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1  Optimisation of Non-Bonded Parameters

When monomeric Gaussian process regression (GPR) models are used in FFLUX simulations, a
non-bonded potential is required to model non-electrostatic intermolecular interactions. Several
different potentials are available in DL_POLY and hence DL_FFLUX. In this work a 12-6 Lennard-Jones

potential was used:

A:: B
U(ry) =—55-—% (S1.1)
i ij

where A;; and B;; are parameters for the interactions between atoms i and j. We used as our initial

non-bonded parameters those derived by Hagler et al. [1], which are given in Table S1.1.

Table S1.1. Initial non-bonded parameters derived by Hagler et al.

Atom  A/kJmoltA2 B/ kJ mol-1A®

C 12,644,048.000 5606.560
N 9,501,864.000 5146.320
o) 1,150,600.000 2100.368

As described in reference [1] the following mixing rules were used to obtain parameters for the

interactions between pairs of atoms of different types:

Following the protocol presented in reference [2], these initial non-bonded parameters were
optimised for use in L' = 2 simulations. In these simulations, monopole, dipole and quadrupole
moments are used to describe the intermolecular electrostatic interactions. The parameters were

adapted by scaling both the A and B values by a factor n such that scaled parameters A}‘j and Bg*j

are given by:



Optimisations using each of the non-bonded parameter sets were performed as described in
the main text. The density (p), lattice energy (U.4::) and 8 angle of each optimised structure was
then calculated and scored against the experimental values of 1.298 g cm™3, -79.2 kJ mol™[3] and

98°, respectively. The scoring was done using the weighted square difference:
S = Z w,(Calc, — Exp,)” (S1.6)
P

withw, = 3,wy = landwg = 5.The lowest weight was assigned to the lattice energy due to
the magnitude of the difference being the largest, while the largest weight was assigned to the 8
angle. This is despite the magnitudes of the differences in the angles being larger than in the

densities, hence putting a greater importance on getting the angle closer to experiment.

The best performing parameter set is the one that minimises the score, with a score of 0
indicating that all experimental values have been reproduced exactly. The values obtained for each
of the properties with each parameter set are given in Table S1.2. The best performing set was found

to be the Hagler parameters increased by 40%, which are highlighted in bold in the table.
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Table S1.2. Dependence of p (g/cm3), U, 4 (k) mol™), and B (degrees) on the scale factor n applied
to the initial set of non-bonded parameters derived by Hagler et al.. We highlighted in bold the
chosen parameter set with the smallest score (S), which best reproduces the experimental

parameters (shown in the utmost right column of the table).

Scalingn p U,.. B S

0900 1.366 -67.753 95.751 156.343
0.925 1.362 -68.136 95.930 143.854
0950 1.359 -68.529 96.121 131.530
0.975 1.356 -68.932 96.305 119.802
1.000 1.354 -69.344 96.473 108.797
1.025 1.351 -69.765 96.663 97.971
1.050 1.348 -70.193 96.837 87.887
1.075 1.346 -70.629 97.000 78.469
1.100 1.344 -71.072 97.172 69.493
1.125 1.341 -71.522 97.335 61.169
1.150 1.339 -71.978 97.504 53.401
1.175 1.337 -72.439 97.679 46.229
1.200 1.335 -72.906 97.843 39.736
1.225 1.333 -73.379 98.022 33.891
1.250 1.332 -73.856 98.183 28.723
1.275 1330 -74.339 98.366 24.307
1.300 1.328 -74.826 98.525 20.518
1.325 1.327 -75.317 98.679 17.385
1.350 1.325 -75.812 98.846 15.061
1.375 1324 -76.312 99.019 13.532
1.400 1.322 -76.815 99.191 12.786

1425 1321 -77.322 99.368 12.888
1.450 1.320 -77.832 99.533 13.627
1475 1319 -78.345 99.708 15.314
1.500 1.317 -78.863 99.867 17.548
1.525 1.316 -79.382 100.047 20.986
1.550 1.315 -79.905 100.212 24.957
1.575 1.314 -80.431 100.385 29.955
1.600 1.313 -80.960 100.547 35.543

Exp 1.298 -79.200 98.000
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2 RMSE of Optimised Crystal Structures

Root-mean-square errors (RMSEs) between the experimental structures and the FFLUX
optimised structures at different electrostatic ranks were calculated using the Kabsch algorithm to
find the optimal translation and rotation to map the structures onto each other. These are given in

Table S2.1.

