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In the supplement, we first provide justifications for the random (sub-gaussian) design Compat-

ibility Condition and introduce and verify the Irrepresentable Condition for some common corre-

lation structures. Then the detailed proofs of Theorems 1–3 and the rate property of (µ̂L&B, α̂L&B)

are presented. Finally we outline theoretical analyses of SHIR for various penalty functions and

present additional numerical results.

A.1. JUSTIFICATION OF THE COMPATIBILITY CONDITION

We provide justification for Proposition 1 in this section.

Proof. First, we show that for any β(m) satisfying ‖β(m) − β(m)

0 ‖2 = o(1),

(2Cx)−1 ≤ Λmin{H̄m(β(m))} ≤ Λmax{H̄m(β(m))} ≤ 2Cx. (S1)

By maxx∈B1(0) E[xTX(m)

i ]4 ≤ Cx, for any x ∈ B1(0) and β(m) satisfying ‖β(m) − β(m)

0 ‖2 = o(1),

∣∣∣xTH̄m(β(m)

0 )x− xTH̄m(β(m))x
∣∣∣

=

∣∣∣∣E(xTX(m)

i )2
{
f ′′1 (X(m)T

i β(m)

0 , Y (m)

i )− f ′′1 (X(m)T

i β(m), Y (m)

i )
}∣∣∣∣

≤E
[
(xTX(m)

i )2CL|X(m)T

i (β(m)

0 − β
(m))|

]
≤ CL

(
E[xTX(m)

i ]4E[X(m)T

i (β(m)

0 − β
(m))]2

)1/2

≤CL

(
E[xTX(m)

i ]4 max
v∈B1(0)

E[vTX(m)

i ]2‖β(m)

0 − β
(m)‖22

)1/2

≤ CxCL‖β(m)

0 − β
(m)‖2 = o(1).

So by C−1
x ≤ Λmin(H̄m) ≤ Λmax(H̄m) ≤ Cx, equation (S1) holds. For any δ1 = Θ{(s0M log p/N)1/2}
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and β(•) = (β(1)T, . . . ,β(M)T)T satisfying β(m) ∈ Bδ1(β(m)

0 ), since s0 = o{N/(M log p)}, we have

‖β(m) − β(m)

0 ‖2 = o(1) and thus (2Cx)−1 ≤ Λmin{H̄m(β(m))} ≤ Λmax{H̄m(β(m))} ≤ 2Cx for all

m ∈ [M ]. Let X̃(m)

i = X(m)

i {f ′′1 (β(m)TXi, Y
(m)

i )}1/2, and by the assumption in Proposition 1, we have

that ‖X̃(m)

i ‖ψ2 ≤ κx.

Now we follow similar procedures as the proof of Theorem 1.6 in Rudelson and Zhou (2012) to

show that, for the mixture penalty in our case, H(β(•)) satisfies Ccomp with probability approaching

1. We first define the complexity measure of any set V ⊆ B1(0) as follow.

Definition A1. For any V ⊆ B1(0), define cd(V) = E supv∈V |gTv|, where g = (g1, g2, . . . , gd)
T

and g1, g2, . . . , gd are independent N(0, 1) variables.

We recall that

C(t,S) =
{

(uT,v(•)T)T = (uT,v(1)T, . . . ,v(M)T)T : v(1) + · · ·+ v(M) = 0,

‖uSc‖1 + λg‖v(•)
Sc‖2,1 ≤ t(‖uS‖1 + λg‖v(•)

S ‖2,1)
}
,

as introduced in Definition 1. Denote by

B̃1 =
{

(uT,v(•)T)T = (uT,v(1)T, . . . ,v(M)T)T : ‖u‖22 + λ2
g‖v(•)‖22 = 1

}
,

C̄t = C(t,S0) ∩ B̃1, and define that

Γt =

{
1

N1/2

[
n

1/2
1 (µ∆ +α(1)

∆ )TH̄1/2
1 (β(1)), . . . , n

1/2
M (µ∆ +α(M)

∆ )TH̄1/2
M (β(M))

]T

: (µT
∆,α

(1)T

∆ , . . . ,α(M)T

∆ )T ∈ C̄t
}
,

which is a subset of RMp. We now provides bound for cMp(Γt), the complexity measure of Γt. Let

g(•) = (g(1)T, g(2)T, . . . , g(M)T)T where g(m) = (g(m)

1 , g(m)

2 , . . . , g(m)
p )T are independent gaussian vectors
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and g(m)

1 , . . . , g(m)
p ∼ N(0, 1) are independent. We have

cMp(Γt) ≤E sup

 1

N1/2

M∑
m=1

n1/2
m (µ∆ +α(m)

∆ )TH̄1/2
m (β(m))g(m) : (µT

∆,α
(1)T

∆ , . . . ,α(M)T

∆ )T ∈ C̄t


≤E sup

‖µ∆‖1

∥∥∥∥∥∥ 1

N1/2

M∑
m=1

n1/2
m H̄1/2

m (β(m))g(m)

∥∥∥∥∥∥
∞

: (µT
∆,α

(•)T

∆ )T ∈ C̄t


+ E sup

{
‖α(•)

∆ ‖2,1
∥∥∥∥ 1

N1/2

[
n

1/2
1 g(1)TH̄1/2

1 (β(1)), . . . , n
1/2
M g(M)TH̄1/2

M (β(M))
]T
∥∥∥∥

2,∞
: (µT

∆,α
(•)T

∆ )T ∈ C̄t

}
,

where the ‖ · ‖2,∞ norm is defined as

∥∥∥∥ 1

N1/2

[
n

1/2
1 g(1)TH̄1/2

1 (β(1)), . . . , n
1/2
M g(M)TH̄1/2

M (β(M))
]T
∥∥∥∥

2,∞
= max

j∈[p]

√√√√ 1

N

M∑
m=1

nm

[
H̄1/2

1 (β(m))g(m)

]2

j
.

By nm = Θ(N/M), Λmax{H̄1/2
M (β(M))} ≤ 2Cx for all m ∈ [M ] and that g(•) is gaussian, and similar

to the derivation below the proof of Lemma A1, we can show there exists an absolute constant

Cg > 0 such that

E

∥∥∥∥∥∥ 1

N1/2

M∑
m=1

n1/2
m H̄1/2

m (β(m))g(m)

∥∥∥∥∥∥
∞

≤ Cg
√

log p;

E

∥∥∥∥ 1

N1/2

[
n

1/2
1 g(1)TH̄1/2

1 (β(1)), . . . , n
1/2
M g(M)TH̄1/2

M (β(M))
]T
∥∥∥∥

2,∞
≤ Cg

√
M + log p

M
,

through some calculation on the order statistics of gaussian or χ2-type (quadratic form of gaussian)

variables. These combined with λg = Θ(M−1/2) lead to that there exists absolute constant C > 0

such that

cMp(Γt) ≤ C
√

log p+M sup
{
‖µ∆‖1 + λg‖α(•)

∆ ‖2,1 : (µT
∆,α

(•)T

∆ )T ∈ C̄t
}
. (S2)
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Following that C̄t = C(t,S0) ∩ B̃1, we have

sup
{
‖µ∆‖1 + λg‖α(•)

∆ ‖2,1 : (µT
∆,α

(•)T

∆ )T ∈ C̄t
}

≤ sup

{
(t+ 1)2|S0|

(
‖µ∆‖22 + λ2

g‖α
(•)
∆ ‖

2
2

)
: (µT

∆,α
(•)T

∆ )T ∈ C̄t
}

= (t+ 1)2s0

So by (S2), we have cMp(Γt) ≤ C(t + 1)
√
s0(log p+M). Now similar to Rivasplata (2012), we

introduce the following theorem from Mendelson et al. (2007, 2008) (adapted to our notation and

setting), as the foundation of our proof.

Theorem A1 (Mendelson et al. (2007, 2008)). Recall that

H(β(•)) = N−1bdiag{n1H1(β(1)), . . . , nMHM (β(M))}

where Hm(β(m)) = n−1
m

∑nm
i=1 X̃(m)

i X̃(m)T

i . If there exists constants κx > 0 and C ′ > 0 such that

‖X̃(m)

i ‖ψ2 ≤ κx and N > C ′c2
Mp(Γt), then there exists a constant φ0 > 0 depending only on κx and

C ′, such that with probability approaching 1, H(β(•)) and S0 satisfy the Compatibility Condition

Ccomp with the compatibility constant φ0{t,S0,H(β(•))} ≥ φ0.

Theorem A1 could be viewed as a special case of Corollary 2.7 and Theorem 2.1 in Mendelson

et al. (2008) with the complexity measure and Ccomp specific to our case. Because we assume

that s0 = o{N/(M log p)} ≤ o{N/(M + log p)}, and it has been shown that cMp(Γt) ≤ C(t +

1)
√
s0(log p+M), we have N > C ′c2

Mp(Γt) for any constant C ′ > 0 when N is large enough.

Combining this with ‖X̃(m)

i ‖ψ2 ≤ κx and Theorem A1, Proposition 1 is proved.

A.2. THE IRREPRESENTABLE CONDITION AND ITS JUSTIFICATION

We first introduce the Irrepresentable Condition used in Condition 6. For any matrix A =

[A1, . . . ,Ad] ∈ Rn×d and index set S1,S2 ⊆ [d], let Aj• and A•j respectively denote the jth row

and column of A, AS1S2 denote the submatrix corresponding to rows in S1 and columns in S2,

A•S = [A•j1 , . . . ,A•jk ] for S = {j1, . . . , jk : j1 < · · · < jk} ⊆ [d]. The weighted design matrix corre-

sponding to L̂SHIR(µ,α(•)) with respect to θ = (µ,α(2)T, . . . ,α(M)T)T after setting α(1) = −
∑M

m=2α
(m)
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can be expressed as

W(β(•)) = bdiag{Ω1/2
1 (β(1)), . . . ,Ω

1/2
M (β(M))}Z,

where “bdiag” is the block diagonal operator, Ωm(β) = diag{f ′′1 (βTX(m)

1 , Y (m)

1 ), . . . , f ′′1 (βTX(m)
nm , Y

(m)
nm )}

is a nm × nm dimensional matrix, Z = Z[p],[p], and for any S1,S2 ⊆ [p],

ZS1,S2 =



X(1)

•S1 −X(1)

•S2 −X(1)

•S2 · · · −X(1)

•S2

X(2)

•S1 X(2)

•S2 0 · · · 0

X(3)

•S1 0 X(3)

•S2 · · · 0

...
...

...
. . .

...

X(M)

•S1 0 0 · · · X(M)

•S2


.

