy and AUC. We use cross-fitting to estimate the VIM value in all
cases, and we use the Super Learner with candidate library consisting of boosted trees, random forests,
and the lasso to estimate fy and fos. We then compute the empirical bias scaled by n1/2, the empirical
variance scaled by n, the empirical coverage of nominal 95% confidence intervals, and the proportion
of tests rejected.

We display the results under Scenario 3 in Figures S13 and S14. Here, we find that at the smaller
sample size (n = 500), there is some excess bias for the features with non-null importance, and that
this bias increases with increasing p; this is accompanied by a decrease in coverage. However, with a
larger sample size (n = 3000), we recover similar performance to that observed in Section ?? of the
main manuscript and the preceeding sections of this supplement. Type I error is controlled at the
nominal level in all cases.

We display the results under Scenario 4 in Figures S15 and S16. We find similar results overall
to those from Scenario 3. In smaller samples, it appears to be advantageous to consider groups of
correlated features rather than the features alone; this is particularly striking in Figure S16. As the
sample size grows, the difference in performance diminishes.

Overall, the statistical performance of our procedure appear to be impacted more strongly by
noise covariates in small samples than in large samples, regardless of the level of correlation among
covariates. It is possible that this performance could be improved in small samples by including more
aggressive sparsity-inducing algorithms in our ensemble. Indeed, the performance of our estimator of
each VIM value depends on the rate at which the nuisance functions can be estimated, and this rate
certainly slows down as the number of covariates grows, unless we can leverage stronger structure. We
note that, while perhaps minimally impacting the statistical performance of our procedure, correlated
features nevertheless render the interpretation of individual-variable importance more challenging: the
population-level importance value itself changes in the presence of correlation. This difficulty can be
partially mitigated by assessing group variable importance instead; however, this requires groups to
either be known a priori (as in Section 6 of the main manuscript) or estimated, and in this latter case,
further work must be done to ensure that the desired inferential properties (e.g., correct coverage) are

preserved.
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Figure S13: Performance of plug-in estimators for estimating importance in terms of accuracy under
Scenario 3 (all features are independent). Clockwise from top left: empirical bias for the proposed
plug-in estimator scaled by n'/?; empirical variance scaled by n; empirical coverage of nominal 95%
confidence intervals for the true importance; and empirical type I error of the proposed hypothesis test.

The different symbols denote the feature(s) of interest.
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Figure S14: Performance of plug-in estimators for estimating importance in terms of AUC under
Scenario 3 (all features are independent). Clockwise from top left: empirical bias for the proposed
plug-in estimator scaled by n'/?; empirical variance scaled by n; empirical coverage of nominal 95%
confidence intervals for the true importance; and empirical type I error of the proposed hypothesis test.

The different symbols denote the feature(s) of interest.
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Figure S15: Performance of plug-in estimators for estimating importance in terms of accuracy under
Scenario 4 (some features are correlated). Clockwise from top left: empirical bias for the proposed
plug-in estimator scaled by n'/?; empirical variance scaled by n; empirical coverage of nominal 95%
confidence intervals for the true importance; and empirical type I error of the proposed hypothesis test.

The different symbols denote the feature(s) of interest.
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Figure S16: Performance of plug-in estimators for estimating importance in terms of AUC under
Scenario 4 (some features are correlated). Clockwise from top left: empirical bias for the proposed
plug-in estimator scaled by n'/?; empirical variance scaled by n; empirical coverage of nominal 95%
confidence intervals for the true importance; and empirical type I error of the proposed hypothesis test.

The different symbols denote the feature(s) of interest.
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Figure S17: Variable importance measured by accuracy (panel A) and AUC (panel B) for the groups
defined in panel C. Stars denote importance deemed statistically significantly different from zero at
the 0.0038 (0.05 / 13) level.

