SUPPLEMENTAL DATA

Clonal germinal center B cells function as a niche for T-cell lymphoma

Manabu Fujisawa¹, Tran B. Nguyen¹, Yoshiaki Abe², Yasuhito Suehara³, Kota Fukumoto^{1,3}, Sakurako Suma², Kenichi Makishima², Chihiro Kaneko¹, Yen T. M. Nguyen¹, Kensuke Usuki⁴, Kentaro Narita⁵, Kosei Matsue⁵, Naoya Nakamura⁶, Shumpei Ishikawa⁷, Fumihito Miura⁸, Takashi Ito⁸, Ayako Suzuki⁹, Yutaka Suzuki⁹, Seiya Mizuno¹⁰, Satoru Takahashi¹⁰, Shigeru Chiba^{1,3*} and Mamiko Sakata-Yanagimoto^{1,3,11*}

¹Department of Hematology, Faculty of Medicine, University of Tsukuba.

²Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba.

³Department of Hematology, University of Tsukuba Hospital.

⁴Department of Hematology, NTT Medical Center Tokyo.

⁵Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center. ⁶Department of Pathology, Tokai University School of Medicine.

⁷Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo. ⁸Department of Biochemistry, Kyushu University Graduate School of Medical Sciences. ⁹Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo.

¹⁰Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba.

¹¹Division of Advanced Hemato-Oncology, Transborder Medical Research Center, University of Tsukuba.

* These authors contributed equally to this work

Correspondence: sakatama@md.tsukuba.ac.jp (M.S.-Y.), schiba-t@md.tsukuba.ac.jp (S.C.)

Department of Hematology, Faculty of Medicine, University of Tsukuba

1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan

Tel: +81-29-853-3127; Fax: +81-29-853-8079

1 Supplemental Notes

2 Supplemental Note1

3 Related to "Clonal expansion of *Tet2*-deficient GCB cells sorted from tumor-bearing

4 **MxTR**"

5 To explore the biological significance of core histone mutations (c.G>A260 (p.Ser87Asn, 6 H3S87N) mutations of canonical paralog histone H3 genes) in clonally evolved B cells, we 7 established knock-in mice (H3S87N KI) in which the Hist1h3c S87N mutant was inserted on the 3' UTR of the Ighg1 promoter (supplemental Figure 9A-B). We confirmed the expression of 8 9 H3S87N KI (supplemental Figure 9C). We observed H3S87N KI and wild-type mice under 10 stimulation with sheep red blood cells every 4 weeks. Interestingly, at 15 weeks, the spleen of 11 H3S87N KI was heavier than that of the wild type, accompanied by expanded follicular 12 structures (supplemental Figure 9D-F). Furthermore, the percentages and number of GCB cells 13 were significantly increased in the spleen of H3S87N KI compared to those of the wild type, 14 whereas those of follicular B cells to marginal zone B cells were significantly increased in the 15 spleen of H3S87N KI (supplemental Figure 9G). Cd40 expression on GCB cells collected from 16 the spleen of H3S87N KI was higher than that in control mice (supplemental Figure 9H). These 17 results suggest that core histone mutations acquired during clonal evolution contribute to 18 expansion of GCB cells.

20 Supplemental Note2

Related to "Identification of the Cd40–Cd40lg interaction between GCB and T_{FH}-tumor cell clusters as a therapeutic target in T_{FH}-like lymphomas"

23 To explore the biological roles of CD40LG signaling in T cells, we performed whole-24 transcriptome analysis (WTA) using RNA extracted from Jurkat cells expressing the G17V mutant or mock (Jurkat^{G17VRHOA} and Jurkat^{mock}) respectively¹, with or without stimulation by CD40-Fc 25 chimera protein under stimulation by an anti-CD3 antibody: (1) Jurkat^{mock} stimulated by anti-Cd3 26 27 antibody (Mock CD3, n = 4), (2) Jurkat^{mock} stimulated by anti-CD3 antibody and CD40-FC chimera (Mock $CD3^+CD40^{FC}$, n = 4), (3) Jurkat^{G17VRHOA} stimulated by anti-CD3 antibody 28 (G17V CD3⁺, n = 4), and (4) Jurkat^{G17VRHOA} stimulated by anti-CD3 antibody and Cd40-FC 29 chimera (G17V CD3⁺CD40^{FC}, n = 4, supplemental Figure 11A). Principal component analysis 30 31 revealed a distinct gene-expression pattern in each group (supplemental Figure 11B). We identified 341 differentially expressed genes (DEGs) between the G17V CD3⁺CD40^{FC} and 32 33 G17VRHOA CD3⁺ groups (up, n = 124; down, n = 217; supplemental Figure 11C–D), including oncogenic genes, such as CDK6, TCF7, and VEGFA. GSEA for WTA data showed that among 34 35 hallmark and C6 oncogenic gene sets from MsigDB, 3 and 17 pathways were significantly enriched in the G17V CD3⁺CD40^{FC} group compared with the G17VRHOA CD3⁺ group, 36

37 respectively. Among them, gene sets involved in mTOR, IL2 STAT5, and interferon gamma response signaling were enriched in the G17V CD3⁺CD40^{FC} group (supplemental Figure 11E-38 39 H). Furthermore, ingenuity pathway analysis (IPA) confirmed the enrichment of mTOR and VEGF signaling in the G17V CD3⁺CD40^{FC} group (supplemental Figure 111). 40 41 Furthermore, to explore the effect of G17V RHOA mutation on CD40LG signaling in T cells, the G17V CD3⁺CD40^{FC} group was compared with Mock CD3⁺CD40^{FC}. GSEA for RNA-42 seq showed that 16 pathways were enriched in G17V CD3⁺CD40^{FC} compared with Mock CD3⁺. 43 Notably, five pathways, including TNFA SIGNALING VIA NFKB and HEDGEHOG 44 45 SIGNALING, were enriched only in G17V CD3⁺CD40^{FC} vs Mock CD3⁺CD40^{FC}, while 46 enrichment of the other 11 pathways was also observed in G17V CD3⁺ vs Mock CD3⁺ 47 (supplemental Figure 11J). Overall, these results suggest that CD40LG signaling in T cells 48 stimulated by CD40 activates oncogenic pathways, such as the mTOR pathway, and contributes 49 to tumorigenesis.