For any S1,S2 ⊆ [p], let Hm,S1(β(m)) represent the sub-matrix of Hm(β(m)) := ∇2L̂m(β(m)) with its

rows and columns corresponding to S1, and WS1,S2(β(•)) denote the sub-matrix of W(β(•)) corre-

sponding to ZS1,S2 and (µT
S1 ,α

(2)T

S2 , . . . ,α
(M)T

S2 )T. Let Sfull = {Sµ,Sα} and WSfull
(β(•)) = WSµ,Sα(β(•)).

Also, denote by T = (1(M−1)×1, I(M−1)×(M−1))
T and define ‖x‖T := ‖Tx‖2 for x ∈ RM−1 and its

conjugate norm as ‖x‖T̃ := ‖T(TTT)−1x‖2.

Definition A2. Irrepresentable Condition (CIrrep): The design matrix W(β(•)) satisfies the

Irrepresentable Condition on Sfull = (Sµ,Sα) with parameter ε > 0, if for all j ∈ Scµ and j′ ∈ Scα,

sup
u∈GSµ ,v

(•)∈GSα

{∣∣∣∣(uT, λgv
(•)T)

[
WT
Sfull

(β(•))WSfull
(β(•))

]−1
WT
Sfull

(β(•))Wj,∅(β
(•))

∣∣∣∣} ≤ 1− ε;

sup
u∈GSµ ,v

(•)∈GSα

{∥∥∥∥(uT, λgv
(•)T)

[
WT
Sfull

(β(•))WSfull
(β(•))

]−1
WT
Sfull

(β(•))W∅,j′(β(•))

∥∥∥∥
T̃

}
≤ λg(1− ε),

where

GSµ =

{
u = (u1, · · · , u|Sµ|)

T ∈ R|Sµ| : max
j∈[|Sµ|]

|uj | ≤ 1

}
,

GSα =

{
v(•) = (v(2)T, . . . ,v(M)T)T ∈ R(M−1)|Sα| : max

j∈[|Sα|]
‖vj‖T̃ ≤ 1, vj = (v(2)

j , . . . , v
(M)

j )T

}

represent the sub-gradient space corresponding to Sµ and Sα of the mixture penalty.
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Next, we demonstrate that Condition 6 is a reasonable assumption and is similar to those re-

quired for the sparsistency of LASSO and group LASSO (Zhao and Yu, 2006; Nardi et al., 2008).

Specifically, we present detailed justifications for the Irrepresentable Condition CIrrep of the weighted

design matrix W(β(•)) when the local Hessian matrix satisfies two commonly seen correlation struc-

tures, the constant positive correlation and auto-regressive correlation defined respectively by

Cons(r) = {rI(i 6=j)}p×p and AR(ρ) = {ρ|i−j|}p×p.

To see the design matrix associated with θ = (µT,α(2)T, . . . ,α(M)T)T, let A be the transformation

operator between β(•) and θ such that β(•)
S = AS,SθS,S , where β(•)

S = (β(1)T

S , . . . ,β(M)T

S )T. For

any S1,S2 ⊆ [p], let θS1,S2 = (µT
S1 ,α

(−1)T

S2 )T, and α(−1)

S2 = (α(2)T

S2 , . . . ,α
(M)T

S2 )T. Then it follows that

ZS,S = XSAS,S , where XS = bdiag{X(m)

•S }Mm=1. For simplicity, we take Sµ = Sα = S0, s = |S0| and

n1 = n2 = . . . = nM = n in our following analysis. Denote by h = λg/(1/M
1/2).

A.2.1 Constant correlation structure

First, we consider the scenario that the local Hessian matrices satisfy Hm(β(m)) = D(m)Cons(rm)D(m),

where rm ∈ (0, 1) and D(m) = diag{dm1, . . . , dmp} with dmj > 0, for m ∈ [M ], in analog to Corollary

1 of Zhao and Yu (2006). Without loss of generality, we assume S0 = {1, 2, . . . , |S0|}.

Proposition A1. Let Hm(β(m)) = D(m)Cons(rm)D(m) with 0 ≤ rm ≤ r and D(m) = diag{dm1, . . . , dmp}

for all m ∈ [M ]. Define that δ = maxm∈[M ],j∈Sc0 ,k∈S0 dmj/dmk. Then Condition 6 holds with con-

stant ε ∈ (0, 1) if

δrs(1 + h)

1 + (s− 1)r
≤ 1− ε and

δrs{2(1 + h−2)}
1
2

1 + (s− 1)r
≤ 1− ε.

Remark A1. If we further simplify Proposition A1 by setting δ = 1 and h = 1, i.e. λg = 1/M1/2,

then the condition on r can be relaxed and simplified to r ≤ (1− ε)/(1 + s).
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Proof. Let d(m) = (dm1, . . . , dmp)
T and d̆(m) = (d−1

m1, . . . , d
−1
mp)

T. First, for any j ∈ Sc0,

[
WT
Sfull

(β(•))WSfull
(β(•))

]−1
WT
Sfull

(β(•))Wj,∅(β
(•))

=
[
AT
Sfull

bdiag{D(m)

S0,S0 [Cons(rm)]S0,S0D
(m)

S0,S0}
M
m=1ASfull

]−1

·AT
Sfull

{
d1j [Cons(r1)]T

S0,jD
(1)

S0,S0 , . . . , dMj [Cons(rM )]T
S0,jD

(M)

S0,S0

}T

=[ASfull
]−1bdiag

{
[D(m)

S0,S0 ]−1[Cons(rm)]−1
S0,S0

}M
m=1

{
d1j [Cons(r1)]T

S0,j , . . . , dMj [Cons(rM )]T
S0,j

}T

.

(S3)

Then recall T = (1(M−1)×1, I(M−1)×(M−1))
T, ‖x‖T := ‖Tx‖2 and ‖x‖T̃ := ‖T(TTT)−1x‖2, it follows

that for any u ∈ GSµ ,v
(•) ∈ GSα :

∣∣∣∣(uT, λgv
(•)T)

[
WT
Sfull

(β(•))WSfull
(β(•))

]−1
WT
Sfull

(β(•))Wj,∅(β
(•))

∣∣∣∣
=

∣∣∣∣∣∣∣(uT, λgv
(•)T)[ASfull

]−1

 r1d1jd̆
(1)

S0
1 + (s− 1)r1

, . . . ,
rMdMjd̆

(M)

S0
1 + (s− 1)rM

T
∣∣∣∣∣∣∣

≤
|S0|∑
k=1

∣∣∣∣∣(uk, λgvT
k)
[
AS0[k],S0[k]

]−1
(

r1d1j/d1k

1 + (s− 1)r1
, . . . ,

rMdMj/dMk

1 + (s− 1)rM

)T
∣∣∣∣∣ ,

(S4)

where vk = (v(2)

k , . . . , v
(M)

k )T, S0[k] represents the k-th element in S0 and the “≤” follows from the

fact that ASfull
is blocked-diagonal in AS0[k],S0[k]. Note that

[
AS0[k],S0[k]

]−1
=



M−1 M−1 M−1 . . . M−1

−M−1 1−M−1 −M−1 . . . −M−1

−M−1 −M−1 1−M−1 . . . −M−1

...
...

...
. . .

...

−M−1 −M−1 −M−1 . . . 1−M−1


.

Let
[
AS0[k],S0[k]

]−1

−1,•
denote the second to the M -th rows of

[
AS0[k],S0[k]

]−1
and

r̃k = (r̃k1, . . . , r̃kM )T =

(
r1d1j/d1k

1 + (s− 1)r1
, . . . ,

rMdMj/dMk

1 + (s− 1)rM

)T

.
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Recall that λg = h/M1/2 and dmj/dmk ≤ δ for j ∈ Sc0 and k ∈ S0, we have that

∣∣∣∣(uT, λgv
(•)T)

[
WT
Sfull

(β(•))WSfull
(β(•))

]−1
WT
Sfull

(β(•))Wj,∅(β
(•))

∣∣∣∣
≤
|S0|∑
k=1

|uk|

M−1
M∑
m=1

r̃km

+ λg

|S0|∑
k=1

‖vk‖T̃

∥∥∥∥[AS0[k],S0[k]

]−1

−1,•
r̃k

∥∥∥∥
T

≤sM−1
M∑
m=1

r̃km + sλg

∥∥∥r̃T

k,−1

∥∥∥
2
≤ δrs(1 + λg

√
M − 1)

1 + (s− 1)r
≤ δrs(1 + h)

1 + (s− 1)r
≤ 1− ε,

(S5)

where we use the fact T
[
AS0[k],S0[k]

]−1

−1,•
= (0, IM−1)T for the second “≤”.

While for j′ ∈ Scα and u ∈ GSµ ,v
(•) ∈ GSα , define that ṽk = (ṽ(1)

k , . . . , ṽ
(M)

k )T = λgT(TTT)−1vk

and similar to (S3) and (S4),

∥∥∥∥(uT, λgv
(•)T)

[
WT
Sfull

(β(•))WSfull
(β(•))

]−1
WT
Sfull

(β(•))W∅,j′(β(•))

∥∥∥∥
T̃

≤
|S0|∑
k=1

∥∥∥∥(uk, λgv
T
k)
[
AS0[k],S0[k]

]−1 (
r̃k11M−1, diag{r̃k2, . . . , r̃kM}

)T

∥∥∥∥
T̃

=

|S0|∑
k=1

∥∥∥(uk, ṽ
T

k)(M
−11M , IM )T

(
r̃k11M−1, diag{r̃k2, . . . , r̃kM}

)T
∥∥∥
T̃
.

Due to the fact that |uk| ≤ 1, ‖ṽk‖2 ≤ λg, 1Tṽk = 0, and note that xT(TTT)−1x is the sample

variance of x, which is smaller or equal to ‖x− c‖22 for any constant c, we have that

∥∥∥∥(uT, λgv
(•)T)

[
WT
Sfull

(β(•))WSfull
(β(•))

]−1
WT
Sfull

(β(•))W∅,j′(β(•))

∥∥∥∥
T̃

≤
|S0|∑
k=1

inf
c∈R,c⊥t

∑
t6=1

(M−1u1r̃k1 +M−1u1r̃kt +M−1ṽ(1)

k r̃k1 + ṽ(t)

k r̃kt − c)
2

 1
2

≤
|S0|∑
k=1

∑
t6=1

r̃2
kt(M

−1u1 + ṽ(t)

k )2

 1
2

=

|S0|∑
k=1

δr

1 + (s− 1)r

∑
t6=1

2M−2u2
1 + 2(ṽ(t)

k )2

 1
2

≤ sδr

1 + (s− 1)r

(
2M−1 + 2λ2

g

) 1
2

=
{2(1 + h−2)}

1
2λgsδr

1 + (s− 1)r
≤ λg(1− ε).
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A.2.2 Auto-regressive correlation structure

Now we turn to the auto-regressive correlation structure, i.e., Hm(β(m)) = D(m)AR(ρm)D(m), where

ρm ∈ (−1, 1) and D(m) = diag{dm1, . . . , dmp} with dmj > 0, for m ∈ [M ], in analog to Corollary 3

of Zhao and Yu (2006).

