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Analysis of High-dimensional Heterogeneous Data”

Tianxi Cai, Molei Liu, and Yin Xia

In the supplement, we first provide justifications for the random (sub-gaussian) design Compat-
ibility Condition and introduce and verify the Irrepresentable Condition for some common corre-
lation structures. Then the detailed proofs of Theorems 1-3 and the rate property of (14, 4g, Ces)
are presented. Finally we outline theoretical analyses of SHIR for various penalty functions and

present additional numerical results.

A.1.  JUSTIFICATION OF THE COMPATIBILITY CONDITION

We provide justification for Proposition 1 in this section.

Proof. First, we show that for any 8™ satisfying ||8™ — B{”||2 = o(1),
(2C2) 7" < Amin{Hnm(B™)} < Apax{Hin (8™)} < 2C,. (S1)

By maxycz, (o) Ex"X{™]* < C,, for any x € %1(0) and B™ satisfying ||3™ — B ||l2 = o(1),

(ﬁ(m)) Hm(ﬁ(m))x’
= ’E(XTX(-”‘))Z{ {/(X<-m)T,3(0m),Y'(m>) _ f{/(X(m)TIB(m)7y(m))}’

1/2
<E (X0 XA - 8] < O (ERTXMIEXT(B(” — B))2)

veEHAB1(0)

1/2
<Ct (E[XTXE"">]4 max E[v"X{"]?(|85” — ﬁ<m)||§> < CoCL|IBE” = B™ |2 = o(1).

So by C;' < Amin(Hin) < Amax () < Cy, equation (S1) holds. For any §; = ©{(soM logp/N)'/?}



and B = (BYVT,..., BT satisfying B™ € %5, (B,"), since so = o{N/(Mlogp)}, we have
18 — B5 |2 = o(1) and thus (2C,)™" < Apin{Hn(B™)} < Apax{H(8™)} < 20, for all
m € [M]. Let i§m) = XM {f1(B™TX;, Y;™)}1/2, and by the assumption in Proposition 1, we have
that [|X™ ||y, < fe.

Now we follow similar procedures as the proof of Theorem 1.6 in Rudelson and Zhou (2012) to
show that, for the mixture penalty in our case, H(3) satisfies €., with probability approaching

1. We first define the complexity measure of any set V C %,(0) as follow.

Definition A1l. For any V C %(0), define cq(V) = Esup,ecy |[g"v|, where g = (g1,92,..-,94)"

and g1,92, - -.,gq are independent N(0, 1) variables.

We recall that

C(t,S) = {(uijmT)T — (o7, ™M) 0 ™ — g

el + Agllv e

21 < H(lus ]+ Ag 0§ l21) }-
as introduced in Definition 1. Denote by

G = {0 = (oW, 4 A2 = 1}

C, = C(t,Sy) N %, and define that

1 1/2 ~1/2 1/2 ~1/2 T 5
Pt - {Nl/g |:n1/ (IJ’A + a(Al))THl/ (16(1)>7 o 7n]\4 (IJ’A + a(AM))TH]\é (ﬁ(M)) : (l’l’TA7a(A1>T7 o 7a(AM>T)T S Ct} )

which is a subset of RMP. We now provides bound for emp(I't), the complexity measure of I';. Let

g® = (g7, g?7 ... g™ where g™ = (g™, g%, ..., gy")" are independent gaussian vectors



and gim), ces ,gz(,m) ~ N(0,1) are independent. We have

M
1 m T m m ~
carp(Te) <Esup q iz D (s + o) EYAB™)g ™ (uh, ol o) € G
m=1

1 M

<Esup < [|pall Nz Z nl/2HY2(B g || (LR, VM) € G,
m=1 s
. 1 1/2 =1/2 1/2 =1/2 T . 5
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where the || - [|2,00 norm is defined as
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By npy = ©(N/M), AmaX{H}V/[Q(,B(M))} < 20, for all m € [M] and that g® is gaussian, and similar
to the derivation below the proof of Lemma Al, we can show there exists an absolute constant

Cy > 0 such that

M
1 _
ol Ryve > nPHA(B™)g ™| < Coy/logp;
m=1
1 1/2 ~1/2 1/2 ~1/2 T | M +logp
E N1/2 [nl/ g(l)THl/ (16(1))’ tee ?nj\//[ g(M)THJ\//[ (B(W)] ) < Cg T7

through some calculation on the order statistics of gaussian or x?-type (quadratic form of gaussian)

variables. These combined with A, = ©(M ~1/2) lead to that there exists absolute constant C' > 0

such that

camp(Ty) < Cy/logp 4+ M sup {IIMAHl + XgllaR N2 : (mh, @R € ét} : (82)



Following that C; = C(t, Sp) N %1, we have

sup { all + Agllaf 1o : (uh, @) € G}

<sup{ ¢+ 1210] (il -+ M0 2) : (b 0l € € = (¢4 1o

So by (S2), we have cpp(I'y) < C(t + 1)y/so(logp+ M). Now similar to Rivasplata (2012), we
introduce the following theorem from Mendelson et al. (2007, 2008) (adapted to our notation and

setting), as the foundation of our proof.

Theorem A1l (Mendelson et al. (2007, 2008)). Recall that
H(B“) = N~ 'bdiag{n H;(8%), ..., naHy (B™)}

where H,,(B™) = n,,t >0 X;m)iimﬁ. If there exists constants kg > 0 and C' > 0 such that
HXE"‘)HM < Kz and N > C’c?\/[p(Ft), then there exists a constant ¢o > 0 depending only on k,; and
C', such that with probability approaching 1, H(B'®)) and Sy satisfy the Compatibility Condition

Gomp With the compatibility constant ¢o{t,So, H(B®)} > ¢o.

Theorem A1 could be viewed as a special case of Corollary 2.7 and Theorem 2.1 in Mendelson

et al. (2008) with the complexity measure and %, specific to our case. Because we assume

1)v/so(logp+ M), we have N > C’C%Jp(Ft) for any constant C’ > 0 when N is large enough.

that so = o{N/(Mlogp)} < o{ N/(M + logp)}, and it has been shown that cpr,(I'y) < C(t +

Combining this with ||)N(§m)\|¢2 < kg and Theorem A1, Proposition 1 is proved.

A.2. THE IRREPRESENTABLE CONDITION AND ITS JUSTIFICATION

We first introduce the Irrepresentable Condition used in Condition 6. For any matrix A =
[Al,..., Ay € R and index set S;, Sy C [d], let Aje and A,; respectively denote the j™ row
and column of A, Ag s, denote the submatrix corresponding to rows in &; and columns in So,

Aes = [Agjy, ..., Asj, | for S ={j1,...,Jk : j1 < -+ < jr} C [d]. The weighted design matrix corre-

M

(m)
m=2 &

sponding to ESH|R([L, a'®) with respect to @ = (u, @7, ..., a™T)T after setting a” = — >



can be expressed as

W(B“) = bdiag{2;*(8%). ..., QY (B™)}Z,

where “bdiag” is the block diagonal operator, Q,,(8) = diag{f/(8"X{", Y{™),..., [ (B"X5, Yxm)}

m

is a ny, X Ny, dimensional matrix, Z = Zy, ), and for any 81, Sz C [p,

(1) (1) (1) (1)

X.sl _X.SQ _X.SQ e _X.SQ
(2 (2)

X.Sl X.SQ 0 cee 0

— (3) (3)
Ls, s, Xes, O X5, 0

(M) (M)

X.Sl 0 0 e X.52

For any 81,8, C [p], let Hip.s, (B™) represent the sub-matrix of H,,(8™) := V2L,,(8™) with its
rows and columns corresponding to S, and W, s,(3)) denote the sub-matrix of W(3®) corre-
sponding to Zs, s, and (ugl,af;Q)T, . ,afS?T)T. Let Syt = {Sy, Sa} and W, (8) = Ws, 5. (B).