51 Supplemental Methods

52 Mouse genotyping

53	Genotyping and evaluation were performed using genomic DNA extracted from either tails
54	(genotyping) using genomic PCR with the primers listed in supplemental Table 9. ^{2,3} This
55	research was approved by the facility review committee (Approval number, 21-005). All strains
56	were bred and housed under specific pathogen-free conditions. All animal experiments were
57	performed according to the guidelines.
58	
59	Humon complex
	ruman samples
60	Homeostatic lymph node (HLN) samples were prospectively collected from patients with solid
60 61	Homeostatic lymph node (HLN) samples were prospectively collected from patients with solid tumors ($n = 3$) who had undergone lymph node (LN) resection between January and June 2020.
60 61 62	Homeostatic lymph node (HLN) samples were prospectively collected from patients with solid tumors (n = 3) who had undergone lymph node (LN) resection between January and June 2020. LNs with no enlargement (< 1 cm) were used in this study. The collected LNs were confirmed

- 64 (AITL) samples (n = 6) were prospectively collected between March 2019 and July 2020.
- 65 Lymphoma specimens were diagnosed by hematopathologists. Clinical characteristics of
- 66 patients with HLN and AITL are listed in supplemental Table 10. This study was conducted in
- 67 accordance with the Declaration of Helsinki and was approved by the review board of each

69	from all participating patients.
70	
71	Flow cytometric analysis
72	Mouse spleen tissue and LNs or human AITL LNs were manually minced and passed through a
73	70 μ m cell strainer (Falcon) to prepare single-cell suspensions. The suspensions were dissolved
74	in ammonium-potassium chloride buffer to remove red blood cells (RBCs). Multicolor flow
75	cytometric analyses and sorting were performed on a BD FACS Aria II or Aria III sorter (BD
76	Biosciences). FlowJo software (Tree Star Inc.) was used for all flow cytometric analyses.
77	
78	Cell sorting
79	Cd19 ⁺ B220 ⁺ Fas ⁺ Gl-7 ⁺ Cd138 ⁻ GCB cells, Cd19 ⁺ B220 ⁺ Fas ⁻ Gl-7 ⁻ Cd138 ⁻ B cells excluding GCB
80	cells (non-GCB cells), and Cd4 ⁺ Cd8 ⁻ Pdcd1 ⁺ Icos ⁺ T_{FH} cells were sorted from the spleen of
81	MxTR. The purity of these preparations was $> 95\%$. All antibodies used are listed in
82	supplemental Table 11.
83	

Transplantation of cell fractions isolated from the spleen of tumor-bearing MxTR

institution (Approval numbers, H24-075 and R01-209). Written informed consent was obtained

7

84

85	$Cd4^+$ cells, $B220^+$ cells, and $Cd11b^+$ cells were isolated from the spleens of tumor-bearing
86	MxTR using MACS beads (Cd4 [L3T4] MicroBeads, cat # 130-117-043; CD45R [B220]
87	MicroBeads, cat # 1130-049-501; and Cd11b MicroBeads, cat # 130-049-601; Miltenyi Biotec),
88	according to the manufacturer's instructions. After elution in MACS buffer, each single-cell
89	suspension was resuspended in RPMI-1640 Medium (RPMI, Sigma-Aldrich; concentration, 1 \times
90	10^7 cells /mL). The cells in each fraction were mixed in 2×10^6 cells (200 μL). Ultimately, four
91	suspensions were prepared; (i) $Cd4^{+}(T)$, $B220^{+}(B)$, and $Cd11b^{+}$ cells (M); (ii) T and B; (iii) T
92	and M; (iv) T. In addition, no injection (v) and single-cell suspensions (2×10^7 cells) from the
93	spleen or LN of MxTR (vi) were prepared as positive and negative controls, respectively. Each
94	suspension was injected intraperitoneally into 5-week-old male nude mice (Charles River
95	Laboratory) irradiated with 2 Gy before infusion (supplemental Figure 2A). The nude mice used
96	in the experiment were housed under specific pathogen-free conditions. The donor H2kb (MHC
97	class I alloantigen from C57BL/6 mice) and the recipient H2kd (MHC class I alloantigen from
98	nude mice) in mononuclear cells of peripheral blood (PB) were used to identify the chimeras.
99	Chimerism of PB was checked on day 28 after transplantation. Successful engraftment was
100	defined as macroscopic splenomegaly and LN enlargement, and $\geq 1\%$ of donor-derived
101	Cd4 ⁺ H2kb ⁺ cells in the mononuclear cells of PB.

103 Transplantation of GCB and T_{FH} cells isolated from tumor-bearing MxTR

104	GCB, non-GCB, and T _B	H cells were sorted	from the splee	ens of tumor-be	aring MxTR.	each single
	, , -				0	0

- 105 cell suspension was resuspended in RPMI. The cells in each fraction were mixed in 2×10^5 cells
- 106 (200 µL). Three types of mixed cells, i.e., (i) T_{FH} and GCB cells, (ii) T_{FH} and non-GCB cells, (iii)
- 107 T_{FH} cells only, were injected intraperitoneally into 5-week-old male nude mice, which were
- 108 treated with anti-asialo GM antibody (FUJIFILM) intraperitoneally, immediately prior to cell
- 109 injection.⁴ Nude mice were irradiated with 4 Gy, before injection. On day 7 after injection,

110 chimerism in the spleen was assessed under the same conditions as before.

111

112 Antibody treatment

113 Single-cell suspensions (2×10^7 cells) prepared from spleen tissues of tumor-bearing MxTR

114 were injected intraperitoneally into 5-week-old nude mice, irradiated with 2 Gy. Anti-Cd40lg

- antibody or Armenian hamster IgG isotype control (both from Bio X cell; 250 µg/mL prepared
- 116 in PBS) was injected intraperitoneally every other day starting on day 0.
- 117

118 Immunofluorescence of mouse samples

- 119 Spleen tissues obtained from MxTR and MxWT were embedded in OCT (Sakura Finetek Japan
- 120 Co.), immediately frozen in hexane cooled with dry ice, and stored at -80 °C. The spleen and

121	LNs were sectioned at a thickness of 2 μ m on a cryostat at -16 °C. Sections were dried for 1 h
122	at 25 °C, fixed for 10 min in 4% paraformaldehyde, permeabilized for 10 min with 0.1% Triton
123	X-100, and blocked with 10% goat serum (Sigma-Aldrich) prepared in PBS for 30 min.
124	Sections were stained overnight at 4 °C with the primary antibodies. After three washes,
125	sections were stained for 1 h at 25 °C with the following secondary antibodies: AF488-goat-
126	anti-rabbit IgG (Thermo Fisher Scientific) and AF594-goat-anti-rat IgG (Thermo Fisher
127	Scientific). Potential tissue autofluorescence was quenched using the True VIEW
128	Autofluorescence Quenching Kit (Vector Laboratories). After incubation with 4',6-diamidino-2-
129	phenylindole (DAPI, Vectashield Mounting Medium; Vector Laboratories), the samples were
130	imaged using a Leica TCS SP5 confocal laser scanning microscope (Leica Microsystems).
131	
132	CD40LG stimulation
133	Jurkat cells inducibly expressing G17V RHOA mutant complementary DNA (cDNA)
134	(Jurkat ^{G17VRHOA}) and mock-transduced cells (Jurkat ^{mock}) have been previously described ¹ . Jurkat
135	cells were cultured at 37 °C in RPMI supplemented with 10% fetal calf serum and 1% penicillin
136	streptomycin. Twenty-four hours after induction with doxycycline 2 ug/mL, each
137	indicated Jurkat line was rested for 4 hours in serum-free media. Cells were then
138	collected and stimulated with recombinant human CD40/TNFRSF5-Fc chimeric protein