Proposition A2. Let Hm(β(m)) = D(m)AR(ρm)D(m) with D(m) = diag{dm1, . . . , dmp} and 0 ≤ ρm ≤

ρ for all m ∈ [M ]. Again denote by δ = maxm∈[M ],j∈Sc0 ,k∈S0 dmj/dmk. Then Condition 6 holds with

constant ε ∈ (0, 1) if

2δρ(1 + h)

1 + ρ2
≤ 1− ε and

2δρ{2(1 + h−2)}
1
2

1 + ρ2
≤ 1− ε.

Remark A2. If we again simplify Proposition A2 by setting δ = 1 and h = 1, i.e. λg = 1/M1/2,

then the condition on ρ can be simplified to

ρ ≤ 1

2 +
√

4− (1− ε)2
,

which can be approximated by ρ ≤ 2−
√

3 ≈ 0.27 if we set ε ≈ 0.

Proof. Again denote by d(m) = (dm1, . . . , dmp)
T. Let S0 = {k1, . . . , ks} where k1 < . . . < ks.

Without loss of generality, we let ks+1 = p if ks < p. For j ∈ Sc0 satisfying k` < j < k`+1,

similar to the proof of Corollary 3 in Zhao and Yu (2006), we have that the k`+1-th element of

[D(m)

S0,S0 ]−1[AR(ρm)]−1
S0,S0dmj [AR(ρm)]S0,j is dmj/dmk`+1

·(ρk`+1−j
m −ρj−k`+1

m )/(ρ
k`+1−k`
m −ρk`−k`+1

m ), and

the k`-th element is dmj/dmk` · (ρ
j−k`
m − ρk`−jm )/(ρ

k`+1−k`
m − ρk`−k`+1

m ), while the remaining elements

are all 0. Then similar to (S5) as shown in the proof of Proposition A1, for any u ∈ GSµ ,v
(•) ∈ GSα ,

9



we have

∣∣∣∣(uT, λgv
(•)T)

[
WT
Sfull

(β(•))WSfull
(β(•))

]−1
WT
Sfull

(β(•))Wj,∅(β
(•))

∣∣∣∣
≤

∑
t∈{`,`+1}

|ut|M−1
M∑
m=1

dmj
dmkt

·

∣∣∣∣∣ ρkt−jm − ρj−ktm

ρ
k`+1−k`
m − ρk`−k`+1

m

∣∣∣∣∣+
∑

t∈{`,`+1}

λg‖vj‖T̃

∥∥∥∥[A(1)

S0[j],S0[j]

]−1

−1,•
ρ̃t

∥∥∥∥
T

≤ 2δρ

1 + ρ2
+

∑
t∈{`,`+1}

λg‖ρ̃T

t,−1‖2 ≤
2δρ

1 + ρ2
+ λg

√
2(‖ρ̃T

`,−1‖22 + ‖ρ̃T

`+1,−1‖22)

≤2δρ(1 + λgM
1
2 )

1 + ρ2
=

2δρ(1 + h)

1 + ρ2
≤ 1− ε,

where ρ̃t = 0 if t /∈ {`, `+ 1},

ρ̃t = (ρ̃t1, . . . , ρ̃tM )T =

 d1j

d1kt

∣∣∣∣∣ ρkt−j1 − ρj−kt1

ρ
k`+1−k`
1 − ρk`−k`+1

1

∣∣∣∣∣ , . . . , dMj

dMkt

∣∣∣∣∣∣ ρkt−jM − ρj−ktM

ρ
k`+1−k`
M − ρk`−k`+1

M

∣∣∣∣∣∣
T

,

when t ∈ {`, `+ 1} and we use the fact that ρ̃t1, . . . , ρ̃tM ≤ δρ/(1 + ρ2).

While for j′ ∈ Scα and u ∈ GSµ ,v
(•) ∈ GSα , we again define that ṽk = (ṽ(1)

k , . . . , ṽ
(M)

k )T =

λgT(TTT)−1vk and similar to the proof of Proposition A1, we have

∥∥∥∥(uT, λgv
(•)T)

[
WT
Sfull

(β(•))WSfull
(β(•))

]−1
WT
Sfull

(β(•))W∅,j′(β(•))

∥∥∥∥
T̃

≤
∑

k∈{`,`+1}

inf
c∈R,c⊥t

∑
t6=1

(M−1u1ρ̃1 +M−1u1ρ̃t +M−1ṽ(1)

k ρ̃1 + ṽ(t)

k ρ̃t − c)
2

 1
2

≤
∑

k∈{`,`+1}

∑
t6=1

ρ̃2
t (M

−1u1 + ṽ(t)

k )2

 1
2

≤ 2δρ

1 + ρ2

(
2M−1 + 2λ2

g

) 1
2

≤λg{2(1 + h−2)}
1
2

2δρ

1 + ρ2
≤ λg(1− ε),

which finishes the proof.

A.2.3 Conclusion

For both constant correlation structure and auto-regressive correlation structure, our Irrepre-

sentable Condition CIrrep is comparable to that of the LASSO estimator as in Corollaries 1 and

10



3 of Zhao and Yu (2006). Specifically, we both have the upper bound for r in the Cons(r) structure

decaying with a rate of s−1, and both have constant rate for ρ in the AR(ρ) structure. Note that in

terms of the multiplicative constants for the rates on r or ρ, our assumptions seem to be stronger.

This is due to the fact that the supports of µ0 and α(•)
0 are set to be the same for the simplicity of

construction, and as a result it produces more regularization bias than the simple LASSO case.

A.3. PROOF OF THE MAIN THEOREMS

Throughout, we define the model complexity adjusted effective sample size for each study as neff
m =

nm/(s0 log p) and neff = N/[s0(log p+M)], which are the main drivers for the rates of the proposed

estimators.

A.3.1 Outline of the proof

Due to the lengthy proof, we begin with the outline of the main steps as below.

1) To account for the randomness of ∇L̂•(β(•)
0 ) = (∇L̂1(β(•)

0 )T, . . . ,∇L̂M (β(•)
0 )T)T, bound

‖∇L̂•(β(•)
0 )‖2,∞ := max

j∈[p]

N−1

√√√√ M∑
m=1

[
nm∇jL̂m(β(•)

0 )
]2

 and

∥∥∥∥∥∥N−1
M∑
m=1

nm∇L̂m(β(m)

0 )

∥∥∥∥∥∥
∞

using Condition 2 and Lemma A1, where ∇jL̂m(β(•)
0 ) is the jth element of ∇L̂m(β(•)

0 ). This is a

crucial step to control the empirical process ∇L̂•(β(•)
0 )(β̂

(•)

SHIR−β
(•)
0 ) by the terms ‖∇L̂•(β(•)

0 )‖2,∞,

‖N−1
∑M

m=1 nm∇L̂m(β(m)

0 )‖∞, and ‖µ̂SHIR − µ0‖1 + λg‖α̂(•)
SHIR −α

(•)
0 ‖2,1.

2) Bound the additional noise terms from the integrating process using Conditions 2, 3 and 4.

3) Start from the basic inequality Q̂SHIR(β̂
(•)

SHIR) ≤ Q̂SHIR(β(•)
0 ), use the Condition Ccomp and the results

of Steps 1) and 2) to prove Theorem 1.

4) To prove Theorem 2, base on the inequality Q̂SHIR(β̂
(•)

SHIR) ≤ Q̂SHIR(β̂
(•)

IPDpool) to compare β̂
(•)

SHIR and

β̂
(•)

IPDpool directly and use the fact that β̂
(•)

IPDpool minimizes the individual level objective function to

simplify the inequality Q̂SHIR(β̂
(•)

SHIR) ≤ Q̂SHIR(β̂
(•)

IPDpool).

5) To prove Theorem 3, follow the similar strategy used in Zhao and Yu (2006) and Nardi et al.

11



(2008). In specific, verify the KarushKuhnTucker (KKT) conditions corresponding to the true

Sµ and Sα, separately for the zero and non-zero parts of (µ̂T

IPDpool, α̂
(•)T

IPDpool).

A.3.2 Proofs of Theorem 1

Proof. First, we expand ∇L̂m(β̂
(m)

LASSO) around ∇L̂m(β(m)

0 ) inspired by (Feng et al., 2014). For a

vector or matrix A(t) whose (i, j)-entry being Aij(t), a function of the scalar t ∈ [0, 1], define∫ 1
0 A(t)dt as the vector or matrix with its (i, j)-entry being

∫ 1
0 Aij(t)dt. We then have

∇L̂m(β̂
(m)

LASSO) = ∇L̂m(β(m)

0 ) +

∫ 1

0
∇2L̂m

(
β(m)

0 + t[β̂
(m)

LASSO − β
(m)

0 ]
)

(β̂
(m)

LASSO − β
(m)

0 )dt, (S6)

Thus, the gradient term ĝm in equation (3) can be expressed as

∇L̂m(β̂
(m)

LASSO)− Ĥmβ̂
(m)

LASSO =∇L̂m(β(m)

0 )− Ĥmβ
(m)

0

+

∫ 1

0

{
∇2L̂m

(
β(m)

0 + t[β̂
(m)

LASSO − β
(m)

0 ]
)
− Ĥm

}
(β̂

(m)

LASSO − β
(m)

0 )dt.
(S7)

The third term of (S7)’s right hand side can be seen as the noise term introduced by our integrating

procedure. Now we bound this term using Conditions 2, 3 and 4. For t ∈ [0, 1], Conditions 2 and

3 lead to∥∥∥∥∥
{
∇2L̂m

(
β(m)

0 + t[β̂
(m)

LASSO − β
(m)

0 ]
)
− Ĥm

}
(β̂

(m)

LASSO − β
(m)

0 )

∥∥∥∥∥
∞

=n−1
m

∥∥∥∥∥X(m)T

[
Ωm

(
β(m)

0 + t[β̂
(m)

LASSO − β
(m)

0 ]
)
−Ωm(β̂

(m)

LASSO)

]
X(m)(β̂

(m)

LASSO − β
(m)

0 )

∥∥∥∥∥
∞

≤
maxi,j,m

∣∣∣X(m)

ij

∣∣∣
nm

nm∑
i=1

∣∣∣X(m)T

i (β̂
(m)

LASSO − β
(m)

0 )
∣∣∣ · CL ∣∣∣(1− t)X(m)T

i (β̂
(m)

LASSO − β
(m)

0 )
∣∣∣ ≤ BCL

nm

∥∥∥X(m)(β̂
(m)

LASSO − β
(m)

0 )
∥∥∥2

2
,

which implies that

∥∥∥∥∥
∫ 1

0

{
∇2L̂m

(
β(m)

0 + t[β̂
(m)

LASSO − β
(m)

0 ]
)
− Ĥm

}
(β̂

(m)

LASSO − β
(m)

0 )dt

∥∥∥∥∥
∞

≤ BCL
nm

∥∥∥X(m)(β̂
(m)

LASSO − β
(m)

0 )
∥∥∥2

2
.