RM—I

Also, denote by T = (1(p—1)x1, [(pmr—1)x(m—1))" and define [x||7 := [|Tx][2 for x € and its

conjugate norm as ||x||z := [ T(T™T) ™ 'x||2.

Definition A2. Irrepresentable Condition (4.,): The design matric W(B'®)) satisfies the

Irrepresentable Condition on S = (Sy, Sa) with parameter € > 0, if for all j € S and j e Ss,

}<1—a

} < A9(1 - 6)7

sup { '(uT, Agv®T) [Wéfu.l (B*)Ws,, (B(‘))} T W, (B9)W,(8)

’LLE%S# Jo(®) €Ys,,

T

sup { H (uT7 )\gv(-)T) [ngUII (,6('>)W8fu” (ﬁ(o)ﬂ -1 gfu” (,@('))W@,j/ (ﬁ('))

uGgsH ,'U(') Ggsa

where

Gs =du=(uy, - ,ug )" € RS max |u;| <15},
- { S selisan

[e3

G — {Um — (@7, ™M) ¢ RAM-1)ISa] | max Jvjllz <1, v; = (v}, .. .,U;M))T}

represent the sub-gradient space corresponding to S,, and S, of the mizture penalty.



Next, we demonstrate that Condition 6 is a reasonable assumption and is similar to those re-
quired for the sparsistency of LASSO and group LASSO (Zhao and Yu, 2006; Nardi et al., 2008).
Specifically, we present detailed justifications for the Irrepresentable Condition €., of the weighted
design matrix W(3) when the local Hessian matrix satisfies two commonly seen correlation struc-

tures, the constant positive correlation and auto-regressive correlation defined respectively by
Cons(r) = {r'#)},., and  AR(p) = {p" I/}

To see the design matrix associated with @ = (u",a®7 ... a™T)T let A be the transformation
operator between 3 and @ such that 85 = AssOs.s, where B = (8S7,...,85"")". For
any S1,S2 C [p], let Os,.s, = (u}l,ag;m)T, and afg;l) = (af;;T, e ,afghg)T)T. Then it follows that
Zss = XsAgss, where Xg = bdiag{X(:S) M_. . For simplicity, we take Sy =S8a = 8o, s =|Sp| and

ny =ng =...=ny =n in our following analysis. Denote by h = \,/(1/M*/?).

A.2.1 Constant correlation structure

First, we consider the scenario that the local Hessian matrices satisfy H,, (3™) = D™ Cons(r,,) D™,
where rp, € (0,1) and D™ = diag{dm1, ..., dmp} With d,,,; > 0, for m € [M], in analog to Corollary
1 of Zhao and Yu (2006). Without loss of generality, we assume Sp = {1,2,...,|Sol|}.

Proposition Al. Let H,,(3™) = D™ Cons(ry,)D™ with0 < ry,, < r and D™ = diag{dm1, ..., dmp}
for all m € [M]. Define that § = max,,c(nr) jess kesy mj/dmk- Then Condition 6 holds with con-

stant € € (0,1) if

drs(1+h) “1—e and ors{2(1 + h_2)}%

<1-e
1+ (s—1)r 1+(—1r — ¢

Remark A1l. If we further simplify Proposition A1 by settingd =1 and h =1, i.e. Ay = 1/M1/2,

then the condition on r can be relaxed and simplified tor < (1 —¢€)/(1+ s).



Proof. Let d™ = (dm1, .., dmp)T and d™ = (d},...,d;1)T. First, for any j € S,

ml» » Y'mp

-1
[ng“”(ﬁ(.))wsfun(ﬁ(.))] nguu(ﬁ(.))wj,@(ﬁ(.))
-1
- [Agfu“bdiag{Dg(‘iSO [Cons(rm)]sn.5 DL s, H1, ASM}
.
A {d” [Cons(r1)]5,,; Dy 00 - - darj[Cons(ran)]§, ]DES"\:?SO}

—[As ] 'bdiag {[D™ . 1"1[C 2 A" e T duslC Iy
[Asu] iag 1 [ 30,30] [ons(rm)}&)’&) 1 ]l 0”5(7"1)]30,]7---, Mjl O”S(TM)]SO,J .

(S3)
Then recall T = (L(a—1)x1, Ipr—1)x(m—1)) 75 X[l := [ Tx|[2 and |||z := ||T(T"T) " 'x||2, it follows
that for any u € ¥s,, v € s,
~1
(u", Agv ™) [WE,, (8 Wy (8)] W, (8)W,0(8")
7’1d1 -&<1) erMEl(M)
=|(u", Ao ™) [Ag,,] ! TS . Aty
(u?, Agv ) [ A 1+ (s—=1)ry’ 14+ (s—1)ry (54)
< % (g, Agv7) [A ]_1 ridy;/dyy rardary/dak \'
> a ks NgUVL Solk],So k] 1 n (S — 1)7’17. BE) 1 n (S — 1)TM ’

(2) (M))

where v, = (v, .. Solk] represents the k-th element in Sy and the “<” follows from the

fact that Ag,, is blocked-diagonal in A g .s,x]- Note that

M1 M1 M1 M-t
Mt 1-Mt M1 —M1
-1
[Aso[kLso[k]] =|-M1' —-Mt' 1-M1 . M1
Mt Mt Mt o 1—=Mt

-1 -1
Let [ASo[kLSo[k}] L denote the second to the M-th rows of [Aso[k],s()[k]} and

~ T_( ridij/dig rardai/dak >T
M) =

’I’k:(Tkl,..., 1—}—(8—1)7“1’”.71—{—(5—1)7‘]\4



Recall that Ay = h/Ml/2 and dp,j/dmi, < 6 for j € S§ and k € Sy, we have that

‘(UT7)\9,U(-)T) [ fll(’B(.>)st |(:8 )} -t gfu“ (ﬁ('))wj,w(ﬁ('>)

[Sol |Sol

SZlukl M~ me +Ag ZHWHT

ors(1 4+ Agv M —1) < ors(1+h)
Tk*lH 1+(s=1Dr “14+(s=1Dr

[Asmsom) 1 Tk

T (S5)

A

<3M12rkm <1-—g¢

where we use the fact T [ASo[k],So[k}} T (0,Ip/—1)" for the second “<”.
While for j' € SS and u € ¥s,, v € s, define that v, = (v),...,0,")" = A,T(T™T)~*
and similar to (S3) and (S4),

|

(7 20 [WE,, (B Wy (B)] W, (8)Wa, (8%

T
Sol _

SZ (ur, Agvy;) [Aso[k],so[k]} (Fealar—1, diag{Fra, ..., Tear}) ||
k=1 T
Sol

= H(uk,a;xM—llM,ﬂM)T (FerLar—1, diag{Fra, ... ’FkM})THTr
k=1

Due to the fact that |ux| < 1, |[Ogll2 < Ay, 170 = 0, and note that x"(T"T) 'x is the sample

variance of x, which is smaller or equal to ||x — c||2 for any constant ¢, we have that

H(uT’)‘gU(O)T) W5, (B W, (B©) W (B W (8 |

T

|Sol L

= Zceﬁl&t Z M7 gy + M T + M0 T 4 0 T — )
11

|Sol 3 |So 1
SZ ZFI%t(M_lul—FEIS))Q :Z 3_1 ZQM ~(t))

k=1 | t#1 P s

1

<8677" <2M—1 +2)\2)% _ {2(]_ + h_Q)}Q)\gsér - (1 - 6)
14+ (s—Dr g T+ (- Dr <y )



A.2.2 Auto-regressive correlation structure

Now we turn to the auto-regressive correlation structure, i.e., H,,(3™) = D™AR(p,,)D™, where
pm € (—1,1) and D™ = diag{dpm1,...,dmp} with d,; > 0, for m € [M], in analog to Corollary 3
of Zhao and Yu (2006).

