
Appendix. S2 Bayesian estimation of model parameters.
For the priors of the initial conditions xk(0) in the differential equations

dxk(t)

dt
=



2λγx3m(t)− λαx1(t), for k = 1,

λαxk−1(t)− λαxk(t), for k = 2, · · · ,m− 1

λαxm−1(t)− λ∗
α(dF , dP )xm(t), for k = m,

λ∗
α(dF , dP )xm(t)− λβxm+1(t), for k = m+ 1,

λβxk−1(t)− λβxk(t), for k = m+ 2, · · · , 2m,

λβx2m(t)− λγx2m+1(t), for k = 2m+ 1,

λγxk−1(t)− λγxk(t), for k = 2m+ 2, · · · , 3m,

(1)

we presumed that they are evenly distributed within each phase, i.e.

xk(0) =


xα(0)
m for k = 1, · · · ,m,

xβ(0)
m for k = m+ 1, · · · , 2m,

xγ(0)
m for k = 2m+ 1, · · · , 3m.

(2)

Then we used relatively informative priors for xα(0), xβ(0), xγ(0) because we know what
the initial cell population on day 0 from our data. Therefore, the most rational priors
are centered around the mean of the observed cell cycle data on day 0, with standard
deviations one order of magnitude smaller than the mean as

xα(0) ∼ N(3000, 300) (3)

xβ(0) ∼ N(300, 300) (4)

xγ(0) ∼ N(500, 300). (5)

Based on the above priors (2)-(5), posteriors of xk(0), for k = 1, · · · 3m, were estimated
separately for each experiment, allowing for differences in plating.

Three chains were run so that we could evaluate chain convergence; each chain was
run for 2000 iterations, with a warm-up period of 1000 to achieve a total of 1000
posterior samples to use for downstream simulations. The control parameter settings
adapt delta = 0.95, stepsize = 0.01 were used to avoid divergent transitions. The
default values were used for all other control parameters. Posterior samples x̂k(t; dF , dP )
were obtained by solving the system of differential equations listed in (1) using the
posterior parameter values sampled by the MCMC. Posterior samples for the cell cycle
phase count were obtained by

x̂α(t; dF , dP ) =

m∑
k=1

x̂k(t; dF , dP ), (6)

x̂β(t; dF , dP ) =

2m∑
k=m+1

x̂k(t; dF , dP ), (7)

x̂γ(t; dF , dP ) =

3m∑
k=2m+1

x̂k(t; dF , dP ), (8)

and posterior samples for the total cell count were obtained by

x̂T (t; dF , dP ) =

3m∑
k=1

x̂k(t; dF , dP ). (9)
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To account for noisy measurements, we assumed that the data observations x
(obs)
j ,

for j ∈ {α, β, γ, T}, were sampled from normal distributions centered around the
posterior estimates with standard deviation σj , i.e.

x(obs)
α (t; dF , dP ) ∼ N (x̂α(t; dF , dP ), σα), (10)

x
(obs)
β (t; dF , dP ) ∼ N (x̂β(t; dF , dP ), σβ), (11)

x(obs)
γ (t; dF , dP ) ∼ N (x̂γ(t; dF , dP ), σγ), (12)

x
(obs)
T (t; dF , dP ) ∼ N (x̂T (t; dF , dP ), σT ). (13)

This assumption of normality is justified by the Central Limit Theorem. The prior
distributions, initial parameter distributions, and lower and upper bounds are listed in
??. The prior distributions for model parameters were chosen to be weakly informative.
The initial parameter distributions were chosen so that the log likelihood could be
calculated using the initial parameter values. Lastly, with the posterior parameters

values σ̂j sampled by the MCMC, posterior predictive samples x
(pred)
j were generated

according to:

x(pred)
α (t; dF , dP ) ∼ N (x̂α(t; dF , dP ), σ̂α), (14)

x
(pred)
β (t; dF , dP ) ∼ N (x̂β(t; dF , dP ), σ̂β), (15)

x(pred)
γ (t; dF , dP ) ∼ N (x̂γ(t; dF , dP ), σ̂γ), (16)

x
(pred)
T (t; dF , dP ) ∼ N (x̂T (t; dF , dP ), σ̂T ). (17)

The R packages bayesplot [1, 2] and rstanarm [3] were used to visualize the posterior
distribution and evaluate the model inference. Different rates were estimated for the
-DOX (fulvestrant sensitive) and +DOX (fulvestrant resistant) cells. Also, we compared
models with different m using the leave-one-out information criterion (LOOIC) [4] in
order to infer the most probable number of subphases inside each phase. Model
convergence was evaluated using the Potential Scale Reduction Factor (R̂), which
compares the estimated between-chains and within-chain variances for each
parameters [5, 6]. The chains are considered converged if R̂ < 1.1 for all model
parameters [6]. Effective sample size was used to measure the amount autocorrelation
increased estimation uncertainty [7, 8], where an effective sample size of 0.1 of the total
number of iterations is considered to be acceptable. The autocorrelation ρt measures
the correlation between two chains offset by lag t ≥ 0 positions, and is defined by

ρt =
1

σ2

∫
Θ

θ(n)θ(n+1)p(θ)dθ, (18)

where p(θ) is the joint probability function of the chain and σ2 is the chain variance.
The effective sample size of N samples generated by a process with autocorrelation ρt is

Neff =
N∑∞

t=−∞ ρt
. (19)
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