139	(R&D) or recombinant human IgG1 Fc protein (R&D) under the stimulation 2 ug/mL $$
140	LEAF TM purified anti-human CD3 antibody (BioLegend) for 24h at 37°C. The collected
141	cells were subjected to RNA-seq according to the protocols described.
142	
143	Single-cell RNA sequencing (scRNA-seq) library preparation and sequencing for mouse
144	samples
145	To examine immune cell profiles, Red-blood-cell (RBC)-free single-cell suspensions from the
146	spleen of tumor-bearing MxTR ($n = 2$, MxTR1 and MxTR2) or MxWT ($n = 2$, MxWT1 and
147	MxWT2) were converted into barcoded scRNA-seq libraries using Chromium Single Cell 3'
148	Reagent kits (10x Genomics, version 3.1), according to the manufacturer's instructions
149	(CG000183 Rev A), aiming for ~5,000 cells per library. All libraries were subjected to quality
150	control checks and quantified using the 2100 Bioanalyzer High Sensitivity DNA Kit (Agilent
151	Technologies). The library information for each sample is listed in supplemental Table 12.
152	Libraies were sequenced on the Illumina HiseqX platform.
153	
154	scRNA-seq initial analysis
155	Regarding scRNA-seq data analysis, Cell Ranger pipelines (10x Genomics, version 3.1.0) were
156	used to demultiplex raw data and to generate a matrix file of the features using barcodes. Matrix

157	data were analyzed with R using the R package Seurat v $3.1.0^5$ on R Studio. Standard quality
158	control check was performed to remove cells with few genes or overexpression of mitochondrial
159	gene reads. Data normalization was performed using the "NormalizeData" function, and highly
160	variable features were extracted using the "FindVariableFeatures" function. Normalized data
161	were subjected to linear transformation (scaling) and principal component analysis (PCA),
162	based on variable features using the "ScaleData" and the "RunPCA" function. Graph-based
163	clustering of gene expression profiles was performed using the "FindNeighbors" and
164	"FindClusters" functions with default parameters. Nonlinear dimensionality reduction UMAP
165	with "RunUMAP" and "DimPlot" functions were used for visualization. In addition, the cell
166	clusters were annotated based on the expression of canonical markers, such as Gzma, Cxcr3,
167	and Dapl1 for Cd8 T cells; Ccl3, Cd28, and Pdcd1 for Cd4 T cells; Ighd, Icosl, Cr2, Parm1,
168	Cd83, and Prdm1 for B cells; and Adgre1, Ifitm3, and S100a9 for myeloid cells.
169	
170	Data integration for scRNA-seq and batch correction
171	Canonical correlation analysis (CCA) was performed to identify shared sources of variation
172	across multiple datasets using the "FindIntegrationAnchors" function. ⁵ Four datasets (data from

173 spleen cells of MxTR [n = 2] and MxWT [n = 2] mice) were integrated using the anchors by the

174 "IntegrateData" function with canonical correlation dimensions of 20. Integrated data were

- scaled and subjected to PCA as described above.
- 176

177 scRNA-seq of human samples

178 Two of the 5 AITL samples (AITL1 and AITL2) and the 3 HLN samples (HLN1, HLN2, and

- 179 HLN3) were converted into barcoded scRNA-seq libraries using Chromium Single Cell 3'
- 180 Reagent kits, and 3 of the 5 AITL samples (AITL3, AITL4, and AITL5) were converted using
- 181 Chromium Single Cell 5' Reagent kits (10x Genomics, version 1.1). Cell Ranger pipelines were
- 182 used to demultiplex raw data and to generate a matrix file of the features using barcodes. Eight
- 183 datasets (data from AITL [n = 5] and HLN [n = 3]) were integrated using anchors by the
- 184 "IntegrateData" function with canonical correlation dimensions of 20. Quality control and PCA
- 185 were performed using the same strategy employed for the scRNA-seq analysis of mice.
- 186

187 Gene set variation analysis (GSVA) of scRNA-seq data

- 188 Significantly enriched pathways for scRNA-seq data were analyzed using the GSVA ver. 1.38.0.⁶
- 189 The average gene expression data of each cluster were analyzed, and the activity scores for each
- 190 cluster were compared using a generalized linear model (GLM). GLM output was visualized via
- 191 heatmaps, which were constructed using the R package *heatmap3*⁷.

193	Differentially expressed gene (DEG) analysis of scRNA-seq
194	DEG analysis between MxTR vs MxWT or AITL vs HLN was performed in each cluster using
195	"FindMarkers" or "FindAllMarkers" functions as appropriate, with a minimum percentage of
196	gene-expressing cells set to 20%; the minimum log fold-change in gene expression in each
197	cluster, in comparison to that in all the other clusters was set to 0.25. DEGs were defined as
198	genes with an adjusted <i>p</i> -value < 0.05 . The results of the Wilcoxon rank-sum test were used to
199	construct the DEG lists and volcano plots. Volcano plots were plotted using the R package
200	ggplot2.
201	To identify pathways significantly enriched in each group, Gene Set Enrichment
202	Analysis (GSEA 4.1.0, https://www.gsea-msigdb.org/gsea/index.jsp) and Metascape
203	(https://metascape.org/gp/index.html#/main/step1) were used.
204	
205	Cell–cell interaction analysis of scRNA-seq data
206	We analyzed cell-cell interactions between immune cell clusters and T _{FH} -tumor cell cluster
207	using the CellPhoneDB package,8 a manually curated repository of ligands, receptors, and their
208	interactions, integrated with a statistical framework for inferring intercellular interactions from
209	single-cell transcriptomes.9 Briefly, potential ligand-receptor interactions were statistically