Table S2.1. RMSE values of the optimised cells excluding hydrogen atoms compared to experiment.

The label “hp” denotes a high-pressure optimisation performed at 1.2 GPa.

Method RMSE (no H) /°A

a-formamide

FFLUXL = 0 2.11
FFLUXL' = 1 0.86
FFLUX L' = 2 0.38
PBE 0.18
PBE+D3 0.08

B-formamide

FFLUXL' = 2 0.66
hp FFLUX L' = 2 0.83
PBE 0.23
hp PBE 1.01
PBE+D3 0.17
hp PBE+D3 0.24
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3  Evaluation of Computational Cost

The phonon calculations performed in the main text were carried out by using the finite
displacement method. In this method a series of supercells are generated in which each of the
independent atoms are displaced from their ideal positions in the “perfect” supercell. A single-point
calculation is then performed on each structure to evaluate the resulting atomic forces, which are
then combined to derive the second-order interatomic force constants and to compute the phonon
density of states and related thermal properties. Each of the FFLUX-optimised @ formamide
structures at L' = 0-2 required 12,096 force calculations. Table S3.1 shows the average time taken

(core hr) for all 12,096 displacements and the relative cost compared to L' = 0.

Table S3.1. The average time taken for force calculations with FFLUX at different multipolar ranks.

The time relative to L' = 0 (only charges in the electrostatic representation) is given.

Average Time /

L' Relative Cost
core hr

0 0.0153 1

1 0.0167 1.092

2 0.0278 1.817

The additional computational effort for including higher order multipole moments up to the
guadrupole can be considered insignificant given that each calculation took of the order of seconds

to complete.

The VASP calculations performed in the main text were carried out using a significantly smaller
supercell than in the FFLUX calculations (384 atoms in VASP calculations versus 2016 atoms in FFLUX
calculations). The time that VASP would require for the 2016 atom supercell can be estimated based
on the time required for the 384 atoms supercell and the fact that VASP scales somewhere between

N? and N3 with the number of valence electrons (effectively, the number of atoms).

A VASP calculation using 128 cores for 384 atoms took 3456.95 s while a FFLUX (L' = 2)
calculation using 8 cores for 2016 atoms took 12.593 s. From these numbers one can estimate how

many times FFLUX is faster than VASP, as shown here:
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Scaling of system size:

2016 atoms _

384 atoms 25
Converting to core hrs:
VASP Time (hr) = 3456955 _ 0.9603 h
me i = 3600 s he-t r

VASP Time (core hr) = 128 core X 0.9603 hr = 122.9 core hr

12.593 s

FFLUX Time (core hr) = 8 core X 0.003450 hr = 0.02800 core hr

Estimate of the time taken for 2016-atom supercell with VASP (assuming N? scaling):

122.9 core hr x 5.25% = 3387.8 core hr

3387.8 core hr
0.02780 core hr

= 121,061 times slower than FFLUX

Estimate of the time taken for 2016-atom supercell with VASP (assuming N3 scaling):

122.9 core hr x 5.253 = 17,786 core hr

17,786 core hr
0.0280 core hr

= 635,568 times slower than FFLUX

The 384-atom supercell in VASP required 122.9 core hr. The 2016-atom supercell is 5.2 times
larger, which means that VASP would need between 3,388 core hr (assuming N2 scaling) and 17,786
core hr (assuming N3 scaling). We therefore estimate that FFLUX is between ~ 121,000 and
~635,000 times faster than VASP.
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4  Density of States of High-Pressure Phase

The phonon density of states (DoS) of f-formamide (Figure S4.1) was calculated using the finite
displacement method via the Phonopy package [4] with forces calculated using PBE+D3 and FFLUX
with L' = 2. For the FFLUX calculations the atomic displacements and forces were evaluated in the
simulation unit cell, which corresponds to a 7x2x4 expansion of the f -formamide unit cell
(7x2x4x8x6=2688 atoms), and the phonon frequencies were evaluated on a 2 x 2 x 2 g-point mesh.
For the PBE+D3 calculations, the displacements and forces were evaluated in a 4x1x2 supercell of

the unit cell (384 atoms), and frequencies were evaluated on a 16 x 16 x 16 g-point mesh.

