1	Supplemental material
2	
3	
4	to
5	
6 7 8	Systematic mapping of chemoreceptor specificities for <i>Pseudomonas</i> aeruginosa
9	
10	by
11	
12	
13	
14 15	Wenhao Xu, Jean Paul Cerna-Vargas, Ana Tajuelo, Andrea Lozano-Montoya, Melissa Kivoloka, Nicolas Krink, Elizabet Monteagudo-Cascales, Miguel A. Matilla, Tino Krell, Victor Sourjik
16	
17	
18	
19	
20	
21	
22	

Fig. S1 Thermal shift assay for purified PctP-LBD in the presence of purine derivatives. (A) Thermal unfolding of PctP-LBD in the absence or in the presence of 2 mM guanine (upper panel: raw data; lower panel: their first derivative). (B) Increases in the midpoint temperature of protein unfolding transition (Tm) induced by indicated ligands. Data shown are the means and standard deviations from three biological replicates conducted in triplicate. Significance of difference from zero (no thermal shift), assessed by one sample *t*-test, is indicated by asterisks (ns: non-significant, $*p \le 0.05$, $**p \le 0.01$, $***p \le 0.001$).

Fig. S2 PctP-Tar hybrid mediates specific FRET responses to purine nucleosides. FRET measurements for *E. coli*cells expressing PctP-Tar hybrid (A) or Tar (B) as a sole receptor, responding to the indicated concentrations of
guanosine, inosine or adenosine. The activity of PctP-Tar was confirmed using D-glucose. Similarly, L-aspartate (LAsp) was used as a positive ligand for Tar.

Fig. S3 Control microfluidic assays for responses of *E. coli* expressing Tar to purines. Experiments were
performed as in Fig. 4C, with L-Asp used as a positive control for Tar.

Fig. S4 Effects of purine derivatives on the growth of *P. aeruginosa* PAO1. PAO1 was cultured at 37°C in LB containing 2 mM of the indicated compounds, and the same volume of H₂O was added to the culture as control. Optical density of cultures was measured at 600 nm after growing 12 hours with shaking in the microplate reader. For each experiment, the OD600 was normalized to the OD600 of the control culture in LB. The means and standard deviations of five biological replicates each conducted in triplicate were shown. Error bars indicated the mean \pm standard deviations. Significance of differences, assessed using a paired *t*-test, is indicated by asterisks (ns: non-significant, ***p* ≤ 0.01).

49 Fig. S5 Characterization of TlpQ as a chemoreceptor for tyramine. (A) Screening of unassigned potential ligands 50 for TlpQ-Tar using FRET. FRET measurement was performed for E. coli cells expressing TlpQ-Tar as the sole receptor, 51 exposed to a stepwise addition (down arrow) and subsequent removal (up arrow) of 100 µM D-glucose (positive ligand 52 for chimeras), three known ligands (histamine, spermine and spermidine) and other chemical compounds. The 53 chemoattractants are shown in red. (B) Capillary chemotaxis assays of tlpQ deficient strain and WT-PAO1 (WT-54 Hiroshima) to 5 mM tyramine. Data are shown as the means and standard deviations from three biological replicates 55 conducted in triplicate. Significance of difference, assessed using a paired *t*-test, is indicated by asterisks (*** $p \le 1$ 56 0.001). (C) Microcalorimetric studies confirming the binding of tyramine to TlpQ-LBD. The upper panel shows raw 57 titration data, whereas the lower panel shows the fit of the integrated concentration-normalized and dilution-heat 58 corrected raw data using the single-site binding model. Further experimental details are provided in Table S4.

61 Fig. S6 PctB and PctC mediate responses to histamine. FRET measurements of responses mediated by PctA-Tar

62 (A), PctB-Tar (B), PctC-Tar (C) or Tar (D) as a sole receptor to indicated concentrations of histamine.

Table S1 Growth of *P. aeruginosa* PAO1 in M9 minimal medium supplemented with each of the compounds present in the Biolog plates PM1, PM2A and PM3B as nitrogen source (in nitrogen-free medium) or carbon source (in carbon-free medium). A total of 202 compounds supported bacterial growth at different levels. Compounds were divided into different groups according to the magnitude of growth. The 29 highlighted compounds were further studied using quantitative capillary chemotaxis assays (Fig. 1).