5 Additional details for the study of an antibody against HIV-1

5.1 Harmonized analysis with Magaret et al. (2019)

In Figure S17, we display the results of an analysis harmonized to use the same outcome as in Magaret
et al. (2019). This sensitivity outcome is the indicator of whether or not the ICsy value was right-
censored. Viruses with right-censored ICs values are thought to be resistant to VRCO1, while viruses
with non-censored ICsp values may instead be more sensitive to VRCOL. In this case, we consider
the conditional importance of each group of features relative to the remaining features. Overall, these
results are largely in line with both Magaret et al. (2019) and with the results presented in the main
manuscript. However, we see here that only the VRCO01 binding footprint has p-value less than 0.0038
(denoted by stars in Figure S17; this value results from a Bonferroni correction from testing 13 groups

and an initial level of 0.05), and only for the AUC measure. The exact p-value is given by 6.1 x 1074

5.2 Library of candidate learning algorithms

In this section, we describe the library of candidate learning algorithms used in our analysis replicating
the results of Magaret et al. (2019). We used a wide array of flexible machine learning-based algorithms

in the hope that this large library would yield a cross-validated algorithm with good predictive perfor-
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Table S4: Library of canididate learners for the Super Learner with descriptions.

Function name | Description

SL.mean intercept only regression

SL.xgboost1 boosted regression trees with maximum depth of 1
SL.xgboost2 boosted regression trees with maximum depth of 2
SL.xgboost4 boosted regression trees with maximum depth of 4
SL.xgbhoost6 boosted regression trees with maximum depth of 6
SL.xgboost8 boosted regression trees with maximum depth of 8

SL.ranger.small | random forest with mtry equal to one-half times square root of number of predictors

SL.ranger.reg random forest with mtry equal to square root of number of predictors

SL.ranger.large | random forest with mtry equal to two times square root of number of predictors
SL.glmnet.0 GLMNET with lambda selected by 5-fold CV and alpha equal to 0
SL.glmnet.25 GLMNET with lambda selected by 5-fold CV and alpha equal to 0.25
SL.glmnet.50 GLMNET with lambda selected by 5-fold CV and alpha equal to 0.5
SL.glmnet.75 GLMNET with lambda selected by 5-fold CV and alpha equal to 0.75
SL.glmnet.1 GLMNET with lambda selected by CV and alpha equal to 1

mance. The particular machine learning techniques included were: the lasso with logit link function
(implemented in the glmnet R package), random forests (implemented in the ranger R package), and
gradient boosted decision trees (implemented in the xgboost R package), each with a variety of choices
for the tuning parameters. In Table S4, we provide a description of each candidate learning algorithm
in our library. Our final estimator is the convex combination of these algorithms chosen to minimize
the ten-fold cross-validated negative log likelihood. In all cases, we adjusted for geographic region as

a potential confounding variable.

5.3 Super Learner performance

We now describe the empirical performance of the Super Learner in this application for both the
outcome considered in the main manuscript (ICs0 < 1) and the ICsy censored outcome described
above. In Table S5, we show the coefficients of each candidate learner in the final Super Learner
ensemble for each outcome. The rows of this table are each of the ten cross-validation folds broken
down by outcome, while the columns are the individual learners. Here, we see that for the 1Csg
censored outcome, the most commonly chosen algorithms in the final ensemble were boosted trees with
maximum depth of 2 or 4, random forests with a large number of features chosen at each split, and the
elastic net with various values of a. For the IC5y < 1 outcome, the most commonly chosen algorithms
were again boosted trees with maximum depth of 2, 4, or 6, random forests with a medium and large

number of features chosen at each split; the elastic net was often not chosen by the Super Learner.
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Table S5: Table of Super Learner weights for each outcome, candidate learner and cross-validation
fold. We have removed ‘SL.” from the name of each learner.

mean ‘ xgboost1 ‘ xgboost2 ‘ xgboost4 ‘ xghoost6 ‘ xgboost8 ranger.large | glmnet.0 ‘ glmnet.25 | glmnet.50 | glmnet.75 | glmnet.1 ‘ fold