210	selected based on the expression of a receptor gene in a lineage subpopulation and a ligand gene
211	in another. We only considered genes expressed in $> 20\%$ of cells in any given subpopulation.
212	We permuted the cluster labels of all input cells 1,000 times and calculated the mean interaction
213	score (the average receptor expression level in a subpopulation multiplied by the average ligand
214	expression level in the interacting subpopulation), generating a null distribution of the mean
215	interaction score for each ligand-receptor pair in each pairwise comparison across
216	subpopulations. We located observed mean interaction scores that were the same or higher than
217	the actual mean score in the null distribution. We calculated the proportion of the observed
218	scores, conferring a <i>p</i> -value for the likelihood of specificity of a given ligand–receptor complex
219	to a given cluster pair.
220	
221	RNA sequencing (RNA-seq)
222	GCB cells were isolated from the spleens of tumor-bearing MxTR ($n = 4$) or MxWT ($n = 3$)
223	mice. Total RNA was extracted using the RNeasy Mini Kit (Qiagen). RNA integrity number
224	(RIN) values were analyzed using the Agilent 2100 Bioanalyzer (Agilent Technologies);
225	samples with an RIN > 8 were used in subsequent analyses. Libraries were prepared using a
226	SMARTer Stranded Total RNA-seq Kit v2—Pico Input Mammalian (Takara Bio Inc.) or a
227	TruSeq RNA Sample Preparation Kit (illumina) according to the manufacturer's instructions.

228	The concentration and size distribution of the libraries were assessed using an Agilent 2100
229	Bioanalyzer (Agilent Technologies). Sequencing was performed using the Illumina HiSeq X
230	platform with a standard 150 bp paired-end read protocol at Macrogen or Illumina NextSeq 500
231	platform with a paired-end 36-base read option at Tsukuba i-Laboratory LLP (Ibaraki, Japan),
232	and then analyzed using the CLC workbench version 9.5.1 (Qiagen). Sequencing reads were
233	trimmed to remove adapter sequences from the 3' ends of reads, mapped onto the reference
234	genome (GRCm38), and quantified. For each gene, reads per kilobase of exon per million
235	mapped reads (RPKMs) were normalized, estimated as exons per kilobase, and filtered using
236	the Empirical Analysis of Digital Gene Expression tool. DEG analysis and GSEA were
237	analyzed using the protocol written in scRNAseq data analysis.
238	Raw data for RNA-seq data from GCB cells of Vav-Cre/Tet2 ^{-/-} or Vav-Cre/Tet2 ^{+/+} , and
239	human diffuse large B-cell lymphoma (DLBCL) samples were downloaded from Gene
240	Expression Omnibus (GSE111700) ¹⁰ and European Genome-Phenome Archive
241	(EGAS00001002606) ¹¹ and reanalyzed, respectively.
242	
243	Whole exome sequencing (WES)
244	Genomic DNA was extracted using the QIA amp DNA Blood Mini Kit (Qiagen) from 1×10^5

- 245 GCB and T_{FH} cells from the spleen of tumor-bearing MxTR (n = 6) or paired tail tissue as the
 - 16

246	reference. Genomic DNA was extracted from the LNs of AITL patients $(n = 5)$ and sorted four
247	B-cell fractions (n = 2), including naïve B (IgD ⁺ CD19 ⁺ CD138 ⁻), memory B (IgD ⁻ CD38 ⁻ CD10 ⁻
248	CD19 ⁺ CD138 ⁻), GCB (IgD ⁻ CD38 ⁻ CD10 ⁺ CD19 ⁺ CD138 ⁻), and plasma cell fractions
249	(CD19 ^{dull} CD138 ⁺) using a QIAamp DNA Blood Mini Kit. DNA integrity number (DIN) values
250	were examined using Agilent TapeStation 2200 (Agilent Technologies); samples with a DIN
251	number > 8 were included for subsequent analyses. Libraries were prepared from 100 ng
252	genomic DNA sheared using a Covaris S220 sonicator (M&S Instruments Inc.). SureSelect XT
253	Mouse All Exon kits (Agilent Technologies) were used for exon capture, according to the
254	manufacturer's instructions for mouse DNA. Sequencing data were generated using a standard
255	150 bp paired-end protocol on the Illumina HiSeq X or NovaSeq 6000 platform. Sequence
256	alignment and mutation calling were performed using the Genomon2 pipeline
257	(https://github.com/Genomon-Project). The sequencing reads were mapped onto the reference
258	genome (GRCm38). Putative somatic mutations with an EB call p -value > 2.0, and Fisher's
259	exact p -value < 0.01 were considered. Mapping errors were excluded by visual inspection using
260	Integrative Genomics Viewer (IGV, version 2.6.2). ¹²
261	Four genomic DNA samples from AITL were subjected to WES, using a protocol
262	similar to that used for analyzing mice samples, using SureSelect XT Human All Exon kits
263	(Agilent Technologies). GRCh38 was used as the reference genome.

265	Immuno-profiling analysis using bulk RNA-seq and WES data
266	The <i>MiXCR</i> algorithm ¹³ was used for immune profiling of bulk RNA-seq data of mouse GCB
267	cells and WES data of mouse $T_{\rm FH}$ and GCB cells. Then, we extracted hypervariable
268	complementarity-determining region 3 (CDR3) sequences and the VDJ gene segment of the T-
269	cell receptor (TCR) and immunoglobulin (Ig) genes. TCR and Ig sequences identified using
270	MiXCR were analyzed using the R package, LymphoSeq, ¹⁴ and visualized.
271	
272	Whole-genome bisulfite sequencing (WGBS)
273	GCB cells sorted from the spleens of tumor-bearing MxTR ($n = 2$) and MxWT ($n = 2$) mice
274	were used for library preparation. Library preparation for WGBS was performed using the post-
275	bisulfite adaptor tagging (PBAT) strategy. ¹⁵ Genomic DNA was extracted from 5,000 sorted
276	cells using a QIAamp DNA Blood Mini Kit (Qiagen). The number of cells was limited; and
277	therefore, the library was prepared without quantifying the DNA yield. Four-fifths of the
278	volume of purified genomic DNA was spiked with 300 pg unmethylated lambda DNA
279	(Promega) and used for bisulfite treatment using the EZ DNA methylation gold kit (Zymo
280	Research). The tPBAT protocol was performed as described previously. ¹⁶ After library
281	preparation, library yields were determined using the library quantification kit (Takara Bio Inc.).