Proposition A2. Let H,,(3™) = D™AR(pp,)D™ with D™ = diag{dm1,...,dmp} and 0 < pp, <
p for allm € [M]. Again denote by 6 = maX,c(ar) jese,keso dmj/dmk- Then Condition 6 holds with

constant € € (0,1) if

2p(L+h) o 20p{201+ h=2)12

<l-—e
1+p2 — 1+ p? - ‘

Remark A2. If we again simplify Proposition A2 by settingd =1 and h =1, i.e. Ay = 1/M1/2,

then the condition on p can be simplified to

1
p <

Sar Ao

which can be approzimated by p < 2 — /3 ~ 0.27 if we set € ~ 0.

Proof. Again denote by d™ = (dm1,...,dmp)". Let So = {k1,...,ks} where k; < ... < ks.
Without loss of generality, we let ks11 = p if ks < p. For j € Sf satisfying ky < j < ko4q,
similar to the proof of Corollary 3 in Zhao and Yu (2006), we have that the k;,y;-th element of
D 5]~ AR (91 550 s (AR (90,5 18 i i, - (o = 1) /(o™ = pri 1), and
the ke-th element is dyj/dmg, - (0 7 — PRI f(prter R phemheen) Cwhile the remaining elements

are all 0. Then similar to (S5) as shown in the proof of Proposition A1, for any u € ¥s,,v® € ¥s,_,



we have

‘('UIT7 )\g'U(.>T) [nguu (18<.))W$full (16“))} - ngu” (ﬁ(.>)wj,@ (ﬁ(.>)

kt —J —kt -1
1 Pm AW ~
= Z | M Z Aoy km ke ke Z Agllvj iz { Soljl:Sol }] L P
te{e (41} Pm Pm te{e,0+1} ’ T
25p —
ST D MlBl e < 7+ A2 B+ 1Bk, 3)
p te{l,(+1} P
_20p(1+ A M) 20p(L4+h) _
= —€
- 1+ p? 1+p2 — ’
where p, =0if t ¢ {¢,0+ 1},
k —k k j—k T
=~ __ (~ ~ )T_ dlj plt 7 _pl ' de p]\;[ ! Pgw '
P = (Pt1y-- -y PtM - dlkt p]1%+1 ke B p’ff Fort <y det p]]{é+1 ke B p%ﬁk@fl )
when t € {¢,£+ 1} and we use the fact that ps1, ..., par < 6p/(1 + p?).
While for j/ € S5 and u € ¥s,, v € ¥s,, we again define that v, = (vy,...,0,")" =
AgT(T™T) vy and similar to the proof of Proposition A1, we have
~1
H(UT’)\Q’U(.)T) [ngull (B(.))stull (ﬂ(.))] ngull(’g(.))wmvj,(’g(.)) ~
T
1
2
< Z Ce%lflt Z(Mfluu% + M tup + M55+ 00 — )?
ke{ee+1y t#1
P ow 3
< 271 o2 < P (2M‘1 2)\2>2
< > DM ey + ) <172 +2X;
ke{t,e+1) | t#1
N 25p
<Ag{2(1+h77)}2 1+ 2 < Ag(1—e),
which finishes the proof. O

A.2.3 Conclusion

For both constant correlation structure and auto-regressive correlation structure, our Irrepre-

sentable Condition €., is comparable to that of the LASSO estimator as in Corollaries 1 and

10



3 of Zhao and Yu (2006). Specifically, we both have the upper bound for r in the Cons(r) structure
decaying with a rate of s7!, and both have constant rate for p in the AR(p) structure. Note that in
terms of the multiplicative constants for the rates on r or p, our assumptions seem to be stronger.
This is due to the fact that the supports of p, and af)') are set to be the same for the simplicity of

construction, and as a result it produces more regularization bias than the simple LASSO case.

A.3. PROOF OF THE MAIN THEOREMS

eff

Throughout, we define the model complexity adjusted effective sample size for each study as ng,

nm/ (o logp) and n = N/[so(logp+ M )], which are the main drivers for the rates of the proposed

estimators.

A.3.1 Outline of the proof

Due to the lengthy proof, we begin with the outline of the main steps as below.

1) To account for the randomness of VL, ( ) = (VLi( L Y L( $)T)T, bound

A M N 9 M R
IVE(BE 2o 1= mas O N 3 [mn Vil (8] ¢ and - INTH Y7 nnVEn(B57)
J€ m=1 m=1

(e 9]

using Condition 2 and Lemma A1, where VjEAm( ) is the jth element of VL &), Thisis a
~(®)

crucial step to control the empirical process VL, ( ) (Bar—B8) by the terms VL. ( ) 12,005
— M -~ m -~ -~ (o o
1IN Yt iV L (B o, and [[isur — pollt + Agllaie — ag” [l2,1-

2) Bound the additional noise terms from the integrating process using Conditions 2, 3 and 4.

3) Start from the basic inequality @SHlR(,@;:,R) < QSH.R(,BE)')), use the Condition %, and the results

of Steps 1) and 2) to prove Theorem 1.

4) To prove Theorem 2, base on the inequality @st(B;:.R) < @SHR(B,(;[)MO') to compare Bg:lR and
Bl(:apm directly and use the fact that ,B\,(P'gpool minimizes the individual level objective function to

. . . . N ~(®) ~ ~(e)
simplify the inequality Qsur(Bsur) < Qsuir(Bipppeo)-

5) To prove Theorem 3, follow the similar strategy used in Zhao and Yu (2006) and Nardi et al.

11



(2008). In specific, verify the KarushKuhnTucker (KKT) conditions corresponding to the true

S, and S,, separately for the zero and non-zero parts of (L pool 1 &,(,;,)D;ol)

A.3.2 Proofs of Theorem 1
Proof. First, we expand me(,@x;so) around VL, ( o) inspired by (Feng et al., 2014). For a
vector or matrix A(t) whose (i, j)-entry being A;;(t), a function of the scalar ¢ € [0,1], define

fol A(t)dt as the vector or matrix with its (¢, j)-entry being fol A;j(t)dt. We then have

<> o 5m m m m ~(m) m
VEn(Bitso) = VE B + [ L (9 + 1B — B71) (B~ Bt (50

Thus, the gradient term g, in equation (3) can be expressed as

<> am ~(m)

VL (BLASSO) mIBLASSO _VL" ( E)m)) _Hm f)m)

(s7)
~ m m = (m) m
[ {2 (857 + 18— B571) — B} Bl — 97

The third term of (S7)’s right hand side can be seen as the noise term introduced by our integrating
procedure. Now we bound this term using Conditions 2, 3 and 4. For ¢ € [0, 1], Conditions 2 and

3 lead to

~ m m ks ~(m) m
{VQEm ( o +t[16LASSO (() )D —H } (IBLASSO E:l ))

=y, X" [ﬂm( 5+ B0 — B57) —nm@ir;‘;o)]xmwiiiso 5)
~
smax””m‘x” Z(X“‘” (Birkso — 85| - €| (1~ X (Blgo — 85| < O |5 (Blso - ).
which implies that
| [ {52 (8 + B0 — 0471) ~ B} (B — 7 msiiLHw (Birso — 85

(S8)

12



Then by the fact that @SH,R(B;),R) < @SH,R(BB°)), we have

~(m)

M
— ~(m) MmN\ T m ()
Nt Z N (Bsur — E) ))THm(BSHIR - E) )+ AP(Bsiig)
m=1

M
_ ~(m) m - m
< —2N ! Z nm(/BSHlR - E) ))Tv£m( ((3 ))
m=1 (Sg)

M
_ ~(m) m ~ m ~(m m ~(m) m .
+ 2Nt Z Nn (Bsuir — (0 ))Tfol V2L, (Bé )+t[ﬁl(_A%SO_B§) )]> (Biasso — E) ))dt + An( (0))
m=1
= &1+ &+ Mo(6).