(S8)
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Then by the fact that Q̂SHIR(β̂
(•)

SHIR) ≤ Q̂SHIR(β(•)
0 ), we have

N−1
M∑
m=1

nm(β̂
(m)

SHIR − β
(m)

0 )TĤm(β̂
(m)

SHIR − β
(m)

0 ) + λρ(β̂
(•)

SHIR)

≤ −2N−1
M∑
m=1

nm(β̂
(m)

SHIR − β
(m)

0 )T∇L̂m(β(m)

0 )

+ 2N−1
M∑
m=1

nm(β̂
(m)

SHIR − β
(m)

0 )T∫ 1
0 ∇

2L̂m
(
β
(m)
0 +t[β̂

(m)
LASSO−β

(m)
0 ]

)
(β̂

(m)

LASSO − β
(m)

0 )dt+ λρ(β(•)
0 )

=: ξ1 + ξ2 + λρ(β(•)
0 ).

(S9)

Now we bound ξ1 and ξ2 using Lemma A1, in terms of ‖µ̂SHIR − µ0‖1 + λg‖α̂(•)
SHIR − α

(•)
0 ‖2,1. Let

λ1 ≥ 2 max
{
λ01, λ02/(λgM

1/2)
}

, we have that with probability approaching 1,

|ξ1| ≤2

∥∥∥∥∥∥N−1
M∑
m=1

nm∇L̂m(β(m)

0 )

∥∥∥∥∥∥
∞

‖µ̂SHIR − µ0‖1 + 2‖∇L̂•(β(•)
0 )‖2,∞‖α̂(•)

SHIR −α
(•)
0 ‖2,1

≤λ1

2
(‖µ̂SHIR − µ0‖1 + λg‖α̂(•)

SHIR −α
(•)
0 ‖2,1)

We let λ2 = 4 max(1, λgM
1/2)ClocCLBs0 log p/minm∈[M ] nm, where the constant Cloc satisfies

maxm∈[M ] ‖X(m)(β̂
(m)

LASSO−β
(m)

0 )‖2 ≤ (Clocnm/n
eff
m)1/2 with probability approaching 1 by Condition 4.

Then we have

|ξ2| ≤2N−1
M∑
m=1

BCL‖X(m)(β̂
(m)

LASSO − β
(m)

0 )‖22‖µ̂SHIR − µ0‖1

+ max
m∈M

‖X(m)(β̂
(m)

LASSO − β
(m)

0 )‖22 ·
2M

1
2BCL‖α̂(•)

SHIR −α
(•)
0 ‖2,1

N

≤λ2

2
(‖µ̂SHIR − µ0‖1 + λg‖α̂(•)

SHIR −α
(•)
0 ‖2,1).

Then we let λ = λ1 + λ2 in (S9) and see that

‖µ̂SHIR,−1‖1 + λg

p∑
j=2

‖α̂SHIR,j‖2 ≤
1

2
(‖µ̂SHIR − µ0‖1 + λg‖α̂(•)

SHIR −α
(•)
0 ‖2,1) + ‖µ0‖1 + λg‖α(•)

0 ‖2,1.
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This and 1 ∈ S0 yield that

‖µ̂SHIR,Sc0‖1 + λg‖α̂(•)
SHIR,Sc0

‖2,1 ≤ 3(‖µ̂SHIR,S0 − µ0,S0‖1 + λg‖α̂(•)
SHIR,S0 −α

(•)
0,S0‖2,1). (S10)

Note that α̂(1)

SHIR − α
(1)

0 + · · · + α̂(M)

SHIR − α
(M)

0 = 0, we have (µ̂T

SHIR − µT
0, α̂

(•)T

SHIR − α
(•)T

0 )T ∈ C2(3,S0).

Combining Condition 4: ‖β̂
(m)

LASSO − β
(m)

0 ‖2 = OP{(1/neff
m)1/2} with Condition 1 yields that S0 and Ĥ

satisfy Ccomp. Then we have

‖Ĥ
1
2 (β̂

(•)

SHIR − β
(•)
0 )‖22 ≤

3λ

2
(‖µ̂SHIR − µ0‖1 + λg‖α̂(•)

SHIR −α
(•)
0 ‖2,1)

≤ 3λ

2

√
s0‖Ĥ

1
2 (β̂

(•)

SHIR − β
(•)
0 )‖22/φ0.

Since λg = Θ(M−1/2) and nm = Θ(N/M) for all m ∈ [M ], we have λ = λ1 +λ2 = Θ(1/(s0n
eff)1/2 +

B/neff
m). Then we conclude that ‖Ĥ

1
2 (β̂

(•)

SHIR − β
(•)
0 )‖2 = OP{(1/neff)

1
2 + Bs

1
2
0 /n

eff
m}. For estimation

error, again by Condition 1 and using the fact that M−1‖β̂
(•)

SHIR − β
(•)
0 ‖1 = O(‖µ̂SHIR − µ0‖1 +

λg‖α̂(•)
SHIR − α

(•)
0 ‖2,1),we have ‖µ̂SHIR − µ0‖1 + λg‖α̂(•)

SHIR − α
(•)
0 ‖2,1 = OP{(s0/n

eff)
1
2 + Bs0/n

eff
m} and

M−1‖β̂
(•)

SHIR − β
(•)
0 ‖1 = OP{(s0/n

eff)
1
2 +Bs0/n

eff
m}.

A.3.3 Proof of Theorem 2

To establish the equivalence between β̂
(•)

SHIR and β̂
(•)

IPDpool, we need to compare these two estimators

directly via an inequality similar to (S9), which is shown in (S13) in the following proof. The way

we utilize (S13) to prove Theorem 2 is similar to (S9) in Theorem 1 but this is more elaborative

since the two estimators are not necessarily as sparse as β(•)
0 . Specifically, based on the results and

proof procedures of Theorem 1, we prove Theorem 2 as follows.

Proof. Let λ1 and λ2 be as defined in the proof of Theorem 1. First, using the conclusion of

Negahban et al. (2012), proof of which actually implements similar steps as in the proofs of Theorem

1, we have that there exists λ̃ = Θ(λ1) as defined in the proof of Theorem 1, the IPDpool estimator

β̂
(•)

IPDpool satisfies that

‖Ĥ
1
2 (β̂

(•)

IPDpool − β
(•)
0 )‖2 = OP{(1/neff)

1
2 }; ‖µ̂IPDpool − µ0‖1 + λg‖α̂(•)

IPDpool −α
(•)
0 ‖2,1 = OP{(s0/n

eff)
1
2 }.
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To control the additional noise introduced by integrating the summarized statistics, which is

characterized by λ2 as defined in the proof of Theorem 1, λ need to be larger than λ̃ by some

λ∆ = λ − λ̃ > 0. Under the assumptions in Theorem 2, such λ∆ can be selected to have smaller

order than λ̃ but still control the aggregation noise. Thus the difference between the prediction

and estimation risks of the two estimators is also of smaller order than the risks themselves. Now

we demonstrate this intuition by the rigorous proofs as below.

Since s0 = o{(neff
m)2/(B2neff)}, λ2 = Θ(B/neff

m), and λ̃ = Θ{1/(s0n
eff)1/2}, we have λ2 = o(λ̃). So

there exists λ∆ satisfying λ∆ = ω(λ2) and λ∆ = o(λ̃). Then as N is large enough, λ = λ̃ + λ∆ ≥

λ1 + λ2. So by Theorem 1, we have ‖µ̂SHIR−µ0‖1 + λg‖α̂(•)
SHIR−α

(•)
0 ‖2,1 = OP{(s0/n

eff)
1
2 +Bs0/n

eff
m}

and M−1‖β̂
(•)

SHIR − β
(•)
0 ‖1 = OP{(s0/n

eff)
1
2 +Bs0/n

eff
m}.

Similar to Theorem 1, Taylor expansion on ∇L̂m(β̂
(m)

LASSO) around the IPDpool β̂
(m)

IPDpool yields that

∇L̂m(β̂
(m)

LASSO)− Ĥmβ̂
(m)

LASSO =∇L̂m(β̂
(m)

)− Ĥmβ̂
(m)

+

∫ 1

0

{
∇2L̂m

(
β̂

(m)

+ t[β̂
(m)

LASSO − β̂
(m)

]
)
− Ĥm

}
(β̂

(m)

LASSO − β̂
(m)

)dt.
(S11)

Similar to (S8) in proof of Theorem 1 and by λ2 = o(λ∆), we then have

ξ3 :=
2

N

M∑
m=1

nm(β̂
(m)

SHIR − β̂
(m)

IPDpool)
T

∫ 1

0

{
∇2L̂m

(
β̂

(m)

+ t[β̂
(m)

LASSO − β̂
(m)

]
)
− Ĥm

}
(β̂

(m)

LASSO − β̂
(m)

)dt

≤N−1CLB

(
max
m∈[M ]

‖X(m)(β̂
(m)

LASSO − β̂
(m)

IPDpool)‖22

)
‖β̂

(•)

SHIR − β̂
(•)

IPDpool‖1

=OP

(
Bs0 log p/N

)
OP{M(s0/n

eff)1/2} = oP{λ∆(s0/n
eff)1/2}.