282	Four cycles of PCR amplification were performed using PrimeStar Max DNA polymerase
283	(Takara Bio Inc.), and the amplified libraries were sequenced on the Illumina HiSeq X platform
284	at Macrogen. One quarter of the sequencing lanes were assigned per sample. Sequenced reads
285	were analyzed as described previously. ¹⁵ The basic metrics of the methylome data are provided
286	in supplemental Table 13.
287	
288	Data Availability
289	Sequencing files are deposited in the European Nucleotide Archive ERP138895 or the European
290	Genome-phenome Archive EGAS00001006401.
291	
292	Code Availability
293	Scripts used for data analysis are available upon request.
294	

295 Supplemental Table Legends

- 296 Supplemental Table 1. Top 50 markers highly expressed in each cluster
- 297 Supplemental Table 2. Hyper-DMRs in GCB cells from MxTR compared to those from MxWT
- 298 Supplemental Table 3. Hypo-DMRs in GCB cells from MxTR compared to those from MxWT
- 299 Supplemental Table 4. Clonotyping based on CDR3 sequences performed for Igh genes in RNA-
- 300 seq data of MxTR1 and MxWT1
- 301 Supplemental Table 5. Somatic mutations detected by WES for T_{FH} and GCB cells sorted from
- 302 tumors of five MxTR
- 303 Supplemental Table 6. Somatic mutations detected by WES for the LNs of AITL patients and
- 304 sorted four B-cell fractions
- 305 Supplemental Table 7. Differential expression genes from hB1–9 of scRNA-seq
- 306 Supplemental Table 8. Gene sets that characterize B cells, especially GCB cells
- 307 (A) GCB-related gene sets cited from Holmes et al.
- 308 (B) AITL-B-specific gene set
- 309 (C) T cell signature gene sets from Chung et al.
- 310 (D) T_{FH} -tumor cell signatures from Nguyen et al.
- 311 (E) B cell signature gene sets from Chung et al.
- 312 Supplemental Table 9. Sequences of primers used in the study

313	Supplemental 7	Fable 10. I	Demographics	and clinical a	nd phenotyp	oic characteristic	s of HLN and
			<u> </u>				

- 314 AITL cohort
- 315 Supplemental Table 11. Antibodies used for flow cytometric analysis and immunofluorescence
- 316 staining
- 317 Supplemental Table 12. Sequencing metrics for the study cohort as determined by Cell
- 318 Ranger
- 319 Supplemental Table 13. Basic statistics of methylome data

337 Supplemental Figure 1. Contribution of *Tet2*-deficient immune cells in the development of

338 T_{FH}-like lymphomas

- (A) Spleen weights of mice at 20 and 40 weeks of age.
- 340 (B) The proportions of Cd4⁺, Cd8⁺, and Cd4⁺Cd8⁻Pdcd1⁺Icos⁺ (T_{FH}) cells determined using
- flow cytometry at 20 and 40 weeks of age.
- 342 (C) Representative tSNE heatmaps of the flow cytometric data of T-cell fractions in the spleen
- 343 at 40 weeks of age. The expression of cell surface markers, including Icos, Pdcd1, Cd4,
- 344 and Cd8.
- 345 (D) tSNE plots of manually gated and integrated T_{FH} (red), Cd4⁺ (light blue), Cd8⁺ (orange)

346 cells, and others (grey) using data from supplemental Figure 1C.

- 347 (E) Macroscopic analysis of representative spleens from tumor-bearing MxTR and MxWT at
- 348 50 weeks of age.
- 349 (F) Representative flow cytometric plots of Cd4, Cd8, Icos, and Pdcd1 in spleen cells from
 350 tumor-bearing MxTR and MxWT at 50 weeks of age.
- 351 (G) Low (×4, top) and high (×20, bottom) magnification images showing hematoxylin and
- 352 eosin (HE) staining of spleen, lymph node, liver, and lung tissue from tumor-bearing
- 353 MxTR and MxWT at 50 weeks of age. Scale bar; 300 μm (top), 50 μm (bottom).

354	Supplemental Figure 2. Transplantation with fractionated cells sorted from tumors of
355	MxTR
356	(A) Overview of workflow for transplantation of nude mice with $Cd4^+$, $B220^+$, and $Cd11b^+$
357	cells sorted from tumors of MxTR. i.p., intraperitoneal injection.
358	(B) Proportions of donor-derived H2kb ⁺ and H2kb ⁺ Cd3 ⁺ Cd4 ⁺ cells 4 weeks after injection.
359	Six groups (i–vi) represent (i) Cd4 ⁺ cells [T], B220 ⁺ cells [B], and Cd11b ⁺ cells [M]; (ii)
360	T and B; (iii) T and M; (iv) T; (v) no injection; and (vi) whole cells (positive controls).
361	(C) Representative flow cytometric plots of H2kd ⁺ recipient-derived markers, H2kb ⁺ donor-
362	derived markers, and H2kb ⁺ Cd3e ⁺ Cd4 ⁺ cells in i to vi (Six groups (i-vi) are the same as
363	in supplemental Figure 2B.).
364	(D) Low (×4, top) and high (×20,bottom) magnification images showing hematoxylin and
365	eosin (HE) staining of spleen and liver tissue from i to vi (Six groups (i-vi) are the same
366	as in supplemental Figure 2B.). Splenic follicles and liver infiltration are indicated by
367	yellow dotted lines. Scale bar; 300 µm (top), 50 µm (bottom).
368	(E) Representative tSNE heatmaps of flow cytometric data from spleen cells from uninjected
369	control, (i), and (ii) at 4 weeks after transplantation. The expression of cell surface markers,
370	including Icos, Pdcd1, and Cd4 (Two groups (i and ii) are the same as in supplemental
371	Figure 2B.).

- 372 (F) tSNE plots of manually gated and integrated T_{FH} (red), Cd4⁺Pdcd1⁻ T cells (light blue),
- and others (grey) using data from supplemental Figure 2E.
- 374 For all panels, * *p*-value < 0.05; n.s. not significant.

Supplemental Figure 3

375	Supplemental F	igure 3. Analysis	of intratumor	heterogeneity	in spleen	cells from	tumor-

376	bearing MxTR or MxWT using single-cell RNA sequencing (scRNA-seq)
377	(A) UMAP plot showing integrated scRNA-seq data from spleen cells from tumor-bearing
378	MxTR and MxWT.
379	(B) Heatmap of top 50 conserved markers in each cluster. Rectangle group clusters from each
380	cell type. Genes in red represent specific conserved markers in each cluster. Top 50
381	markers highly expressed in each cluster are listed in supplemental Table 1.
382	(C) Stacked violin plots showing specific conserved markers in each cluster.
383	(D) Pie charts showing the proportions of Cd8 T, Cd4 T, B, and myeloid cells in the MxTR
384	and MxWT samples.
385	(E) GSVA with T-cell related gene sets from Chung et al. and T _{FH} -tumor cell signatures from
386	Neguyen at al. Gene sets are listed in supplemental Table 8.
387	(F) Feature plots for markers characteristic of T cells.
388	(G) Dot plots showing pathways upregulated in mT1-6 from MxTR compared to that from
389	MxWT, using GSEA with hallmark gene sets of MsigDB. Dot size indicates -Log(FDR q-
390	value).
391	

392 Supplemental Figure 4. Transcriptomic heterogeneity in B-cell subclusters of T_{FH}-like 393 lymphomas

- 394 (A) Heatmap showing pathways differentially enriched in each B-cell cluster (mB1–6) by
- 395 GSVA with C7 gene sets of MsigDB. Gene sets in red indicate pathways enriched in mB5.
- 396 (B) scRNA-seq data focusing on B cells, indicating B-cell differentiation steps using pseudo-
- 397 time analysis and representative feature plots. Dark winding lines in the UMAP plots
- 398 indicate the presumed developmental trajectories. * GCB-related markers.
- 399 (C) Bar graphs showing the number of differentially expressed genes (DEGs) upregulated in
- 400 MxTR (red) and MxWT (blue) samples.
- 401 (D) Dot plots showing pathways upregulated in GCB1–6 from MxTR compared to that from
- 402 MxWT, using GSEA with hallmark gene sets of MsigDB. Dot size indicates NES. Cut-off,
- 403 FDR *q*-value < 0.25.