~(®)

Now we bound & and & using Lemma A1, in terms of ||figue — Holl1 + Agll@ime — af|l21. Let

A1 > 2max {)\01, )\02/()\ng/2)}, we have that with probability approaching 1,

M
6] <2[NTD VLB sur — ol + 21 VLB 2,00l @0 — 0|21
m=1

o

)\1 ~ ~ (o .
S?(HNSMR — ollr + )\QHQéH)IR - aE) >H271)

We let Ay = 4max(1,/\gM1/2)C|ocCLBso log p/min,,c(as) im, Where the constant Cioc satisfies

max,, e | X™ (BE:;SO — B2 < (Cioctm /n)1/? with probability approaching 1 by Condition 4.

m

Then we have

M
_ 5 (m) m .
[é2] 2N " BCLIX™ (Biasso — B3 Bswm — ol

m=1

2,1

1 ~(o (o)
my £ 5™ w2 2M2BCL|ad, Qg
+ max X7 (B0 — 6575 =t

)\2 ~ (o .
S?(”H’SHIR - “‘0”1 + AgHaéHiR - O‘(())

2.1)-

Then we let A = A1 + A2 in (S9) and see that

l21) + ol + Mgl ll2,1-

p
~ o~ 1 oy ) L]
[Bsuir, 111 + Ag Z [Qshir,jll2 < E(HHSHIR — ol + )\gHaéT—i)lR - O‘E))
=2

13



This and 1 € Sy yield that

Hl‘l’SHIR S°H1 + A | AéI.-I)IR SgHQ,l < 3(HﬁSH|R,SO Mo 80||1 +A ’ Aé:i)m .So ao SOHQ 1) (SlO)

Note that aéL)IR O‘E)D +-+ agmfa - O‘E)M) = 0, we have (ﬁ-SrHIR “Oa ag.H)|1R— - O‘E].)T) S 62(3 80)‘

Combining Condition 4: H,@EZ;SO B2 = Op{(1/nsf)1/2} with Condition 1 yields that Sp and H

satisfy .omp- Then we have

/\

S1 o (e) . 3N (o .
HH (IBSHIR ( ))”2 — ?(HI“’SHIR “0”1 + A HaéHIR a(())HQ,l)

3\ ~ 1~ (o) .
7\/30“H2 (B — ())H /®o.

IN

Since Ay = O(M~/2) and n,, = O(N/M) for all m € [M], we have A = A\ + A2 = ©(1/(son) /2 +
1 (e 1
B/ne™). Then we conclude that HH%(B;H),R - B2 = Op{(l/ne”)% + Bsg /nsi}. For estimation

error, again by Condition 1 and using the fact that M~ 1||,8;,:),R - BN = O Bsur — Holl1 +

~ (o) ~ (o)

3 -~ . e 1 e
A Hast a((] )H?,l) we have ||l’l’SHIR /1'0”1 + A Hast a((] )H?,l = OP{(SU/n fF)Q + Bso/nnfzr} and
MY|Bae — B Il = Op{(s0/n")% + Bso/nl}.

A.3.3 Proof of Theorem 2

To establish the equivalence between ,/B\(S,:),R and Bf;; voor W€ need to compare these two estimators
directly via an inequality similar to (S9), which is shown in (S13) in the following proof. The way
we utilize (S13) to prove Theorem 2 is similar to (S9) in Theorem 1 but this is more elaborative
since the two estimators are not necessarily as sparse as ,6'(()'>. Specifically, based on the results and

proof procedures of Theorem 1, we prove Theorem 2 as follows.

Proof. Let Ay and Ay be as defined in the proof of Theorem 1. First, using the conclusion of
Negahban et al. (2012), proof of which actually implements similar steps as in the proofs of Theorem
1, we have that there exists A = O(A1) as defined in the proof of Theorem 1, the IPDpool estimator

B,(;E,pool satisfies that

(o) . o 1 ~ (o ef 1
12 Bipopon — B2 = Op{(1/1) 2} [ Fhpopen — Hollt + AgllGihpen — e |21 = Op{(s0/n"")2}.

14



To control the additional noise introduced by integrating the summarized statistics, which is
characterized by Ao as defined in the proof of Theorem 1, A need to be larger than A by some
Aa = A — X > 0. Under the assumptions in Theorem 2, such Aa can be selected to have smaller
order than A but still control the aggregation noise. Thus the difference between the prediction
and estimation risks of the two estimators is also of smaller order than the risks themselves. Now
we demonstrate this intuition by the rigorous proofs as below.

Since sg = o{(n<")2/(B2n*")}, Ay = O(B/n"), and A = ©{1/(son"")'/2}, we have Ay = o(}). So
there exists Aa satisfying Aa = w(A2) and Aa = 0(5\). Then as N is large enough, A = A+ Ap >
A1+ A2. So by Theorem 1, we have ||figx — Holl1 + Agll @ — a8 |l21 = Op{(so/neff)% + Bsp/n}
and MY B — 851 = Op{(s0/n")% + Bso/nl}.

Similar to Theorem 1, Taylor expansion on VL, (,@EZ;O) around the IPDpool B,(;‘D)pool yields that

~ -~ (m) ~(m)

S () PPN N
VEW(IBLASSO) - HmBLASSO :Vﬁm(ﬁ ) - HB8

1 (S11)
I~ ~(m) ~(m) ~(m) Ca~ ~(m) - (m)
+ [ En (B + k0~ B™Y) ~ i } (B~ B
Similar to (S8) in proof of Theorem 1 and by Ay = 0(Aa), we then have
2M -~ (m) -~ (m) ! I~ -~ (m) -~ (m) -~ (m) =~ ~(m) -~ (m)
€3 ::N Z nm(ﬁst - ﬂlPDpool)T/O {v2['m (/6 + t[IBLASSO - /3 ]) - Hm} (IBLASSO - B )dt
m=1
. N BN S BN BNPN S BN O
<N CLB n?éf[i]\)/(l} X" (Basso — BIPDpooI)HQ | Bsir — /6|PDpoo|H1
=Op (Bsologp/N) Op{M(so/n*")"/*} = op{Aa(s0/n"")"/*}.
(S12)
A e A e
Then by QSHIR(/BSHIR) < QSHIR(IBIPDpooI)’ (S11) and (S12), we have
M ~(m) ~(m) =~ ~(m) ~(m) -~ (m)
N_l Z nm(I@SHIR - IBIPDpooI)THm(IBSHIR - IBIPDpooI) + )‘PQ(BSHlR)
m=1 (S13)

M
— ~(m) =(m) = M 210
<2N ! Z nm(/BIPDpool - IBSHIR>Tv£m(BIPDpooI> + &3+ Ap2 <BIPDpooI)7
m=1
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which enables us to compare the two estimators. Note that

(l/'\t|PDpOO|7 aI(P.I:))pool7 CIPDpooI) = arg?l)in E(IB(.)) + 5\p2(l‘l’7 a(.>7 /\g) + CT(au) + o + a<M))7
m,at®) ¢

where ¢ € RP is the Lagrangian multiplier for the constraint: a® + --- + a™ = 0. By KKT

condition for the above optimization problem, we have

=, 5() ~ ~(e
QVHE(BIPDpooI) + ()\ _ )\A) Vy,p2(p’lPDpoo|a al(PI;pool; >\g) . Opx1 —o,

<500 ~ ~ (o (®)
2VQ‘C(BIPDpool) VQPQ (I’I’IPDpool’ a|(P|:))pOO|; )\9) CIPDpooI

where VMEA(B(')) = 0L(B™)/0p, Vo L(B®) = 8[3(6('))/604, Vup2 and Vo ps are the sub-gradients
of p2 o Fipp,e and ... and ap.[),pool = (E;Dpool, . .,E;,Dpool)T is the M-time replication of the
Lagrangian multiplier Z‘,PDpoo,. We note that for j = 1, the sub-gradient equals to 0 and for j €

{2,3,...,p},

o |vﬂjp2(ﬁlPDpool7 aI(F:I)Dpool; )‘g)| S 17 V,U«jPQ(ﬁIPDpooI’ aI(I;IZ))poal; )‘g) = Sign(ﬁs””&j) When ﬁ5H|R,j 7é 07

~ (o)

i Hvocj pQ(ﬁlPDpool’ al(F:épooﬁ )‘Q)HQ < Ay, vajp2(l‘/zlPDpool7 aI(PDpooI; Ag) = )‘galPva/HaIPD,j

0.