(S12)

Then by Q̂SHIR(β̂
(•)

SHIR) ≤ Q̂SHIR(β̂
(•)

IPDpool), (S11) and (S12), we have

N−1
M∑
m=1

nm(β̂
(m)

SHIR − β̂
(m)

IPDpool)
TĤm(β̂

(m)

SHIR − β̂
(m)

IPDpool) + λρ2(β̂
(m)

SHIR)

≤2N−1
M∑
m=1

nm(β̂
(m)

IPDpool − β̂
(m)

SHIR)T∇L̂m(β̂
(m)

IPDpool) + ξ3 + λρ2(β̂
(•)

IPDpool),

(S13)
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which enables us to compare the two estimators. Note that

(µ̂IPDpool, α̂
(•)
IPDpool, ζ̂ IPDpool) = argmin

µ,α(•),ζ

L̂(β(•)) + λ̃ρ2(µ,α(•);λg) + ζT(α(1) + · · ·+α(M)),

where ζ ∈ Rp is the Lagrangian multiplier for the constraint: α(1) + · · · + α(M) = 0. By KKT

condition for the above optimization problem, we have

2∇µL̂(β̂
(•)

IPDpool)

2∇αL̂(β̂
(•)

IPDpool)

+ (λ− λ∆)

∇µρ2(µ̂IPDpool, α̂
(•)
IPDpool;λg)

∇αρ2(µ̂IPDpool, α̂
(•)
IPDpool;λg)

+

 0p×1

ζ̂
(•)

IPDpool

 = 0,

where ∇µL̂(β(•)) = ∂L̂(β(•))/∂µ, ∇αL̂(β(•)) = ∂L̂(β(•))/∂α, ∇µρ2 and ∇αρ2 are the sub-gradients

of ρ2 on µ̂IPDpool and α̂(•)
IPDpool, and ζ̂

(•)

IPDpool = (ζ̂
T

IPDpool, . . . , ζ̂
T

IPDpool)
T is the M -time replication of the

Lagrangian multiplier ζ̂ IPDpool. We note that for j = 1, the sub-gradient equals to 0 and for j ∈

{2, 3, . . . , p},

• |∇µjρ2(µ̂IPDpool, α̂
(•)
IPDpool;λg)| ≤ 1, ∇µjρ2(µ̂IPDpool, α̂

(•)
IPDpool;λg) = sign(µ̂SHIR,j) when µ̂SHIR,j 6= 0;

• ‖∇αjρ2(µ̂IPDpool, α̂
(•)
IPDpool;λg)‖2 ≤ λg,∇αjρ2(µ̂IPDpool, α̂

(•)
IPDpool;λg) = λgα̂IPD,j/‖α̂IPD,j‖2 when ‖α̂IPD,j‖2 6=

0.

From α̂(1)

SHIR−α̂
(1)

IPDpool +· · ·+α̂
(M)

SHIR−α̂
(M)

IPDpool = 0, we have (α̂(•)T

SHIR−α̂
(•)T

IPDpool)ζ̂
(•)

IPDpool=0. By the sub-gradient

condition and Cauchy-Schwarz inequality,

µ̂T

SHIR∇µρ2(µ̂IPDpool, α̂
(•)
IPDpool;λg) + α̂(•)T

SHIR∇αρ2(µ̂IPDpool, α̂
(•)
IPDpool;λg)

≤‖µ̂SHIR‖1 + ‖α̂(•)
SHIR‖2,1 = ρ2(µ̂SHIR, α̂

(•)
SHIR;λg).

Thus, we have

− 2N−1
M∑
m=1

nm(β̂
(m)

SHIR − β̂
(m)

IPDpool)
T∇L̂m(β̂

(m)

IPDpool)

=(λ− λ∆)(µ̂T

SHIR − µ̂
T

IPDpool)∇µρ2(µ̂IPDpool, α̂
(•)
IPDpool;λg)

+ (λ− λ∆)(α̂(•)T

SHIR − α̂
(•)T

IPDpool)[∇αρ2(µ̂IPDpool, α̂
(•)
IPDpool;λg) + ζ̂

(•)

IPDpool]

≤(λ− λ∆)[ρ2(µ̂SHIR, α̂
(•)
SHIR;λg)− ρ2(µ̂IPDpool, α̂

(•)
IPDpool;λg)].
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Substituting this into (S13), we have

N−1‖Ĥ
1
2 (β̂

(•)

SHIR − β̂
(•)

IPDpool)‖22 + λ∆ρ2(µ̂SHIR, α̂
(•)
SHIR;λg) ≤ ξ3 + λ∆ρ2(µ̂IPDpool, α̂

(•)
IPDpool;λg). (S14)

Consequently, by (S12), Theorem 1 and λ∆ = o(λ̃), we have

N−1‖Ĥ
1
2 (β̂

(•)

SHIR − β̂
(•)

IPDpool)‖22 ≤ ξ3 + λ∆

(
‖µ̂SHIR − µ̂IPDpool‖1 + λg‖α̂(•)

SHIR − α̂
(•)
IPDpool‖2,1

)
≤oP{λ∆(s0/n

eff)
1
2 }+ λ∆

(
‖µ̂SHIR − µ0‖1 + λg‖α̂(•)

SHIR −α
(•)
0 ‖2,1 + ‖µ̂IPDpool − µ0‖1 + λg‖α̂(•)

IPDpool −α
(•)
0 ‖2,1

)
=oP{λ̃(s0/n

eff)
1
2 } = oP(1/neff).

Thus, we finish proving the equivalence of prediction risk:

N−
1
2 ‖Ĥ

1
2 (β̂

(•)

SHIR − β
(•)
0 )‖2 ≤ N−1‖Ĥ

1
2 (β̂

(•)

IPDpool − β
(•)
0 )‖2 + oP{(1/neff)

1
2 }.

For estimation equivalence, we will first show by contradiction that

ρ2(µ̂IPD,S0 − µ̂SHIR,S0 , α̂
(•)
IPD,S0 − α̂SHIR,S0 ;λg)

≤‖µ̂IPD,S0 − µ̂SHIR,S0‖1 + λg‖α̂(•)
IPD,S0 − α̂

(•)
SHIR,S0‖2,1 = oP{(s0/n

eff)
1
2 }.

We assume that there exists a subsequence of N (for simplicity, we still denote it as N) and

constants C1 > 0 and 0 < q < 1 that with probability at least q,

‖µ̂SHIR,S0 − µ̂IPD,S0‖1 + λg‖α̂(•)
SHIR,S0 − α̂

(•)
IPD,S0‖2,1 ≥ C1(s0/n

eff)
1
2 . (S15)

Then using the error rates of the IPDpool and SHIR estimators, we have that there exists constant

C2 that with probability at least q,

‖µ̂SHIR,Sc0 − µ̂IPD,Sc0‖1 + λg‖α̂(•)
SHIR,Sc0

− α̂(•)
IPD,Sc0

‖2,1 ≤ C2(s0/n
eff)

1
2

≤C2

C1
(‖µ̂SHIR,S0 − µ̂IPD,S0‖1 + λg‖α̂(•)

SHIR,S0 − α̂
(•)
IPD,S0‖2,1).

Since α̂(1)

SHIR − α̂
(1)

IPDpool + · · ·+ α̂(M)

SHIR − α̂
(M)

IPDpool = 0, (µ̂T

SHIR − µ̂
T

IPDpool, α̂
(•)T

SHIR − α̂
(•)T

IPDpool)
T ∈ C2(t1,S0), where
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t1 = C2/C1. So using Condition 1, there exists constant C3 > 0,

‖µ̂SHIR,S0 − µ̂IPD,S0‖1 + λg‖α̂(•)
SHIR,S0 − α̂

(•)
IPD,S0‖2,1

≤‖µ̂SHIR − µ̂IPDpool‖1 + λg‖α̂(•)
SHIR − α̂

(•)
IPDpool‖2,1

≤C3(s0/N)
1
2 ‖Ĥ

1
2 (β̂

(•)

SHIR − β̂
(•)

IPDpool)‖2 = oP{(s0/n
eff)

1
2 },

which contradicts what we assumed in (S15), as N is large enough. Thus,

‖µ̂SHIR,S0 − µ̂IPD,S0‖1 + λg‖α̂(•)
SHIR,S0 − α̂

(•)
IPD,S0‖2,1 = oP{(s0/n

eff)
1
2 }.

It follows that

‖µ̂SHIR,S0 − µ0,S0‖1 + λg‖α̂(•)
SHIR,S0 −α

(•)
0,S0‖2,1

≤‖µ̂IPD,S0 − µ0,S0‖1 + λg‖α̂(•)
IPD,S0 −α

(•)
0,S0‖2,1 + oP{(s0/n

eff)
1
2 }.

(S16)

By (S14) we have

λ∆ρ2(µ̂SHIR,Sc0 , α̂
(•)
SHIR,Sc0

;λg)

≤|ξ3|+ λ∆ρ2(µ̂IPD,Sc0 , α̂
(•)
IPD,Sc0

;λg) + λ∆ρ2(µ̂SHIR,S0 − µ̂IPD,S0 , α̂
(•)
SHIR,S0 − α̂

(•)
IPD,S0 ;λg).

Combine this with (S12) and adding the difference of intercept term to the right hand side, we have

‖µ̂SHIR,Sc0‖1 + λg‖α̂(•)
SHIR,Sc0

‖2,1

≤ξ3/λ∆ + ‖µ̂SHIR,S0 − µ̂IPD,S0‖1 + λg‖α̂(•)
SHIR,S0 − α̂

(•)
IPD,S0‖2,1 + ‖µ̂IPD,Sc0‖1 + λg‖α̂(•)

IPD,Sc0
‖2,1

≤oP{(s0/n
eff)

1
2 }+ ‖µ̂IPD,Sc0‖1 + λg‖α̂(•)

IPD,Sc0
‖2,1.

Since µ0,Sc0 = 0 and α0,Sc0 = 0, we combine this with (S16) and obtain that

‖µ̂SHIR − µ0‖1 + λg‖α̂(•)
SHIR −α

(•)
0 ‖2,1 ≤ ‖µ̂IPDpool − µ0‖1 + λg‖α̂(•)

IPDpool −α
(•)
0 ‖2,1 + oP{(s0/n

eff)
1
2 },

which finishes the proof.
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A.3.4 Excessive risk for the debiased LASSO based approaches

We outline below the key steps to derive the error rate for the debiased LASSO based estimators

(Lee et al., 2017; Battey et al., 2018) introduced in Section 4.4. First, by Lee et al. (2017) and

Battey et al. (2018), we have

β̂
(m)

dLASSO − β
(m)

0 = ϕ(m)/
√
nm +OP{B(s0 + s1) log p/nm},

where ϕ(m) is a sub-gaussian vector of mean 0 satisfying ‖ϕ(m)‖ψ2 = Θ(1). Then using the concen-

tration results similar to Lemma A1, for λg = Θ(1/M1/2), we have

‖µ̂dLASSO − µ0‖∞ ≤ OP{(log p/N)
1
2 }+OP{B(s0 + s1) log p/nm}

λg‖α̂(•)
dLASSO −α

(•)
0 ‖2,∞ ≤ OP{[(log p+M)/N ]

1
2 }+OP{B(s0 + s1) log p/nm},

where α̂(•)
dLASSO = (α̂(1)T

dLASSO, . . . , α̂
(M)T

dLASSO)T. Then following a similar procedure as Theorem 4.3 of Battey

et al. (2018) and Theorem 22 of Lee et al. (2017), one can obtain the following bound for both hard

and soft thresholding estimators:

‖µ̂L&B − µ0‖1 + λg‖α̂(•)
L&B −α

(•)
0 ‖2,1 = OP{(s0/n

eff)
1
2 +B(s0 + s1)/neff

m}.