404 Supplemental Figure 5. Flow cytometric analysis of B-cell fractions in spleen cells from

405 MxTR and MxWT

- 406 (A) Representative flow cytometry plots of Cd138, Cd19, B220, Fas, and Gl-7 in spleen cells
- 407 from tumor-bearing MxTR and MxWT at \sim 50 weeks of age.
- 408 (B) Representative tSNE heatmaps of flow cytometric data of Cd138, Cd19, B220, Fas, and
- 409 Gl-7 in spleen cells of tumor-bearing MxTR and MxWT at ~50 weeks of age.
- 410 (C) tSNE plots of manually gated and integrated Cd138⁻Cd19⁺B220⁺Fas⁺Gl-7⁺ (red),
- 411 Cd138⁻Cd19⁺B220⁺Fas⁻Gl-7⁻ (orange), Cd138⁺ (light blue) cells, and others (grey) using
- 412 data from supplemental Figure 5B.

413	Supple	emental Figure 6. Flow cytometric analysis of GCB fractions in spleen cells from
414	MxTF	and MxWT
415	(A)	$Proportions \ of \ Cd86^{high} Cxcr4^{dim} \ light \ zone \ (LZ) \ /total \ GCB \ cells \ and \ Cd86^{dim} Cxcr4^{high} \ dark$
416		zone (DZ)/LZ GCB cells in spleen cells from mice of the indicated genotypes at 20 and
417		40 weeks of age. MxTR, n = 6; MxWT, n = 4; CD4TR, n = 4; CD4WT, n = 5.
418	(B)	Representative tSNE heatmaps of flow cytometric data of GCB fractions found in spleen
419		cells from mice with the indicated genotypes at 40 weeks of age. The cell surface markers
420		Gl-7, Fas, Cd86, Cxcr4, and Cd138, indicated GCB cells or plasma cells (PCs).
421	(C)	tSNE plots of manually gated and integrated Cd138 ⁻ Cd19 ⁺ Fas ⁺ Gl-7 ⁺ Cd86 ^{high} Cxcr4 ^{dim}
422		(red), $Cd138^{-}Cd19^{+}Fas^{+}Gl-7^{+}Cd86^{dim}Cxcr4^{high}$ (light green), $Cd138^{-}Cd19^{+}Fas^{-}Gl-7^{-}$
423		(blue), Cd138 ⁺ (light blue) cells, and others (grey) using data from supplemental Figure
424		6B.
425	(D)	Representative tSNE heatmaps of flow cytometric data of Cd138, Cd19, Fas, Gl-7, Cxcr4,
426		and Cd86 in spleen cells from tumor-bearing MxTR and MxWT at \sim 50 weeks of age.
427	(E)	tSNE plots of manually gated and integrated Cd138 ⁻ Cd19 ⁺ Fas ⁺ Gl-7 ⁺ Cd86 ^{high} Cxcr4 ^{dim}
428		(red), Cd138 ⁻ Cd19 ⁺ Fas ⁺ Gl-7 ⁺ Cd86 ^{dim} Cxcr4 ^{high} (light green), Cd138 ⁻ Cd19 ⁺ Fas ⁻ Gl-7 ⁻
429		(blue), Cd138 ⁺ (light blue) cells, and others (grey) using data from supplemental Figure
430		6D.

431	Supplemental Figure 7. RNA-seq analysis of GCB cells sorted from tumor-bearing MxTR
432	and MxWT
433	(A) Overview of RNA-seq for GCB cells in spleen cells from MxTR ($n = 5$) and MxWT ($n = 5$)
434	4) mice.
435	(B) PCA plot for RNA-seq. Blue dots, MxWT; red dots, MxTR.
436	(C) Unsupervised hierarchical clustering analyses of RNA-seq data for GCB cells from MxTR
437	and MxWT.
438	(D) Volcano plot of up- or down-regulated genes in GCB cells from MxTR and MxWT. Cut-
439	off; FDR <i>p</i> -value ≥ 0.1 with LogFC $> 2 $ (red), FDR <i>p</i> -value < 0.1 , or LogFC $\leq 2 $ (blue).
440	(E) Chord diagrams showing associations between Ighv and Ighj genes in GCB cells from
441	MxTR1 and MxWT1 mice, respectively.
442	(F) Phylogenetic trees showing <i>Igh</i> expression in MxTR1 (left) or MxWT1 (right) GCB cells.
443	Branches are color-coded to indicate V, D, and J gene usage. Numbers next to each branch
444	refer to the sequence count.

445	Supplemental Figure 8. Comparison between RNA-seq data of GCB cells from MxTR and
446	those from Vav-Cre/Tet2 ^{-/-} or human DLBCL with <i>TET2</i> mutation.
447	(A) Scheme for reanalysis of RNA-seq data for Vav-Cre/Tet $2^{-/-}$ and VAV1-Cre/Tet $2^{+/+}$ (WT).
448	(B) Venn diagram showing shared genes significantly up- or downregulated in Vav-
449	Cre/Tet2 ^{-/-} (green) and MxTR (purple) relative to each wild type, respectively. Shared
450	genes are listed.
451	(C) Venn diagram showing shared gene sets significantly enriched in Vav-Cre/Tet2 ^{-/-}
452	(green) and MxTR (purple) relative to each wild type, respectively. ¹⁷
453	(D) Scheme for reanalysis of RNA-seq data for human DLBCL samples with/without TET2
454	mutations. Shared genes are listed.
455	(E) Venn diagram showing common genes significantly up- or downregulated in DLBCL
456	with TET2 mutations (blue) and GCB cells from and MxTR (purple).
457	(F) Venn diagram showing common gene sets significantly enriched in DLBCL with <i>TET2</i>
458	mutations (blue) and GCB cells from and MxTR (purple). Shared gene sets are listed.
459	
460	