2 when || 2 #

~() (1) SM) Sy ST 0T (=0 :
From agye ~ Qpppooi T+ " Qgpig = Aypppee = 0, We have (Qgrig _aIPDpool)CIPDpool_O' By the sub-gradient

condition and Cauchy-Schwarz inequality,

~T -~ (o) . ~(o)T -~ () .
BsuirY up2 (IJ’IPDpooI’ A pppool s )‘g) + agirVap2 (IJ’IPDpooI’ X pppoold )‘g)

< Bspells + Haé.H)mHll = p2(Bgpr; ag:i)lR; /\g)‘

Thus, we have

~(m)

M
— -~ (m) -~ (m) ~
—2N~! Z nm(BSHIR - BlPDpool)Tv'Cm(Blpopool)
m=1

:(>‘ - AA)(I‘/I;—HIR - ﬁ?l;Dpool)vHPQ(ﬁlPDpooH aI(P.I))pooI; >‘g)
-~ (o -~ (o -~ (o ()
+ ()‘ - )\A)(a(SH)I-FI; - al(Pl);,;ool)[vOLPQ (IJ’IPDpooU aI(PI)DpooI; >‘g) + CIPDpooI]

<(A = Aa) [p2(Hspr, aémm )‘g) - pQ(ﬁlpopoon al(F:épooﬁ )‘g)]-
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Substituting this into (S13), we have

1l (e .
Nt HH2 (BSHIR BIPDpooI) ”2 + )\Ap2(p’SHIR7 aSHIRﬂ ) <&+ >\Ap2(N|PDpoola |(P[>>poo|; >‘g)- (814)

Consequently, by (S12), Theorem 1 and Aa = o()), we have

151 5(e) (o) ~ ~ ~ ~
N 1”H2 (Bsir — ﬁ|PDpoo|)H§ <&+ Aa (HIJ’SHIR - “IPDpooIHl + A ”aél.-l)lR aI(F:I)Dpool , )
-~ (o)

1 ~ ~(o . ~ o
SOP{)‘A(SO/nefF)Q} +Aa (HlJ’SHIR — Koll1 + A Ha(SH)IR aE))HZl + ||N|PDpoo| — koll1 + A HaIPDpooI af] )”271)

—op{\(so/n)2} = op(1/n").
Thus, we finish proving the equivalence of prediction risk:

~Lfh (3 . IS O] . effy 2
2” 2(BSHlR E)))H?SN lHH (IBIPDpooI_ E)))||2+OP{(1/7L“)2}'

For estimation equivalence, we will first show by contradiction that

~ ~ ~ (o) ~ .
P2 (I‘LIPD,SO ~ Hshir, Sy Xipp.Sy — XSHIRSp 5 )\g)

~ (o

SH/‘/IIPD,SO [T .So 14+ A HalPD So aSH)IR,So

(s0/n°")2}.

We assume that there exists a subsequence of N (for simplicity, we still denote it as N) and

constants C'1 > 0 and 0 < ¢ < 1 that with probability at least ¢,

. (o (o il
||NSH|R,SO Hipp SO||1 + Agl éH)m So a|<P|)3,80”271 > Cy(so/nM)2. (S15)

Then using the error rates of the IPDpool and SHIR estimators, we have that there exists constant

C5 that with probability at least ¢,

~ ~ ~ 1
HNSHlR,SC NlPD SCH1 + A ’ é;)n; Se a|(p.D SC||2 1 < 02(50/n6fr)2
0

Cy, ~ .
ga(Hp’SHIR,SO ,’I’IPD 80”1 + A | é:m So a|(pD 30||2 1)

~(1) aw =~ (M) ~M) ~T ~(o)T ()T T
Since Aspir — Xipppoo T Qg — X ippposl = 0> (p’SHIR ulPDpooI? Ogpr — aIPDpooI) € C2(t1a SO)? where
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t1 = C3/C1. So using Condition 1, there exists constant C5 > 0,

~(®)

HﬁSHIR,SO - ﬁIPD,So |1+ )\QHaér—i)lR,So — Oy So||2 1

~®) ~®

<[ Hspr — ﬁlPDpooIHl + A Hast aIPDpooIH271

<C3(50/N)2 |[H2 By — Biopear)ll2 = 0p{(s0/n)2 },

which contradicts what we assumed in (S15), as NV is large enough. Thus,

~ ~ ~ ~ i L
||I’LSHIR,SQ — Mpp,S, ||1 + )‘g”aé:q)m,so - 0‘|<|:D .So ||2 1= OP{(SO/n ff) 3 }

It follows that

Bisur,s0 = Ho.soll1 + AgllBgag 5, — s, 121 (516)

~ ~ effy L
<[ Fieo,s, = Ho,s 11 + Agllnsd s, — s, ll2,1 + op{(s0/n") 7}

By (S14) we have

5 ~®) .
Aap2 (NSHlR,Sg 1 Ospir 56 Ag)

( ) -~ -~ (o) (o)
<|&] + AApQ(l"’IPD 8§ Xpp, 8¢ )‘9) + )\ApQ(IJ’SHIR,So — Hipp.Sps Xshir, Sy — Xipp, Sy A )

Combine this with (S12) and adding the difference of intercept term to the right hand side, we have

”l"l‘SHIR SCHl +A ’ Aé:I)IR S§H271

~ (o)

Sfi’)/)‘A + HﬁSHIR,So l"l’IPD SO||1 +A ’ Aé:ua .So A|(p.[)> 50”2 1+ HIJ’IPD SCH1 + A Han:D SCH2 1

~ (o)

1 ~
SOP{(SO/nefF) 2} + HNlPD,Sng +A HalPD SCHQ 1

Since prg s = 0 and s = 0, we combine this with (S16) and obtain that

~ ~ (o . -~ -~ (o L] e l
| Fsr — Mol + A HaéHIR a(() >”2,1 < ||HIPDpooI Moll1 + A H |(P|;poo| - aé) )||2,1 + op{(so/n ﬁ)z}v

which finishes the proof. O
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A.3.4 Excessive risk for the debiased LASSO based approaches

We outline below the key steps to derive the error rate for the debiased LASSO based estimators
(Lee et al., 2017; Battey et al., 2018) introduced in Section 4.4. First, by Lee et al. (2017) and

Battey et al. (2018), we have

() N i
Baiasso — é) ' = ‘P( )/Vnm + Op{B(s0 + s1)logp/nm},

where ™ is a sub-gaussian vector of mean 0 satisfying ||¢™ |y, = ©(1). Then using the concen-

tration results similar to Lemma A1, for \, = ©(1/M'/2), we have

—~ 1
| Higiasso — Holloo < Op{(logp/N)2} 4+ Op{B(so + s1) logp/nm}

~(o . 1
)‘g”aéLLsso - aé )||2,oo < Op{[(logp + M)/N]2} + Op{B(s0 + s1) log p/nm },

where &t heso = (A hssos - - - » Xltaeso) - Then following a similar procedure as Theorem 4.3 of Battey

et al. (2018) and Theorem 22 of Lee et al. (2017), one can obtain the following bound for both hard
and soft thresholding estimators:

°) (®)

1
8 — Op 2,1 = OF’{(‘E"O/ntafF)E + B(so + 51)/”:2 .

||ﬁL&B - “0“1 + )‘QHaE

A.3.5 Proof of Theorem 3

Selection consistency (or sparsistency) of the linear model with LASSO and group LASSO penalty
has been established by Zhao and Yu (2006) and Nardi et al. (2008), respectively. Compared with
their proof procedures, our theoretical analysis takes into consideration of the additional aggregation
noise terms bounded in (S8) and the techniques for handling the mixture penalty ps. We prove

Theorem 3 as follows.
- T (MT

Proof. For any m and S1,S2 C [p], let afg21> =(ag, - ag) ), 0,8, = (ugl,agl)T)T, 0 =0y 1)

and similarly we define ast and 0y. For any m and ast, after substituting a® with the remaining
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a'™’s, by (ST7), we can express the corresponding KKT condition as

Bour — Mo T[p},@ E[PL@

_ ~(e) (o)
2N 1WT(IBLASSO)W(5LASSO) (<1) 1) -2 + A

Qgun — O Yo,y Eg,[p) 70, [p)

M0 o (s17)

T

where the sub-gradient n = (n[pr,n%’[p])T and the gradients ¥ = ( b

]’@,Ta’[p])-r and E —
(E[T]?L@,Ea[p})T are defined as follow: (i) For any S1,S2 C [p], denote by ng, 3 and ny s, the sub-
gradient corresponding to pg, and afg;l), satisfying the sub-gradient condition: n;y = sign(u;) if
pi # 0 and [n;9| < 1 for all j € [p]; my; = AT Ta;/|lelr if e # 0 and [Ing ]Iz < Ay for all
j € [p]. (ii) Let A be the transformation matrix between 8’ and 6 such that B = A#.

Then Y and E defined in above equation could be written as:

n1VE1 (ﬁE)l)) ¥
T =N1AT : and E=AT : ,
nu VL (B5") Yy
where we denote by
(o2 am L ™ ™y _f 13" (m
¥, = ‘N 0 {v ﬁm(ﬁo + t[Brasso — Bo 1) = Hin} (Biasso — Bo )dt.

For any 81,82 C [p], let Y5 g and Eg, y be the sub-vector of the gradients ¥ and E corre-
sponding to pg, while Xy s, and Ey s, corresponds to afs;l). Denote by ¥ = (¥q,...,¥,)",

.
B, = { AXTBY V), FXETBE, V) ) and @ = (@], @3, @), then
Y=NT'ATX'® and E=A"".

Recall that Spy = {Su,Sa}. By the KKT condition in (S17) and note the fact that we can
reparameterize 3*) with @ for arbitrary m € [M] and the KKT equations are essentially equivalent

with different m € [M], the event &, N O, holds if and only if the following events hold:
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e The estimator gst,sfu” obtained from

~ ~(®) ~@ ]! - A
HSHIRVSfun = 007$fuII + N [ gﬂ,“ (IBLASSO)WSFUII (IBLASSO):| <T5full + ESp — 277$fu||> ) (818)

satisfies that maX{”ﬁst,Su - HO,SHHom ||aé|.4)m,sa - aé).,iS‘QHQ,OO} <v.

e For any j € 8¢, the sub-gradient 71, ;4 obtained from
1 3,0

Mo =209+ 28,

~(®)

~(o) ~ (o) ~@ (7! _
- W},@(ﬂmsso)w&uu (Brasso) ngu” (Brasso) W (ﬁLASSO)] (2T$full + 285, — )\nSfu”) )

(S19)
satisfies that [, | < 1.

e For any j € S;, the term 7 ; obtained from

A =2y ; + 28y ;

~(®) NO) ~(®) ~(®) -1 —_
- Wé,j (Biasso) Wi (Biasso) ngu” (Biasso) W (BLASSO)] <2T8full + 285, — >‘77$fu||> )

(S20)
satisfies that [0y ;[lz < Ag-

Note that §SH|R,3M is the unique solution to (S17) and is the minimizer of QSHR(,@(')) whenever
(S18), (S19) and (S20) are satisfied for all j, with n satisfying the subgradient condition. So we

only need to show that
- (e .
P(HIJ‘SHIR,SH - I‘O,SuHoo <wv; M2 HaéHiR,sa - aé,ga”loo <v)—1, (S21)

and that as N — oo,

P(VjeS mjol <1 VieSs, llmg;llz <Ag) = 1. (522)
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Similar to the proof of Theorem 1, there exists constant Cy such that
- Z [Wmlloc < CouB/niy;  [[¥mllee < CoB/ni,. (523)
m=1

And in the following deductions, we base on (S18), (S19) and its corresponding sub-gradient
condition of ng,_ , to define ast,Sfu” and 7 to show (S21) and (S22). Here note that Sop = S, U S,.

For (S21), we will prove its sufficient condition:

P(Hﬁst,So - NO,SOHOO <v; M~ ||a5H|R So 030”2 0o <V)—1 (524)
To prove this, denote by Sy = {S0,Sp} and let
a3 ~(® @ ]! A
95H|R,§0 = 00,50 +N [W (Biasso) W S (IBLASSO):| Tso + 2 =3, 277§0 .

1l (m) n . P
Recall H, So =1 IX(.S)OTQ (/BLASSO)X(Q‘S%? M. = Vup2(Bsug AGles Ag) and 1 m) = Vo m P2 (B, Csiies Ag)-

We first get back to the KKT condition for ,@;E?R Sot
Z(m m r— —Ig(m
BSHIR,SO = BE),&)SO + Hm}so [2MN 1XESD>.T(I)m +2¥,,s, + /\(77,1,80 + na(m),so)}

Combining this with 8™ = pu + a™ and a® + --- + a™ = 0, we then have

M
ﬁSHIR,SO = Ho.s + Mil Z H_ [2MN 1X$ T{)m + 2%, So t+ )‘(TIM,SO + na(m),&))} )

m=1
Bl sy = Ok, + (Bos, — Bauns,) + Hls, [2MNTIXET @, + 2,05, + A5, + Mo s,)| -

(S25)

Now, we base on (S25) to prove (S24). Combining Condition 5 and Condition 4 that ||,@$;SO -
B2 = Op{(1/n)1/2}, we have Apax (]ﬁl;llso) < (Cmin) ! with probability approaching 1. Also,

by Condition 6, W(BE:\)SSO) satisfies the Irrepresentable Condition 4., (Definition A2). Then it
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follows from (S8) and A\, = O(M~1/2) < 1 that for m € [M],

], (s s s

)

(S26)

HH;;SO [Q‘I’m,so +An,s, + )‘na(m>,80] <
(o0}

S(Cmin)_l\/% <2 H‘I’mﬁoum + A HTI“,SO + T]a("‘),Sg oo> S 2(Cmin)_1\/% (H‘Pm,SoHoo + )\> .

By Condition 2 and similar to Lemma Al, we can prove the concentration result: there exists

positive constant Cy that with probability approaching 1,

M

-~ ~ Cy+/S0 logsg _ Civ/So log p
1 1 -1 (m)T

H MX &, < . < . :
Z m780 Soe o C1rnin N Cmin N’

o0
M 2
_ Cyy/s0 [M+1logsy  Cu/so |M +logp

M- § M N-1 []HI XM } < < ,

gnel [as}oc} < m.So™"Soe j o Cmin N o Cmin N

=1

(S27)

By Condition 7 and combining (S23), the first equation of (S25), (S26) and the first row of (S27),

1

l‘l’SHIR So Mo ,So

ml.So |:2\I,m750 + /\nu,So + )‘na(m),So:|

_ V% \/@ BsoM (logp)
” ) ~ + ~ +A| =0,

again by Condition 7 and combining (S23), the second

1 —1 —1 (m)T
<= ZH N MXE @, || + M~

1 B
& [logp CeB P
N nefh

with probability tending to 1. For a

’ oo

| /\

mln \/>0
v

SHIR So?