A.3.5 Proof of Theorem 3

Selection consistency (or sparsistency) of the linear model with LASSO and group LASSO penalty

has been established by Zhao and Yu (2006) and Nardi et al. (2008), respectively. Compared with

their proof procedures, our theoretical analysis takes into consideration of the additional aggregation

noise terms bounded in (S8) and the techniques for handling the mixture penalty ρ2. We prove

Theorem 3 as follows.

Proof. For any m and S1,S2 ⊆ [p], let α(−1)

S2 = (α(2)T

S2 , . . . ,α
(M)T

S2 )T, θS1,S2 = (µT
S1 ,α

(−1)T

S2 )T, θ = θ[p],[p]

and similarly we define θ̂SHIR and θ0. For any m and θ̂SHIR, after substituting α(1) with the remaining
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α(m)’s, by (S7), we can express the corresponding KKT condition as

2N−1WT(β̂
(•)

LASSO)W(β̂
(•)

LASSO)

 µ̂SHIR − µ0

α̂(−1)

SHIR −α
(−1)

0

− 2

Υ[p],∅

Υ∅,[p]

− 2

Ξ[p],∅

Ξ∅,[p]

+ λ

η[p],∅

η∅,[p]

 = 0, (S17)

where the sub-gradient η = (ηT

[p],∅,η
T

∅,[p])
T and the gradients Υ = (ΥT

[p],∅,Υ
T

∅,[p])
T and Ξ =

(ΞT

[p],∅,Ξ
T

∅,[p])
T are defined as follow: (i) For any S1,S2 ⊆ [p], denote by ηS1,∅ and η∅,S2 the sub-

gradient corresponding to µS1 and α(−1)

S2 , satisfying the sub-gradient condition: ηj,∅ = sign(µj) if

µj 6= 0 and |ηj,∅| ≤ 1 for all j ∈ [p]; η∅,j = λgTTTαj/‖αj‖T if αj 6= 0 and ‖η∅,j‖T̃ ≤ λg for all

j ∈ [p]. (ii) Let A be the transformation matrix between β(•) and θ such that β(•) = Aθ.

Then Υ and Ξ defined in above equation could be written as:

Υ = N−1AT


n1∇L̂1(β(1)

0 )

...

nM∇L̂M (β(M)

0 )

 and Ξ = AT


Ψ1

...

ΨM

 ,

where we denote by

Ψm =
nm
N

∫ 1

0
{∇2L̂m(β(1)

0 + t[β̂
(m)

LASSO − β
(m)

0 ])− Ĥm}(β̂
(m)

LASSO − β
(m)

0 )dt.

For any S1,S2 ⊆ [p], let ΥS1,∅ and ΞS1,∅ be the sub-vector of the gradients Υ and Ξ corre-

sponding to µS1 while Υ∅,S2 and Ξ∅,S2 corresponds to α(−1)

S2 . Denote by Ψ = (Ψ1, . . . ,ΨM )T,

Φm =
{
f ′1(X(m)T

1 β(m)

0 , Y (m)

1 ), . . . , f ′1(X(m)T
nm β

(m)

0 , Y (m)
nm )

}T

and Φ =
(
ΦT

1,Φ
T
2, . . . ,Φ

T
M

)T
, then

Υ = N−1ATXTΦ and Ξ = ATΨ.

Recall that Sfull = {Sµ,Sα}. By the KKT condition in (S17) and note the fact that we can

reparameterize β(•) with θ for arbitrary m ∈ [M ] and the KKT equations are essentially equivalent

with different m ∈ [M ], the event Oµ ∩ Oα holds if and only if the following events hold:
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• The estimator θ̂SHIR,Sfull
obtained from

θ̂SHIR,Sfull
= θ0,Sfull

+N
[
WT
Sfull

(β̂
(•)

LASSO)WSfull
(β̂

(•)

LASSO)
]−1

(
ΥSfull

+ ΞSfull
− λ

2
ηSfull

)
, (S18)

satisfies that max{‖µ̂SHIR,Sµ − µ0,Sµ‖∞, ‖α̂
(•)
SHIR,Sα −α

(•)
0,Sα‖2,∞} < ν.

• For any j ∈ Scµ, the sub-gradient ηj,∅ obtained from

ληj,∅ =2Υj,∅ + 2Ξj,∅

−WT

j,∅(β̂
(•)

LASSO)WSfull
(β̂

(•)

LASSO)
[
WT
Sfull

(β̂
(•)

LASSO)WSfull
(β̂

(•)

LASSO)
]−1 (

2ΥSfull
+ 2ΞSfull

− ληSfull

)
,

(S19)

satisfies that |ηj,∅| < 1.

• For any j ∈ Scα, the term η∅,j obtained from

λη∅,j =2Υ∅,j + 2Ξ∅,j

−WT

∅,j(β̂
(•)

LASSO)WSfull
(β̂

(•)

LASSO)
[
WT
Sfull

(β̂
(•)

LASSO)WSfull
(β̂

(•)

LASSO)
]−1 (

2ΥSfull
+ 2ΞSfull

− ληSfull

)
,

(S20)

satisfies that ‖η∅,j‖T̃ < λg.

Note that θ̂SHIR,Sfull
is the unique solution to (S17) and is the minimizer of Q̂SHIR(β(•)) whenever

(S18), (S19) and (S20) are satisfied for all j, with η satisfying the subgradient condition. So we

only need to show that

P(‖µ̂SHIR,Sµ − µ0,Sµ‖∞ < ν; M−
1
2 ‖α̂(•)

SHIR,Sα −α
(•)
0,Sα‖2,∞ < ν)→ 1, (S21)

and that as N →∞,

P(∀ j ∈ Scµ, |ηj,∅| < 1; ∀j ∈ Scα, ‖η∅,j‖T̃ < λg)→ 1. (S22)
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Similar to the proof of Theorem 1, there exists constant CΨ such that

M−1
M∑
m=1

‖Ψm‖∞ ≤ CΨB/n
eff
m; ‖Ψm‖∞ ≤ CΨB/n

eff
m. (S23)

And in the following deductions, we base on (S18), (S19) and its corresponding sub-gradient

condition of ηSfull
, to define θ̂SHIR,Sfull

and η to show (S21) and (S22). Here note that S0 = Sµ ∪ Sα.

For (S21), we will prove its sufficient condition:

P(‖µ̂SHIR,S0 − µ0,S0‖∞ < ν; M−
1
2 ‖α̂(•)

SHIR,S0 −α
(•)
0,S0‖2,∞ < ν)→ 1 (S24)

To prove this, denote by S̃0 = {S0,S0} and let

θ̂
SHIR,S̃0 = θ

0,S̃0 +N
[
WT

S̃0
(β̂

(•)

LASSO)WS̃0(β̂
(•)

LASSO)
]−1

(
ΥS̃0 + ΞS̃0 −

λ

2
ηS̃0

)
.

Recall Ĥm,S0 = n−1
m X(m)T

•S0 Ωm(β̂
(m)

LASSO)X(m)

•S0 , ηµ = ∇µρ2(µ̂SHIR, α̂
(•)
SHIR;λg) and ηα(m) = ∇α(m)ρ2(µ̂SHIR, α̂

(•)
SHIR;λg).

We first get back to the KKT condition for β̂
(m)

SHIR,S0 :

β̂
(m)

SHIR,S0 = β(m)

0,S0 + Ĥ−1
m,S0

[
2MN−1X(m)T

S0•Φm + 2Ψm,S0 + λ(ηµ,S0 + ηα(m),S0)
]

Combining this with β(m) = µ+α(m) and α(1) + · · ·+α(M) = 0, we then have

µ̂SHIR,S0 = µ0,S0 +M−1
M∑
m=1

Ĥ−1
m,S0

[
2MN−1X(m)T

S0•Φm + 2Ψm,S0 + λ(ηµ,S0 + ηα(m),S0)
]

;

α̂(m)

SHIR,S0 = α(m)

0,S0 + (µ0,S0 − µ̂SHIR,S0) + Ĥ−1
m,S0

[
2MN−1X(m)T

S0•Φm + 2Ψm,S0 + λ(ηµ,S0 + ηα(m),S0)
]
.

(S25)

Now, we base on (S25) to prove (S24). Combining Condition 5 and Condition 4 that ‖β̂
(m)

LASSO −

β(m)

0 ‖2 = OP{(1/neff
m)1/2}, we have Λmax

(
Ĥ−1
m,S0

)
≤ (Cmin)−1 with probability approaching 1. Also,

by Condition 6, W(β̂
(•)

LASSO) satisfies the Irrepresentable Condition CIrrep (Definition A2). Then it
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follows from (S8) and λg = Θ(M−1/2) < 1 that for m ∈ [M ],

∥∥∥∥Ĥ−1
m,S0

[
2Ψm,S0 + ληµ,S0 + ληα(m),S0

]∥∥∥∥
∞
≤
∥∥∥Ĥ−1

m,S0

∥∥∥
2

(
2
∥∥Ψm,S0

∥∥
2

+ λ
∥∥∥ηµ,S0 + ηα(m),S0

∥∥∥
2

)
≤(Cmin)−1√s0

(
2
∥∥Ψm,S0

∥∥
∞ + λ

∥∥∥ηµ,S0 + ηα(m),S0

∥∥∥
∞

)
≤ 2(Cmin)−1√s0

(∥∥Ψm,S0
∥∥
∞ + λ

)
.