Cd40 expression

461 Supplemental Figure 9. Expansion of GCB cells in H3S87N KI

462	(A)	A structure of	the <i>Hist1h3</i>	2 S87N	(c.G>A260)) mutant v	ector inse	rted on	the 3'	UTR	of
10-	(**)	11 5010000010 01		00/11	(0.0 11200)			1000 011		0110	U 1

- 463 the *Ighg1* promoter.
- 464 (B) Genomic PCR analysis to confirm the insertion of *Hist1h3c* S87N mutant vector in the
- tail DNA of H3S87N KI. WT, wild-type; PC, positive control; NC, negative control.
- 466 (C) Sequence chromatography of TA cloning vector of Hist1h3c exon1 in GCB cells of spleen
- 467 of H3S87N KI. The upper panel shows wild type (WT) and the lower panel shows
- 468 H3S87N (c.G>A260) mutation.
- 469 (D) HE-stained sections of spleen tissues from H3S87N KI and WT. Splenic follicles are
- 470 indicated by yellow dotted lines.
- 471 (E) Proportion of follicle area in spleen tissue from mice of the indicated genotypes at 15
- 472 weeks of age. The area of follicles was compared by 10 sections per 2 µm of spleen of
- 473 one H3S87N KI and one WT.
- 474 (F) Spleen weights of mice at 15 weeks of age. Sp, spleen.
- 475 (G) The proportions of GCB, Cd23^{high}Cd21^{dull} (FOB), Cd23^{dull}Cd21^{high} (MZB) cells using
- 476 flow cytometry at 15 weeks of age.
- 477 (H) Histograms showing cell surface Cd40 expression in GCB cells of spleen from H3S87N
- 478 KI and WT.

479 Supplemental Figure 10. Cd40 expression in GCB cells and treatment of mice with an anti-

480 Cd40lg antibody

481	Representative flow cytometric plots (A) and tSNE heatmaps (B) of Cd19, B220, Fas, Gl-
482	7, and Cd40 in spleen cells from tumor-bearing MxTR and MxWT at \sim 50 weeks of age.
483	(C) tSNE plots manually gated and integrated Cd138 ⁻ Cd19 ⁺ B220 ⁺ Fas ⁺ Gl-7 ⁺ Cd40 ^{high} (red),
484	Cd138 ⁻ Cd19 ⁺ B220 ⁺ Fas ⁺ Gl-7 ⁺ Cd40 ^{low} (light green), Cd138 ⁻ Cd19 ⁺ Fas ⁻ Gl-7 ⁻ (light blue),
485	and others (grey) using data from supplemental Figure. 9B.
486	(D) Cd40 expression in GCB cells at 20 weeks of age.
487	Immunofluorescence staining of spleen tissue in tumor-bearing MxTR or MxWT. (E)
488	Green, Cd3; red, B220; blue, DAPI. Images were acquired at $\times 20$. Scale bars, 100 μ m. (F)
489	(i) Green, Cd40lg; red, Cd4; blue, DAPI; (ii) green, Cd40lg; red, Pdcd1; blue, DAPI; (iii)
490	green, Cd19; red, Cd40; blue, DAPI. Low (×40, top) and high (×100, bottom)
491	magnification. High magnification image at bottom corresponds to dashed boxed area at
492	upper. Scale bars, 50 μm.
493	(G, H) Green, Cd40lg; red, Cd40; blue, DAPI. High magnification image corresponds to
494	dashed boxed area. Images were acquired at ×40 (G) or ×100 (H). Sp, Spleen. Scale bars,
495	50 μm.

496 (I) Experimental schema illustrating the treatment of tumor-bearing mice with an anti-mouse

497		Cd40lg (C154) antibody or control hamster IgGf (ab') isotype. To establish tumors, a
498		single cell suspension prepared from tumors of MxTR was intraperitoneally injected into
499		nude mice. i.p., intraperitoneal injection; RT, irradiation therapy; PB, peripheral blood; Ab,
500		antibody.
501 (.	J)	Schema showing the proposed interaction between T _{FH} -tumor and GCB cells in T _{FH} -like
502		lymphomas (top panel) and physiological interaction between $T_{\rm FH}$ and GCB cells in

503 normal follicles (bottom panel). TCR, T-cell receptor.

Supplemental Figure 11

0

-2

D	ax CDAO		Е
GT/VRHOP	CD ² CD ²		UNFO
	SLC7A11 CTSG GNG8 ANXA1 LSAMP TSC22D3 HYDIN ARPP21-AS1 IGHV1-24 CEBPB CD200R1 CCR4 DNTT SIGLEC8 GNAO1 KLRG2 PLA2R1 PTPRN ASS1 TRIB3 PWRN1 IGF2 RPL7P40 IGHV3-13 TAC1	MTRNR2L10 TLR3 FLRT1 MY010 HMGB3P1 NR4A1 CHAC1 TSPVL6 PRR20E SPOCK1 EFNA2 MATN4 HOXB9 BTF3P8 NR4A3 RPS3AP52 SPNS3 IGHV1-69 GLIS1 TRBV27 IL7R FRMD4B RAG2 IPO9-AS1 ANKRD34C	
	HDC CFAP73 ITIH1 PRODH ITGAD INPP5J EPHA8 LINC00106 ZSCAN16 CCR9 HSPA8P9 COL5A1 PLCH2 DHRSX-IT1 PRSS33 WDFY4 TSPAN32 GRIK3 LINGO3 TEKT3 ZBTB16 EPST11 ACTN1-DT CD300C TMED10P2	ADAMTS7 CTSW FAM133CP BTF3P13 TEN1-CDK3 CCR1 HMGN2P3 LINC02908 TUBA4A ZNF197-AS1 DNAJC8P1 GBG5T1 GBG5T1 GBG5T1 GBG5T1 GHD5 GADD45G HSH2D JMJD1C-AS1 C110rf21 HAP1 APOBR FAM71E1 SPATA4 SERPINC1 STARD13 NKAPP1 TXNIP	H

J

<^C

2.0

Log (fold ⁰change)

