Table. S1 Parameter distributions for model inference. All rates are in day⁻¹; the unit of fulvestrant doses (i.e. c_F) is 10^{-5} nM for -DOX cells and nM for +DOX cells; the unit of palbociclib doses (i.e. c_F) is 10 nM. Furthermore, some parameters in the effective drug dose model are rescaled in the following way: b_F is rescaled by $0.1b_F$ in the model of -DOX cells; $\lambda_{\alpha}^{(max)}$ is rescaled by $0.1\lambda_{\alpha}^{(max)}$ in the model of -DOX cells; the interaction parameter a_{FP} is rescaled by $0.1a_{FP}$ in the model of both -DOX and +DOX cells. Note that para. is a short notation of parameter and lnorm represents the Log-normal distribution.

Para.	Description	Prior Distribution		Lower bound	Upper bound	Initial distribution	
λ_{lpha}	G0/G1 sub- phases transi- tion rate and G0/G1 to S rate (no drug)	N(16,2) for -DOX	N(4,2) for $+DOX$	0	∞	$\begin{array}{c} lnorm(1,log(16),1) \\ \text{for -DOX} \end{array}$	$\begin{array}{c} lnorm(1, log(4), 1) \\ for + DOX \end{array}$
$\lambda_{lpha}^{(max)}$	G0/G1 to S rate (infinite drug)	N(1,1)		0	∞	lnorm(1, log(0.1), 0.1)	
λ_{eta}	S subphases transition rate and S to G2/M rate	N(16,2) for -DOX	N(4,2) for $+DOX$	0	∞	$\begin{array}{c} lnorm(1,log(16),1) \\ for \text{-DOX} \end{array}$	
λ_{γ}	G2/M sub- phases transi- tion rate and G2/M to G0/G1 rate	N(16, 2) for -DOX	N(4,2) for $+DOX$	0	∞	lnorm(1, log(16), 1) for -DOX	$\begin{array}{c} lnorm(1,log(4),1) \\ for +DOX \end{array}$
b_P	Palbociclib response steepness	N(1,1)		0	∞	lnorm(1, log(1), 1)	
b_F	Fulvestrant response steepness	N(1,1)		0	∞	lnorm(1,log(1),1)	
c_P	50% effect dose of palbociclib	N(1,1)		0	∞	lnorm(1,log(1),1)	
c_F	50% effect dose of fulvestrant	N(1, 1.0) for -DOX	$ \begin{array}{c c} N(1, 0.5) \\ \text{for +DOX} \end{array} $	0	∞	lnorm(1,log(1),1)	
a_{FP}	50% Drug inter- action	N(-1,1)		$-\infty$	∞	-lnorm(1, log(1), 1)	
σ_{α}	G0/G1 sam- pling variance	cauchy(0,1)		0	∞	abs(N(1,0.1))	
σ_{eta}	S sampling variance	cauchy(0,1)		0	∞	abs(N(1,0.1))	
σ_{γ}	G2/M sampling variance	cauchy(0,1)		0	∞	abs(N(1,0.1))	
σ_T	Total count sampling variance	cauchy(0,1)		0	∞	abs(N(1,0.1))	

September 6, 2023 18/26