(S26)

By Condition 2 and similar to Lemma A1, we can prove the concentration result: there exists

positive constant C4 that with probability approaching 1,

∥∥∥∥∥∥M−1
M∑
m=1

Ĥ−1
m,S0N

−1MX(m)T

S0•Φm

∥∥∥∥∥∥
∞

≤
C4
√
s0

Cmin
·
√

log s0

N
≤
C4
√
s0

Cmin
·
√

log p

N
;

max
j∈[s0]

M−
1
2

√√√√ M∑
m=1

(
2MN−1

[
Ĥ−1
m,S0X

(m)T

S0•Φm

]
j

)2

≤
C4
√
s0

Cmin

√
M + log s0

N
≤
C4
√
s0

Cmin

√
M + log p

N
.

(S27)

By Condition 7 and combining (S23), the first equation of (S25), (S26) and the first row of (S27),

1

ν

∥∥∥µ̂SHIR,S0 − µ0,S0

∥∥∥
∞

≤1

ν


∥∥∥∥∥∥M−1

M∑
m=1

Ĥ−1
m,S0N

−1MX(m)T

S0•Φm

∥∥∥∥∥∥
∞

+M−1
M∑
m=1

∥∥∥∥Ĥ−1
m,S0

[
2Ψm,S0 + ληµ,S0 + ληα(m),S0

]∥∥∥∥
∞


≤

(Cmin)−1√s0

ν

[
C4

√
log p

N
+
CΦB

neff
m

+ 2λ

]
=

√
s0

ν
Θ

(√
log p

N
+
Bs0M(log p)

N
+ λ

)
→ 0,

with probability tending to 1. For α̂(•)
SHIR,S0 , again by Condition 7 and combining (S23), the second
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equation of (S25), (S26) and the second row of (S27), we have that with probability tending to 1,

1√
Mν
‖α̂(•)

SHIR,IPD,S0 −α
(•)
0,IPD,S0‖2,∞

≤1

ν

∥∥∥µ̂SHIR,S0 − µ0,S0

∥∥∥
∞

+
1

ν
max
j∈[s0]

M−
1
2

√√√√ M∑
m=1

(
2MN−1

[
Ĥ−1
m,S0X

(m)T

S0•Φm

]
j

)2

+
1√
Mν

√√√√ M∑
m=1

∥∥∥∥Ĥ−1
m,S0

[
2Ψm,S0 + ληµ,S0 + ληα(m),S0

]∥∥∥∥2

∞

≤
(Cmin)−1√s0

ν

[
C4

√
M + log p

N
+
CΦB

neff
m

+ 2λ

]
=

√
s0

ν
Θ

(√
M + log p

N
+
Bs0M(log p)

N
+ λ

)
→ 0.

Given S0 = Sµ ∪ Sα, these yield that

P(‖µ̂SHIR,Sµ − µ0,Sµ‖∞ < ν; M−
1
2 ‖α̂(•)

SHIR,Sα −α
(•)
0,Sα‖2,∞ < ν)→ 1, as N →∞.

Then we adopt similar approaches in Zhao and Yu (2006); Nardi et al. (2008) to bound the terms

on the right hand side of (S19). Note that for any x ∈ RM−1,

‖x‖2T̃ = xT(TTT)−1x ≤ ‖x‖22/Λmin(TTT) = ‖x‖22.

Then by Lemma A1 and that nm = Θ(N/M), there exists some constant C5 > 0 that with

probability approaching 1,

|Υj,∅| ≤ ‖N−1
M∑
m=1

nm∇L̂m(β(m)

0 )‖∞ ≤ C5λ01;

‖Υ∅,j‖T̃ = ‖T(TTT)−1Υ∅,j‖2 ≤ 2‖∇L̂•(β(•)
0 )‖2,∞ ≤ C5M

− 1
2λ02.

(S28)

And again using (S23), we have that for j ∈ [p],

|Ξj,∅| ≤ CΨB/n
eff
m; ‖Ξ∅,j‖T̃ ≤ ‖Ξ∅,j‖2 ≤ CΨB/(

√
Mneff

m). (S29)
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We let U = 2ΥScfull
+ 2ΞScfull

and

V = N−1WT
Scfull

(β̂
(•)

LASSO)WSfull
(β̂

(•)

LASSO)
[
N−1WT

Sfull
(β̂

(•)

LASSO)WSfull
(β̂

(•)

LASSO)
]−1 (

2ΥSfull
+ 2ΞSfull

)
Note that by (S28) and (S29),

(C5λ01)−1ΥSµ,∅ ∈ GSµ ;
[
CΨB/n

eff
m

]−1
ΞSµ,∅ ∈ GSµ ;

(C5M
− 1

2λ02λ
−1
g )−1λ−1

g Ξ∅,Sα ∈ GSα ; λ−1
g

[
CΨB/(λg

√
Mneff

m)
]−1

Ξ∅,Sα ∈ GSα .

Then using Condition 6, we have that with probability approaching 1, for each j ∈ Scµ,

|Uj,∅| ≤2C5λ01 + 2CΨB/n
eff
m;

|Vj,∅| ≤2(1− ε) max
{
C5λ01, C5M

− 1
2λ02λ

−1
g , CΨB/n

eff
m, CΨB/(λg

√
Mneff

m)
}

Since λg = Θ(M−1/2), λ01 = Θ({log p/N}1/2) and nm = Θ(N/M), we then have

|Uj,∅|+ |Vj,∅| = OP

(√
log p+M

N
+
Bs0M log p

N

)
. (S30)

And for j ∈ [p], we have

‖U∅,j‖T̃ ≤ 2C5M
− 1

2λ02 + 2CΨB/(
√
Mneff

m);

‖V∅,j‖T̃ ≤ 2λg(1− ε) max
{
C5λ01, C5M

− 1
2λ02λ

−1
g , CΨB/n

eff
m, CΨB/(λg

√
Mneff

m)
}

with probability converging to 1. Given λg = Θ(M−1/2), this yields that

‖U∅,j‖T̃ + ‖V∅,j‖T̃ = λg ·OP

(√
log p+M

N
+
Bs0M log p

N

)
. (S31)

Then combining (S19) and (S30) and using Condition 6, ηSµ,∅ ∈ GSµ , λ−1
g η∅,Sα ∈ GSα and

1

λε

(√
log p+M

N
+
Bs0M log p

N

)
→ 0,
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we have that as N is large enough, for any j ∈ Scµ

|ηj,∅| =λ−1OP

(√
log p+M

N
+
Bs0M log p

N

)

+

∣∣∣∣WT

j,∅(β̂
(•)

LASSO)WSfull
(β̂

(•)

LASSO)
[
WT
Sfull

(β̂
(•)

LASSO)WSfull
(β̂

(•)

LASSO)
]−1

ηSfull

∣∣∣∣
≤ ε

2
+ 1− ε = 1− ε

2
< 1,

with probability converging to 1. For any j′ ∈ Scα, since λg = Θ(M−1/2), by (S20) and again by

Condition 6, we have that for any j ∈ Scµ,

λ−1
g ‖η∅,j‖T̃ =λ−1OP

(√
log p+M

N
+
Bs0M log p

N

)

+ λ−1
g

∥∥∥∥WT

∅,j′(β̂
(•)

LASSO)WSfull
(β̂

(•)

LASSO)
[
WT
Sfull

(β̂
(•)

LASSO)WSfull
(β̂

(•)

LASSO)
]−1

ηSfull

∥∥∥∥
T̃

≤ ε
2

+ 1− ε = 1− ε

2
< 1.

Therefore, we have

P(∀ j ∈ Scµ, ‖ηj,∅‖∞ < 1; ∀j ∈ Scα, ‖η∅,j‖T̃ < λg)→ 1,

and Theorem 3 thus follows.

A.3.6 Technical Lemmas

In this section, we present the technical lemmas used in the proofs. Some of them are simple

consequences of the existing results, and we provide brief introductions and outline their proofs.

Lemma A1. Under Condition 2 and assume log p = o(N/M), there exists λ01 = Θ{(log p/N)1/2}

and λ02 = Θ{[(M + log p)/N ]1/2} such that, with probability approaching 1,

2

∥∥∥∥∥∥N−1
M∑
m=1

nm∇L̂m(β(m)

0 )

∥∥∥∥∥∥
∞

≤ λ01; 2‖∇L̂•(β(•)
0 )‖2,∞ ≤ λ02/M

1/2.
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Proof. Let Φm :=
{
f ′1(X(m)T

i β(m)

0 , Y (m)

i )
}nm
i=1

and Φ =
(
ΦT

1,Φ
T
2, . . . ,Φ

T
M

)T
. Note that

E[nm∇L̂m(β(m)

0 )] = E[X(m)TΦm] = 0.

Under Condition 2, each element of X(m)

i f ′1(X(m)T

i β(m)

0 , Y (m)

i ) is sub-Gaussian. Then by log p =

o(N/M), there exists λ01 = Θ{(log p/N)1/2} that with probability approaching 1,

2

∥∥∥∥∥∥N−1
M∑
m=1

nm∇L̂m(β(m)

0 )

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥2N−1
M∑
m=1

X(m)TΦm

∥∥∥∥∥∥
∞

≤ λ01.

Referring to Theorem 1 of Hsu et al. (2012), under Condition 2, there exists λ02 = Θ{[(log p +

M)/N ]1/2}, with probability approaching 1, 2‖∇L̂•(β(•)
0 )‖2,∞ ≤ λ02/M

1/2.

We remark here that the bound of 2‖∇L̂•(β(•)
0 )‖2,∞ relies on maximum chi-squared tail of the

sub-Gaussian noise, which is different from the commonly used maximum Gaussian tail inequality,

in ultra-high dimensional regime. Detailed proof of this result is given by Hsu et al. (2012).

Here we provide a simplified example to intuitively explain the results in Lemma A1. Let ε(m) =

(ε(m)

1 , . . . , ε(m)
nm)T and ∇L̂•(β(•)

0 ) = (ε(1)T, . . . , ε(m)T)T/N1/2, where the ε(m)

i are i.i.d N(0, 1). For j ∈ [p],

we let zj =
∑M

m=1{ε
(m)

j }2. Since zj ∼ χ2
M , which is sub-exponential with mean M , we have

‖∇L̂•(β(•)
0 )‖22,∞ =

maxj∈[p](zj −M) +M

N
≤ c log p+M

N
,

for some constant c. Therefore, we have ‖∇L̂•(β(•)
0 )‖2,∞ = ΘP{[(log p+M)/N ]1/2}.