23



equation of (S25), (S26) and the second row of (S27), we have that with probability tending to 1,

~ (o) . °
aSHIR,IPD,So aO,lPD,So

2,00

1
75|

1 . 2
+ = max M2 > <2MN—1 [H;}Soxgjj @mm

00 V j€[so]

11~
S; HNSHlR,SO — HMo,s,

m=1

2

HT_YL%S() 2‘I’m180 + /\77#,.50 + )‘na(m),so}

M +logp CoB
Cyr/ 2\
4 N + et +

Given Sg = S, U S,, these yield that

M
2.
m=1
(Cmin)_l \/%

S—
1%

o0

M +1 BsgM(1
- o (|fITbe | Bt )

~ —1. (e .
P(HP’SHIR,SH - NO,SMHOO <wv; M~z ||aéH)IR,Sa - aé),zsauz,oo <v)—1, as N — 0.

Then we adopt similar approaches in Zhao and Yu (2006); Nardi et al. (2008) to bound the terms

on the right hand side of (S19). Note that for any x € RM~1,
I5¢[[% = x"(T"T)™'x < [|x/3/Amin(TTT) = |Ix]|3.

Then by Lemma Al and that n,, = ©(N/M), there exists some constant Cs > 0 that with

probability approaching 1,

M
‘Tj,ﬁ‘ < HN_l Z anZWL( E)m))Hoo < Cs5Ao1;
m=1 (528)

~ R 1
1o 5117 = IT(T"T) ™ Ly ll2 < 2 VL(BY)ll2.00 < C5M 2 Ag2.

illF

And again using (S23), we have that for j € [p],

1,0l < CuB/ns; 18 ,ll5 < 18]l < CoB/(VMnsy). (529)

m?
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We let U = 2T3fcu” + Qngcu” and

V =N "'WL,

full

~(®) ~(®) _ ~(®) ~(®) -1 _
(IBLASSO)WSfun(IBLAsso) N 1ngu||(16LASSO>WSfuII (IBLASSO):| (QTSfuII +2='Sfull)

Note that by (S28) and (S29),

_ ff1—1 =
(05/\01> 1T5W@ S ggﬂ; [C\IIB/TL,I:;] =S,,0 € ggﬂ;

1
(CsM 2222, )N By s, € Dsas Ay [C\pB/()\g\/Mn;f;) Zps, €D,

Then using Condition 6, we have that with probability approaching 1, for each j € S,

|Uj,®| <2C5A01 + QC\DB/nefr,

m?

m

V0l <201 = )max {Csdor, CsM™5p);", CuB/nifi, CoB/(\VMrnih) |

Since Ay = O(M~1/2), X\o1 = O({log p/N}'/?) and n,,, = O(N/M), we then have

1 M BsgM1
U0l + V10l = Op < / ogp]\;L L Bso ! ng> ' (530)

And for j € [p], we have

HU@,JHT S 205M_%)\02 + QC\IJB/(\/Mn;fL)’

HV@JH’TT S 2)\9(1 — 6) HlaX{CE,)\(]l, C5M_%>\02>\g_1, C\pB/nefF, C\I]B/()\gan:.t;)}

m

with probability converging to 1. Given A\, = O(M ~1/2), this yields that

logp+ M  BsoMlogp
ﬁ:Ag-Op<\/ N + ON > (S31)

Then combining (S19) and (S30) and using Condition 6, ns, ¢ € ¥s,, )‘9_17’@7&1 € Ys, and

1 logp+ M  BsoMlogp
Ae(\/ N TN =0

1Upll5+ Vo,
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we have that as N is large enough, for any j € Sj

_ logp+ M  BsoMlogp
_ 1
=AOp (\/ N TN

~(0) ORI
' 3,0 BLASSO W (IBLASSO) [ngu”(l@LASSO)WSfuII (BLASSO)} NS

<€
—4+1- —1—7<1
€ 5 ,

l\')

with probability converging to 1. For any j' € S¢, since \, = ©(M~'/2), by (S20) and again by

Condition 6, we have that for any j € Sy,

_ _ logp+ M  BsgMlogp
35 oz = IOP(V S

NO) ~(e) ~(e) ~ (o) -1
67]'/ (BLASSO)WSfUII (IBLASSO) [ngu” (IBLASSO)WSﬁJII (BLASSO)] NSl -
T

-1
+ Ay

€ €
<-4+1l—-€e=1-—=-<1.
_2—|— € 2<

Therefore, we have
P(VjeS Injplle <1; Vi€Ss Inmp;llz <Ag) — 1,

and Theorem 3 thus follows. O

A.3.6 Technical Lemmas

In this section, we present the technical lemmas used in the proofs. Some of them are simple

consequences of the existing results, and we provide brief introductions and outline their proofs.

Lemma A1l. Under Condition 2 and assume logp = o(N/M), there exists g1 = ©{(logp/N)"/?}

and M2 = O{[(M + logp)/N]/2} such that, with probability approaching 1,

M
NS VLB < dots 2VL(BT ) 200 < Ao2/M2.

[e.9]
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n

Proof. Let ®,, := {f{(X;m)Tﬁém),Yi(m))}'m and ® = (@], ®3,..., i’}w)T. Note that

E[nm VL (85)] = EX™T®,,] = 0.

Under Condition 2, each element of XE"” f{(X;m)T,@E)"”,YZ-(m)) is sub-Gaussian. Then by logp =

o(N/M), there exists g1 = O{(logp/N)'/?} that with probability approaching 1,

M M
2(INT1N VLR (B)|| = |2V DX, < Aor.
m=1 oo m=1 oo

Referring to Theorem 1 of Hsu et al. (2012), under Condition 2, there exists \g2 = ©{[(logp +

M)/N]Y2}, with probability approaching 1, 2||VL,(85))|l2.00 < Aoa/MY2. O

We remark here that the bound of 2|V L, ( §)||2,00 Telies on maximum chi-squared tail of the
sub-Gaussian noise, which is different from the commonly used maximum Gaussian tail inequality,
in ultra-high dimensional regime. Detailed proof of this result is given by Hsu et al. (2012).
Here we provide a simplified example to intuitively explain the results in Lemma Al. Let €™ =
(™, e )T and Vf.(,@é”) = (eWT,...,emN)T/NY/2 where the ¢™ are i.i.d N(0,1). For j € [p],
we let z; = Z%zl{e;m)}Q. Since zj ~ x3,, which is sub-exponential with mean M, we have

maxjepp) (2 — M)+ M _ clogp+ M
N =" N

IVL.(B5)113 00 =
for some constant c. Therefore, we have ||VLZ,( 2,00 = Op{[(logp + M)/N]'/2}.

A.4. OUTLINE OF THE THEORETICAL ANALYSIS WITH OTHER PENALTY
FUNCTIONS
In this section, we outline the theoretical analyses for the risk bounds of SHIR with the following
penalty functions p(-). (i) Group LASSO: p(8) = >°¥_, ||B,ll2; (ii) Hierarchical LASSO (Zhou
and Zhu, 2010): p(BY) = 3¥_, H,BjHi/g and (iii) Mixture sparse penalty: p(8“) = ||p_1|l1 +

M m
Ag Y lla T 1.
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A.4.1 Penalty functions (i) and (iii)
We outline the technical analyses for (i) and (iii) together since they are all convex and decomposable

as defined by Negahban et al. (2012). Again, start from the basic inequality (S9):

M
_ ~(m) m -~ ~(m) m
Nt Z N (Bspr — E) ))THm(/BSHlR - B )) + )\p(IBSHIR)

IN

M

m < m -_— A(m m m [ ]

—2N~ 1an Bame = BS)VL(BG) +2N 7S nin(Bee — B ) 0 + A (B5)
m=1

=&+ &+ M(BY),

m ~(m) m ~(m) m .
where nSHIR = 0 V2£ (/6(() : +t[16LASSO (() )]> (/BLASSO — B¢ ))dt and néH)lR - (USLTR, "ang\l—AH)I;I—) .