IC5y censored

ranger.small

ranger.reg

0 0 0.05 0.00 0.00 0.00 0 0.00 0.74 0 0.00 0.21 0.00 0.00 1
0 0 0.08 0.00 0.00 0.00 0 0.00 0.62 0 0.00 0.30 0.00 0.00 2
0 0 0.01 0.00 0.00 0.00 0 0.00 0.50 0 0.48 0.00 0.00 0.00 3
0 0 0.00 0.08 0.00 0.00 0 0.00 0.51 0 0.40 0.00 0.00 0.00 4
0 0 0.00 0.04 0.00 0.00 0 0.00 0.58 0 0.00 0.38 0.00 0.00 5
0 0 0.11 0.00 0.00 0.00 0 0.00 0.62 0 0.27 0.00 0.00 0.00 6
0 0 0.11 0.00 0.00 0.00 0 0.00 0.51 0 0.07 0.00 0.31 0.00 7
0 0 0.05 0.00 0.00 0.00 0 0.00 0.74 0 0.00 0.14 0.00 0.08 8
0 0 0.01 0.01 0.00 0.00 0 0.00 0.62 0 0.23 0.00 0.12 0.00 9
0 0 0.07 0.00 0.00 0.00 0 0.00 0.36 0 0.27 0.00 0.00 0.31 10
IC; <1
0 0 0.00 0.13 0.00 0.00 0 0.00 0.87 0 0.00 0.00 0.00 0.00 1
0 0 0.00 0.18 0.00 0.00 0 0.00 0.82 0 0.00 0.00 0.00 0.00 2
0 0 0.00 0.00 0.16 0.00 0 0.00 0.84 0 0.00 0.00 0.00 0.00 3
0 0 0.00 0.06 0.06 0.00 0 0.00 0.89 0 0.00 0.00 0.00 0.00 4
0 0 0.02 0.12 0.05 0.00 0 0.00 0.82 0 0.00 0.00 0.00 0.00 5
0 0 0.11 0.00 0.00 0.03 0 0.00 0.86 0 0.00 0.00 0.00 0.00 6
0 0 0.05 0.00 0.00 0.00 0 0.11 0.84 0 0.00 0.00 0.00 0.00 7
0 0 0.00 0.00 0.07 0.03 0 0.00 0.90 0 0.00 0.00 0.00 0.00 8
0 0 0.12 0.00 0.00 0.00 0 0.39 0.41 0 0.00 0.00 0.07 0.00 9
0 0 0.00 0.00 0.07 0.00 0 0.00 0.93 0 0.00 0.00 0.00 0.00 | 10

In Figure S18, we display the cross-validated AUC and 95% confidence intervals (obtained on the
logit scale and then inverted; thus, the intervals may not be symmetric about the point estimate of
AUC) for both outcomes and each of the candidate learning algorithms in the Super Learner, along with
the Super Learner ensemble algorithm and the classical cross-validated selector (the “discrete Super
Learner”). We used the R package cvAUC to compute these point and interval estimates. Similarly
to Magaret et al. (2019), we see that, of all the individual algorithms, random forests have the best
performance in this application for both outcomes, followed by the lasso and boosted trees (for the
IC50 censored outcome) and the reverse for the IC5p < 1 outcome. Additionally, we estimate the
cross-validated AUC of the overall Super Learner to be 0.90 for the ICsq censored outcome, with a 95%
confidence interval of (0.87, 0.94). For the ICs59 < 1 outcome, we estimate the cross-validated AUC
of the overall Super Learner to be 0.83 (0.80, 0.86). Magaret et al. (2019) performed an analysis for
1C5¢ censored separately on two independent splits of these data, and obtained cross-validated AUCs
of 0.86 (0.81, 0.92) and 0.87 (0.81, 0.93) on these two subsets.

In Figure S19, we display cross-validated ROC curves for the Super Learner, discrete Super Learner,
and the top-performing individual algorithm. These ROC curves are similar to those presented in
Magaret et al. (2019) — in both analyses, we see a large cross-validated true positive rate for each
chosen cross-validated false positive rate. These results suggest that for both outcomes, our predictor

is well-calibrated for discriminating between the outcome classes.
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Figure S18: Point estimates of cross-validated AUC with 95% confidence intervals for each candidate
learning algorithm in the Super Learner for each outcome.

A Algorithm Discrete SL SL.ranger.reg_All Super Learner B Algorithm Discrete SL SL.ranger.large_All Super Learner
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Figure S19: Cross-validated ROC curves for each outcome for the Super Learner (light green), discrete
Super Learner (gray), and top-performing individual algorithm (random forests). ICsq censored is
displayed in panel A, while IC59 < 1 is displayed in panel B.
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