A.4. OUTLINE OF THE THEORETICAL ANALYSIS WITH OTHER PENALTY

FUNCTIONS

In this section, we outline the theoretical analyses for the risk bounds of SHIR with the following

penalty functions ρ(·). (i) Group LASSO: ρ(β(•)) =
∑p

j=2 ‖βj‖2; (ii) Hierarchical LASSO (Zhou

and Zhu, 2010): ρ(β(•)) =
∑p

j=2 ‖βj‖
1/2
1 and (iii) Mixture sparse penalty: ρ(β(•)) = ‖µ−1‖1 +

λg
∑M

m=1 ‖α
(m)

−1‖1.
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A.4.1 Penalty functions (i) and (iii)

We outline the technical analyses for (i) and (iii) together since they are all convex and decomposable

as defined by Negahban et al. (2012). Again, start from the basic inequality (S9):

N−1
M∑
m=1

nm(β̂
(m)

SHIR − β
(m)

0 )TĤm(β̂
(m)

SHIR − β
(m)

0 ) + λρ(β̂
(•)

SHIR)

≤ −2N−1
M∑
m=1

nm(β̂
(m)

SHIR − β
(m)

0 )T∇L̂m(β(m)

0 ) + 2N−1
M∑
m=1

nm(β̂
(m)

SHIR − β
(m)

0 )Tη(m)
SHIR + λρ(β(•)

0 )

=: ξ1 + ξ2 + λρ(β(•)
0 ),

where η(m)
SHIR :=

∫ 1
0 ∇

2L̂m
(
β(m)

0 + t[β̂
(m)

LASSO − β
(m)

0 ]
)

(β̂
(m)

LASSO − β
(m)

0 )dt and η(•)
SHIR = (η(1)T

SHIR, . . . ,η
(M)T
SHIR )T.

Following the paradigm for analyzing high dimensional regularized M -estimator (Bühlmann and

Van De Geer, 2011; Negahban et al., 2012), one can bound ξ1 by |ξ1| = O(M−1ρ(β(•))ρ⊥{∇L̂•(β(•)
0 )}),

where ρ⊥ represents the conjugate norm of the convex and decomposable ρ(·). For (i), ρ(β(•)) =∑p
j=2 ‖βj‖2 and M−1ρ⊥{∇L̂•(β(•)

0 )} ' ‖∇L̂•(β(•)
0 )‖2,∞. For (iii), we let λg = Θ(M−1/2) and have

M−1ρ⊥{∇L̂•(β(•)
0 )} 'M−

1
2 ‖∇L̂•(β(•)

0 )‖∞ +M−1

∥∥∥∥∥∥
M∑
m=1

∇L̂m(β(m)

0 )

∥∥∥∥∥∥
∞

.

As a result, one can choose λ accordingly to control this term. For SHIR, we need to handle the

additional error term ξ2. Similar to |ξ1|, we can bound ξ2 by |ξ2| = O{M−1ρ(β(•))ρ⊥(η(•)
SHIR)}. By

(S8) and Condition 4, ‖η(•)
SHIR‖∞ = Op(1/n

eff
m). Then we can further use ‖η(•)

SHIR‖∞ to control ρ⊥(η(•)
SHIR).

For both (i) and (iii), we have ρ⊥(η(•)
SHIR) = O(‖η(•)

SHIR‖∞). Consequently, to control the aggregation

error, one can increase λ with CM−1ρ⊥(η(•)
SHIR) = Op(1/{Mneff

m}) for some large enough constant

C > 0. Then the following procedures again fall into the paradigm of Negahban et al. (2012).

A.4.2 Penalty function (ii)

The technical details for analyzing hierarchical LASSO penalty ρ(β(•)) =
∑p

j=2 ‖βj‖
1/2
1 , or the

more general group bridge penalty (Huang et al., 2009), is different from (i) and (iii) because it is

non-convex. Here, we follow Huang et al. (2009) and Zhou and Zhu (2010), and consider the regime

where p grows in a polynomial rate of the sample size. Theorems 2 and 3 of Zhou and Zhu (2010)
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established that the convergence rate for the `2-error of hierarchical LASSO estimator is (p/n)1/2.

Consistent with them, we assume that p4/n = o(1) and the tuning parameter λ is taken to satisfy

that λ/n1/2 = O(1) and n1/4p/λ = o(1).

Roughly speaking, the proofs of Theorems 2 and 3 in Zhou and Zhu (2010) also compared

their estimator and the true coefficients on the penalized loss function via the basic inequality

(S9). Again, the additional challenge of analyzing SHIR is to handle ξ2 = 2N−1
∑M

m=1 nm(β̂
(m)

SHIR −

β(m)

0 )Tη(m)
SHIR. Inspired by their way to deal with ξ1, we propose to control ξ2 by

|ξ2| = O{p1/2‖η(•)
SHIR‖∞‖β̂

(•)

SHIR − β
(•)
0 ‖2} = Op(p

1/2/neff
m) · ‖β̂

(•)

SHIR − β
(•)
0 ‖2,

which is equal to op{(p/n)1/2}‖β̂
(•)

SHIR−β
(•)
0 ‖2 since it is assumed that p4/n = o(1). Then combining

this with the proofs in Zhou and Zhu (2010), we obtain that the error term incurred by ξ2 is

asymptotically negligible, and consequently, SHIR has the same error rate as IPD.
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A.5. ADDITIONAL TABLES AND FIGURES

In this section, we first present the pseudo-algorithm of our proposed method in Algorithm A1

and then summarize some additional simulation settings and results as supplements to the main

text. In specific, under our simulation Setting (iii) and when the number of sites M = 4, we take

ϕµ = 0.6, ϕα = 0.45, and let the coefficients µ0 and α(•)
0 be the following:

µ0 = ϕµ[1T
9×1,−1T

9×1,0
T

(p−18)×1]T;

α(1)

0 = ϕα[0T
6×1,0

T
3×1, 1.8T

3×1, 0.7T
3×1,−1.3T

3×1,−0.85T
3×1,1.15T

3×1,0
T

(p−24)×1]T;

α(2)

0 = ϕα[0T
6×1,0

T
3×1,−1.8T

3×1, 1.3T
3×1,−0.7T

3×1,−1.15T
3×1,0.85T

3×1,0
T

(p−24)×1]T;

α(3)

0 = ϕα[0T
6×1,−1.8T

3×1,0
T
3×1,−0.85T

3×1,1.15T
3×1,0.7

T
3×1,−1.3T

3×1,0
T

(p−24)×1]T;

α(4)

0 = ϕα[0T
6×1, 1.8T

3×1,0
T
3×1,−1.15T

3×1,0.85T
3×1,1.3

T
3×1,−0.7T

3×1,0
T

(p−24)×1]T.

For (iii) with M = 8, we set µ0, α(1)

0 , α(2)

0 , α(3)

0 and α(4)

0 to be the same as above, and additionally

set the rest of the coefficients as below:

α(5)

0 = ϕα[0T
6×1, 0T

3×1,−1.5T
3×1,0.5

T
3×1,−1.1T

3×1,0.8
T
3×1,−1T

3×1,0
T

(p−24)×1]T;

α(6)

0 = ϕα[0T
6×1, 0T

3×1,1.5
T
3×1, 1.2T

3×1,−0.6T
3×1,0.9

T
3×1,−0.7T

3×1,0
T

(p−24)×1]T;

α(7)

0 = ϕα[0T
6×1,−1.5T

3×1,0
T
3×1,−0.8T

3×1, 1T
3×1,−0.5T

3×1,1.1
T
3×1,0

T

(p−24)×1]T;

α(8)

0 = ϕα[0T
6×1, 1.5T

3×1,0
T
3×1,−0.9T

3×1, 0.7T
3×1,−1.2T

3×1,0.6
T
3×1,0

T

(p−24)×1]T.

For Setting (iv), we let the directions of µ0 and α(•)
0 be exactly the same as those of Setting (iii),

and choose weaker signal strengths: ϕµ = 0.35 and ϕα = 0.25. Note that under Settings (iii) and

(iv), the heterogeneous effects α(•)
0 show more heterogeneity than those in (i) and (ii), and the

distributed model coefficients β(1)

0 ,...,β(M)

0 are pairwise different.

Finally, we present the true positive rate (TPR) and false discovery rate (FDR) on detecting

β(•) under the simulation Settings (i)–(iv) in Figures A1 and A2, respectively. Similarly as observed

in the paper, SMA performs poorly under nearly all the settings with either low TPR or high FDR,

especially when p = 800, 1500. Both IPDpool and SHIR have good support recovery performance

with all TPRs above 0.80 and FDRs below 0.13 under the strong signal setting, and all TPRs
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above 0.74 and FDRs below 0.05 under the weak signal setting. The IPDpool and SHIR attain

similar TPRs and FDRs with absolute differences less than 0.02 across all settings. In comparison,

DebiasL&B has worse performance than IPDpool and SHIR. For example, under Setting (i), the TPR

of DebiasL&B is consistently lower than that of SHIR by about 0.13 while the FDR of DebiasL&B

is generally higher than that of SHIR, except for the case when p = 100 where DebiasL&B attains

very low FDR due to over shrinkage. Under the weak and sparse signal Setting (ii) with M = 4,

DebiasL&B is substantially less powerful than SHIR in recovering true signals (lower TPR by around

0.52), while its average FDR is comparable to that of SHIR. When M = 8, DebiasL&B attains TPR

comparable to that of SHIR but generally has substantially higher FDR.

Algorithm A1 SHIR Method.

Input: Observed individual data {X(m),Y(m)} at the mth local site for m ∈ [M ].

• For m ∈ [M ], at the m-th local site:

1. Fit β̂
(m)

LASSO = argminβ(m) L̂m(β(m)) + λm‖β(m)

−1‖1;

2. Calculate Ĥm = ∇2L̂m(β̂
(m)

LASSO) and ĝm = Ĥmβ̂
(m)

LASSO −∇L̂m(β̂
(m)

LASSO). Send the summary
statistics D̂m = {nm, Ĥm, ĝm} to the central node.

• At the central node, obtain β̂
(•)

SHIR by minimizing:

Q̂SHIR(β(•)) = N−1
M∑
m=1

nm

{
β(m)TĤmβ

(m) − 2β(m)Tĝm

}
+ λρ(β(•)).

Output: The SHIR estimator β̂
(•)

SHIR.
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Figure A1: The average true positive rate (TPR) on the original coefficients β(•) of IPDpool (IPD),
SHIR, DebiasL&B (Debias) and SMA, different M ∈ {4, 8}, p ∈ {100, 800, 1500} and data generation
mechanisms (i)–(iv) introduced in Section 5.
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Figure A2: The average false discovery rate (FDR) on the original coefficients β(•) of IPDpool
(IPD), SHIR, DebiasL&B (Debias) and SMA, different M ∈ {4, 8}, p ∈ {100, 800, 1500} and data
generation mechanisms (i)–(iv) introduced in Section 5.
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