504	Suppler	nental Figure 11. RNA-seq analysis of Jurkat ^{G17VRHOA} and Jurkat ^{mock} with or
505	without	CD40-Fc chimera protein under the stimulation by an anti-CD3 antibody
506	(A)	Overview of RNA-seq for Jurkat ^{G17VRHOA} and Jurkat ^{mock} with or without CD40-Fc
507		chimera protein (CD40 ^{FC}) or Fc protein as control under the stimulation by an anti-
508		CD3 antibody (CD3).
509	(B)	PCA plot for RNA-seq.
510	(C)	Volcano plot of up- or down-regulated genes in Jurkat ^{G17VRHOA} with CD40-Fc chimera
511		protein (G17VRHOA_CD3 ⁺ CD40 ^{FC}) or Fc protein as control (G17VRHOA_CD3)
512		under the stimulation by an anti-CD3 antibody. Genes statistically different between
513		two groups were shown in red at cut-off FDR <i>p</i> -value < 0.05.
514	(D)	Heatmap by top 50 genes differentially expressed between G17VRHOA_CD3 ⁺ CD40 ^{FC}
515		and G17VRHOA_CD3.
516		Gene sets enriched in G17VRHOA_CD3 ⁺ CD40 ^{FC} relative to G17VRHOA_CD3
517		based on GSEA with hallmark (E) or C5 (F) gene sets of MsigDB.
518		GSEA of HALLMARK MTORC1 SIGNALING (G) and MTOR UP.N4.V1 (H) for
519		Jurkat ^{G17VRHOA} . G17VRHOA_CD3 ⁺ CD40 ^{FC} (n = 4); and G17VRHOA_CD3 (n = 4).
520	(I)	Gene sets enriched in G17VRHOA_CD3 ⁺ CD40 ^{FC} relative to G17VRHOA_CD3
521		based on IPA (Ingenuity Pathway Analysis). The gene sets related to VEGF and mTOR

522	pathway are	highlighted	in red and blue,
-----	-------------	-------------	------------------

523	(J)	Gene sets enriched in G17VRHOA_CD3 ⁺ CD40 ^{FC} relative to Mock_CD3 ⁺ CD40 ^{FC} based
524		on GSEA with hallmark gene sets of MsigDB. Red bars indicate signatures enriched
525		only in G17V_CD3 ⁺ CD40 ^{FC} vs Mock_CD3 ⁺ CD40 ^{FC} , not enriched in G17V_CD3 vs
526		Mock_CD3.

Supplemental Figure 12

unsorted cell GCB cell

527	Supplemental Figure 12. Transcriptomic heterogeneity in B-cell subclusters of human AITL
528	samples
529	(A) Heatmap showing pathways differentially enriched at hB1-9 based on GSVA with C7
530	genes of MsigDB. Gene sets in red indicate pathways enriched in the GCB clusters (hB6-
531	8).
532	(B) scRNA-seq data of B-cell clusters sorted in silico from integrated data from AITL and
533	HLN samples. Pseudo-time developmental stages (top) and feature plots for markers
534	characteristic of B-cell differentiation (bottom). Dark winding lines in the UMAP indicate
535	the estimated trajectory of the outbreak.
536	(C) Dot plots showing GCB-associated pathways detected by Metascape with the signature
537	module set using upregulated gene lists in AITL compared to HLN. The dot size indicates
538	the enrichment score. Cut-off, FDR p -value < 0.25.
539	(D) Feature plots of genes included in the AITL-B-specific gene set.
540	(E) Schema of WES for fractioned B and unsorted cells of AITL. GCB, germinal center B;
541	PC, plasma cells.
542	Dot plots showing variant allele frequencies (VAF) for each mutation of unsorted cells or
543	fractioned B cells of AITL2 (F) and AITL6 (G). VAF, variant allele frequency. Mutations
544	in TET2, dark blue or purple; RHOA G17V, green; DNMT3A, orange; DLBCL-

545 associated mutations, yellow; *Histone* mutations, red; others, grey.

REFERENCES

547	1.	Fujisawa M, Sakata-Yanagimoto M, Nishizawa S, et al. Activation of RHOA-VAV1
548		signaling in angioimmunoblastic T-cell lymphoma. Leukemia. 2018;32(3):694–702.
549	2.	Nguyen TB, Sakata-Yanagimoto M, Fujisawa M, et al. Dasatinib Is an Effective
550		Treatment for Angioimmunoblastic T-cell Lymphoma. Cancer Research.
551		2020;80(9):1875–1884.
552	3.	Lee PP, Fitzpatrick DR, Beard C, et al. A Critical Role for Dnmt1 and DNA Methylation
553		in T Cell Development, Function, and Survival. Immunity. 2001;15(5): 63-74.
554	4.	Hudson WA, Li Q, Le C, Kersey JH. Xenotransplantation of human lymphoid
555		malignancies is optimized in mice with multiple immunologic defects. Leukemia.
556		1998;12(12):2029–2033.
557	5.	Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic
558		data across different conditions, technologies, and species. Nature Biotechnology. 2018;
559		36(5):411-420.
560	6.	Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray
561		and RNA-Seq data. BMC Bioinformatics. 2013;14:7.
562	7.	Zhao S, Guo Y, Sheng Q, Shyr Y. Heatmap3: an improved heatmap package with more
563		powerful and convenient features. BMC Bioinformatics. 2014;15(10):P16.

564	8.	Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring
565		cell-cell communication from combined expression of multi-subunit ligand-receptor
566		complexes. <i>Nature Protocols</i> . 2020;15(4):1484-1506.
567	9.	Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early
568		maternal-fetal interface in humans. Nature. 2018; 563(7731):347-353
569	10.	Dominguez PM, Ghamlouch H, Rosikiewicz W, et al. TET2 deficiency causes germinal
570		center hyperplasia, impairs plasma cell differentiation and promotes B-cell
571		lymphomagenesis. Cancer Discovery. 2018;CD-18-0657.
572	11.	Reddy A, Zhang J, Davis NS, et al. Genetic and Functional Drivers of Diffuse Large B Cell
573		Lymphoma. Cell. 2017;171(2):481-494.e15.
574	12.	Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nature
575		<i>Biotechnology</i> . 2011;29(1): 24-6.
576	13.	Bolotin DA, Poslavsky S, Mitrophanov I, et al. MiXCR: Software for comprehensive
577		adaptive immunity profiling. Nature Methods. 2015;12(5):380-1.
578	14.	Coffey D. LymphoSeq: Analyze high-throughput sequencing of T and B cell receptors. R
579		package version 1.24.0.
580	15.	Miura F, Enomoto Y, Dairiki R, Ito T. Amplification-free whole-genome bisulfite
581		sequencing by post-bisulfite adaptor tagging. Nucleic Acids Research. 2012;40(17):.

582	16.	Miura F, Shibata Y, Miura M, et al. Highly efficient single-stranded DNA ligation
583		technique improves low-input whole-genome bisulfite sequencing by post-bisulfite
584		adaptor tagging. Nucleic Acids Research. 2019;47(15):.
585	17.	Jiang Y, Ortega-Molina A, Geng H, et al. CREBBP Inactivation Promotes the
586		Development of HDAC3-Dependent Lymphomas. Cancer Discovery. 2017;7(1):38–53.
587		