Following the paradigm for analyzing high dimensional regularized M-estimator (Biihlmann and
Van De Geer, 2011; Negahban ct al., 2012), one can bound & by |¢1| = O(M L p(8®)p-{V L.( D,
where p* represents the conjugate norm of the convex and decomposable p(-). For (i), p(B*) =

Yo 118jll2 and M~ pH{VL(BS)} = [VL.(BS) 2,00~ For (iii), we let Ay = O(M~'/?) and have

M~ pHVE(BE)} = M72VLLBE oo + M| D VEW(BE)
o0
As a result, one can choose A accordingly to control this term. For SHIR, we need to handle the
additional error term &». Similar to |¢1], we can bound & by [&2] = O{M~1p(B*)pt(nS)}. By
(S8) and Condition 4, |pSirllcc = Op(1/nh). Then we can further use ||9Si:[|oo to control p (nSs)-
For both (i) and (iii), we have p(ni) = O(|[nSiklloc). Consequently, to control the aggregation

error, one can increase A with CM 1ot (i) = Op(1/{Mn:f}) for some large enough constant

C > 0. Then the following procedures again fall into the paradigm of Negahban et al. (2012).

A.4.2 Penalty function (ii)

The technical details for analyzing hierarchical LASSO penalty p(3) = ?:2 HIB‘j|H/ 2, or the
more general group bridge penalty (Huang et al., 2009), is different from (i) and (iii) because it is
non-convex. Here, we follow Huang et al. (2009) and Zhou and Zhu (2010), and consider the regime

where p grows in a polynomial rate of the sample size. Theorems 2 and 3 of Zhou and Zhu (2010)
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established that the convergence rate for the fy-error of hierarchical LASSO estimator is (p/n)"/2.

Consistent with them, we assume that p*/n = o(1) and the tuning parameter ) is taken to satisfy
that A/n'/?2 = O(1) and n'/*p/\ = o(1).
Roughly speaking, the proofs of Theorems 2 and 3 in Zhou and Zhu (2010) also compared
their estimator and the true coefficients on the penalized loss function via the basic inequality
~(m)

(S9). Again, the additional challenge of analyzing SHIR is to handle & = 2N~} Z%zl T (Bsr —

,BB"‘))Tnéﬂ,)R. Inspired by their way to deal with &1, we propose to control & by

. (o) . i 1) .
€| = O{pl/ZHnéH)IRHOOHIBSHIR - IBE) )HQ} = Op(pl/Q/nrg) N Bsur — IBE))H%

~(®)

which is equal to 0,{(p/n)"?}||Beus — By |2 since it is assumed that p*/n = o(1). Then combining
this with the proofs in Zhou and Zhu (2010), we obtain that the error term incurred by &o is

asymptotically negligible, and consequently, SHIR has the same error rate as IPD.
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A.5. ADDITIONAL TABLES AND FIGURES

In this section, we first present the pseudo-algorithm of our proposed method in Algorithm Al
and then summarize some additional simulation settings and results as supplements to the main
text. In specific, under our simulation Setting (iii) and when the number of sites M = 4, we take

u = 0.6, oo = 0.45, and let the coefficients p, and a(()') be the following:

po = Pullxr, —1x1, O{p—ls)mﬁ

()— Pal06x1,03,1, 185, 0.73,,,-1.33,,,-0.853,4,1. 153><170(p 24)><1] )
a5’ = @al0x1, 0551, —1.85,1, 1335, —0.75,1, —1.155,1,0.855,1,00, 54),1]";
(3) = ¢al06x1, —1.83,1, gxlv_0'85§><171'15§x1>0'7§x17_1'3§><170zp—24)><1]T?

(4)_‘:004[ gxlv 1'8-Z§><lv -?£><1a_1'15§x1,0'85§x1,1~3§x1’ 073><17 (p— 24)><1] .

For (iii) with M = 8, we set p, a(()l), ag), a((f) and a[()4) to be the same as above, and additionally

set the rest of the coefficients as below:

(5) T T T T T T T T T.
_9001[ 6x1> 3x1> —1.9351,0.8351, —1.13,1,0.83,1, — 3><1’0(p—24)><1] )

(6)—80a[06x17 3x1> 1-53x1 1'2§><17_0‘6§><170'9§><17_0‘7g><170gp—24)><1]T;

(7) _ T T T.
@a[oﬁxlv 3><1a03><1ﬂ_0'83><17 1341, O53><1ﬂ 3><1’0(p 24)><1]?

(8) = Soa[oﬁxlv 1'5§><17 ngla _0'9§><17 0'7§><17 - 3><17 0. 63><17 0-(rp—24)><1]T'

For Setting (iv), we let the directions of p, and af’ be exactly the same as those of Setting (iii),
and choose weaker signal strengths: ¢, = 0.35 and ¢, = 0.25. Note that under Settings (iii) and
(iv), the heterogeneous effects af’ show more heterogeneity than those in (i) and (ii), and the
distributed model coefficients 5<1> . E)M) are pairwise different.

Finally, we present the true positive rate (TPR) and false discovery rate (FDR) on detecting
B under the simulation Settings (i)—(iv) in Figures A1 and A2, respectively. Similarly as observed
in the paper, SMA performs poorly under nearly all the settings with either low TPR or high FDR,
especially when p = 800, 1500. Both IPDpool and SHIR have good support recovery performance
with all TPRs above 0.80 and FDRs below 0.13 under the strong signal setting, and all TPRs
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above 0.74 and FDRs below 0.05 under the weak signal setting. The IPDpool and SHIR attain
similar TPRs and FDRs with absolute differences less than 0.02 across all settings. In comparison,
Debias s has worse performance than IPDpool and SHIR. For example, under Setting (i), the TPR
of Debias, g is consistently lower than that of SHIR by about 0.13 while the FDR of Debias, gz
is generally higher than that of SHIR, except for the case when p = 100 where Debias, ¢ attains
very low FDR due to over shrinkage. Under the weak and sparse signal Setting (ii) with M = 4,
Debias, ¢g is substantially less powerful than SHIR in recovering true signals (lower TPR by around
0.52), while its average FDR is comparable to that of SHIR. When M = 8, Debias ¢ attains TPR

comparable to that of SHIR but generally has substantially higher FDR.

Algorithm A1 SHIR Method.
Input: Observed individual data {X™ Y™} at the m™ local site for m € [M].

e For m € [M], at the m-th local site:

., (M) . = m m
1. Fit B ass0 = ArgIILIL g(m) L (ﬂ( >) + )\m”ﬂ( )Hl;

~ /\<m)

2. Calculate IEHm = V2L, (BLASSO) and g = H,, 8, asso — me(,@géso). Send the summary
statistics Dy, = {nm, ]Hlm, gn} to the central node.

e At the central node, obtain B;,:),R by minimizing:

Qoun(8®) = Z m {B7THLB™ — 287 |+ Ap(8).

Output: The SHIR estimator Bé:m
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Figure Al: The average true positive rate (TPR) on the original coefficients 3* of IPDpool (IPD),
SHIR, Debias, g (Debias) and SMA, different M € {4, 8}, p € {100,800, 1500} and data generation
mechanisms (i)—(iv) introduced in Section 5.
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Figure A2:

The average false discovery rate (FDR) on the original coefficients 3 of IPDpool
(IPD), SHIR, Debias s (Debias) and SMA, different M € {4,8}, p € {100,800, 1500} and data
generation mechanisms (i)—(iv) introduced in Section 5.
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