0.20
— FFLUX L'=2

w015 PBE+D3
0
ie)
o
20,101
©
£

0.00 ; . ; , . . . .

0 500 1000 1500 2000 2500 3000 3500

Frequency cm™?

Figure S4.1. Phonon DoS of f-formamide obtained using PBE+D3 (black) and FFLUX at L' = 2 (red).

As noted in the main text, the purpose of these calculations was to determine whether it were
possible to perform lattice dynamics calculations with FFLUX, and not necessarily to reproduce the
PBE+D3 DoS. As discussed for the a phase in the main text, there are significant differences in the
positions of some of the features, in particular those corresponding to predominantly
intramolecular modes, which is due to the differences in levels of theory used in the periodic DFT
calculations (i.e. PBE+D3) and in training the FFLUX GPR model (B3LYP/aug-cc-pVTZ). These
differences are consistent with the ordering of the vibrational frequencies of a formamide monomer
obtained at the training level of theory, presented in the main text, taking into account red- and

blue-shifts in some modes due to the intermolecular interactions in the crystal.
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5 PBE+D3 Monomer Vibrational Frequencies

Table S5.1. Vibrational frequencies of the formamide monomer calculated using plane wave

PBE+D3.

Frequency /cm™  Assighment

264 NH; wag

546 NCO bend

632 NH: torsional twist
988 CH out of plane bend
1019 NHsin plane bend
1237 CN stretch

1360 CH bend

1557 NH; scissor

1741 C=0 stretch

2854 CH stretch

3492 NH, symmetric stretch
3633 NH; asymmetric stretch

S9



6 Gas Phase Monomer IR Spectra
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Figure S6.1. IR spectra of a gas phase formamide monomer calculated using PBE+D3 (top, red),

B3LYP/aug-cc-pVTZ (middle, orange) and FFLUX (bottom, yellow) compared to experimental data
from the NIST database [5].
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7  Cumulative Density of States

In the main text we showed that PBE+D3 predicts the § phase to be more stable than the a
phase at low temperature. Breaking down the Helmholtz free energy into its constituent
components (see eq 9 of the main text) of vibrational internal energy and entropy showed that both
energy and entropy favoured the a phase, even over the range of temperatures where the § phase
was predicted to be more stable. This finding indicates that the only remaining term in eq 9, that is,
the lattice energy ¢ must be driving the difference in stability. The destabilising effect from the

phonon contributions to the free energy can be understood from the cumulative density of states

shown in Figure S7.1.
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Figure $7.1. Cumulative DoS of a (red) and  formamide (orange) calculated using PBE+D3.
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The high-frequency modes in the 8 phase occur at slightly higher frequencies than in the a
phase, which increases the vibrational internal energy through the zero-point-energy (ZPE),

calculated as

1Oh
ZPE = Nziwq,j (871)
a.j

where wg ; is the frequency of a phonon with wavevector q and band index j while N is the number
of q included in the Brillouin-zone sampling mesh. The difference in entropy between the two
phases can be explained by the f phase having a lower density of modes at lower frequencies, which
is highlighted in the zoomed-in section of Figure S7.1. The lower density of low-frequency modes
means that  formamide has more high-lying modes than a formamide. By the partition function
given in eq 8 of the main text, these higher-lying modes will contribute less to the partition function
than their low frequency counterparts. In other words, the higher lying modes will have a lower
occupation number, resulting in a lower vibrational entropy. However, the cumulative free energy
as a function of the frequency shown in Figure S7.2 indicates that the differences in free energy

between a and 8 formamide cannot be attributed to any one region of the DoS.
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Figure S7.2. Cumulative free energy of  formamide at 10 (red) and 150 K (orange) relative to the
a polymorph calculated using PBE+D3.
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