Table. S1 Parameter distributions for model inference. All rates are in day⁻¹; the unit of fulvestrant doses (i.e. c_F) is 10^{-5} nM for -DOX cells and nM for +DOX cells; the unit of palbociclib doses (i.e. c_F) is 10 nM. Furthermore, some parameters in the effective drug dose model are rescaled in the following way: b_F is rescaled by $0.1b_F$ in the model of -DOX cells; $\lambda_{\alpha}^{(max)}$ is rescaled by $0.1\lambda_{\alpha}^{(max)}$ in the model of -DOX cells; the interaction parameter a_{FP} is rescaled by $0.1a_{FP}$ in the model of both -DOX and +DOX cells. Note that para. is a short notation of parameter and lnorm represents the Log-normal distribution. | Para. | Description | Prior Distribution | | Lower bound | Upper
bound | Initial distribution | | |--------------------------|---|--------------------|---|-------------|----------------|--|---| | λ_{lpha} | G0/G1 sub-
phases transi-
tion rate and
G0/G1 to S rate
(no drug) | N(16,2) for -DOX | N(4,2) for $+DOX$ | 0 | ∞ | $\begin{array}{c} lnorm(1,log(16),1) \\ \text{for -DOX} \end{array}$ | $\begin{array}{c} lnorm(1, log(4), 1) \\ for + DOX \end{array}$ | | $\lambda_{lpha}^{(max)}$ | G0/G1 to S rate
(infinite drug) | N(1,1) | | 0 | ∞ | lnorm(1, log(0.1), 0.1) | | | λ_{eta} | S subphases
transition rate
and S to G2/M
rate | N(16,2) for -DOX | N(4,2) for $+DOX$ | 0 | ∞ | $\begin{array}{c} lnorm(1,log(16),1) \\ for \text{-DOX} \end{array}$ | | | λ_{γ} | G2/M sub-
phases transi-
tion rate and
G2/M to G0/G1
rate | N(16, 2) for -DOX | N(4,2) for $+DOX$ | 0 | ∞ | lnorm(1, log(16), 1) for -DOX | $\begin{array}{c} lnorm(1,log(4),1) \\ for +DOX \end{array}$ | | b_P | Palbociclib response steepness | N(1,1) | | 0 | ∞ | lnorm(1, log(1), 1) | | | b_F | Fulvestrant response steepness | N(1,1) | | 0 | ∞ | lnorm(1,log(1),1) | | | c_P | 50% effect dose
of palbociclib | N(1,1) | | 0 | ∞ | lnorm(1,log(1),1) | | | c_F | 50% effect dose
of fulvestrant | N(1, 1.0) for -DOX | $ \begin{array}{c c} N(1, 0.5) \\ \text{for +DOX} \end{array} $ | 0 | ∞ | lnorm(1,log(1),1) | | | a_{FP} | 50% Drug inter-
action | N(-1,1) | | $-\infty$ | ∞ | -lnorm(1, log(1), 1) | | | σ_{α} | G0/G1 sam-
pling variance | cauchy(0,1) | | 0 | ∞ | abs(N(1,0.1)) | | | σ_{eta} | S sampling variance | cauchy(0,1) | | 0 | ∞ | abs(N(1,0.1)) | | | σ_{γ} | G2/M sampling variance | cauchy(0,1) | | 0 | ∞ | abs(N(1,0.1)) | | | σ_T | Total count sampling variance | cauchy(0,1) | | 0 | ∞ | abs(N(1,0.1)) | | September 6, 2023 18/26