No.	High bacterial growth	Medium bacterial growth	Low bacterial growth		
	(OD _{600nm} >0.25)	(0.25>OD _{600nm} >0.1)	(0.1 <od<sub>600nm<0.05)</od<sub>		
1	p-Hydroxy Phenyl Acetic Acid	Citric Acid	Mucic Acid		
2	D, L-Malic Acid	L-Malic Acid	Tricarballylic Acid		
3	D-Gluconic Acid	Fumaric Acid	D-Glucosaminic Acid		
4	L-Asn	Propionic Acid	Acetoacetic Acid		
5	L-Gln	α-Keto-Glutaric Acid	D-Galactonic Acid-y-Lactone		
6	L-Ala	Bromo Succinic Acid	Glycolic Acid		
7	L-Pro	Pyruvic Acid	D-Galacturonic Acid		
8	Gly-L-Pro	Acetic Acid	Succinic Acid		
9	Tyramine	α-Hydroxy Butyric Acid	Formic Acid		
10	D-Fructose	L-Lactic Acid	m-Hydroxy Phenyl Acetic Acid		
11	D-Glucose	α-Hydroxy Glutaric Acid-γ-Lactone	D-Glucuronic Acid		
12	N-Acetyl-Dglucosamine	α-Keto-Butyric Acid	m-Tartaric Acid		
13	D-Mannitol	D-Malic Acid	Mono Methyl Succinate		
14	Glycerol	Methyl Pyruvate	D-Ser		
15	Itaconic Acid	L-Ser	2-Phenylethylamine		
16	5-Amino Valeric Acid	L-Thr	Ammonia		
17	Capric Acid	L-Asp	α-Methyl-D-Glucoside		
18	Sebacic Acid	L-Glu	D-Fructose-6-Phosphate		
19	γ-Amino Butyric Acid	D-Thr	D-Psicose		
20	4-Hydroxy Benzoic Acid	D-Ala	D-Glucose-6-Phosphate		
21	ß-Hydroxy Butyric Acid	D-Asp	D-Maltose		
22	Quinic Acid	Gly-L-Glu	L-Fucose		
23	γ -Hydroxy Butyric Acid	2-Aminoethanol	D-Glucose-1-Phosphate		
24	Caproic Acid	D-Trehalose	D-Xylose		
25	N-Acetyl-L-Glutamic Acid	Maltotriose	D-Cellobiose		
26	L-PyroglutamicAcid	D-Melibiose	L-Arabinose		
27	L-Orn	α-Methyl-D-galactoside	N-Acetyl-B-D-Mannosamine		
28	Hydroxy-Lproline	Sucrose	Adonitol		
29	L-Ile	Lactulose	D, L-α-Glycerol- Phosphate		
30	L-Arg	α-D-Lactose	Dulcitol		

31	D, L-Octopamine	D-Ribose	myo-Inositol
32	Putrescine	2-Deoxy Adenosine	D-Sorbitol
33	Glucosamine	Tween 20	Thymidine
34	Uric Acid	Tween 40	α- Keto-Valeric Acid
35	L-His	Tween 80	2- Hydroxy Benzoic Acid
36	L-Trp	Butyric Acid	Oxalic Acid
37	L-Val	Citramalic Acid	ß-Methyl-D-Glucuronic Acid
38	Ala-His	Sorbic Acid	Melibionic Acid
39	Ala-Gln	Succinamic Acid	L-Tartaric Acid
40	Ala-Glu	Malonic Acid	Citraconic Acid
41	Gly-Asn	D, L-Carnitine	N-Acetyl-Neuraminic Acid
42	Gly-Gln	Laminarin	D-Tartaric Acid
43	Ala-Asp	Turanose	L-homoserine
44	Ethanolamine	Xylitol	L- Leu
45	Agmatine	D-Arabitol	L-Met
46	Histamine	γ- Amino-N-Butyric Acid	L-Alaninamide
47	Allantoin	D, L-α-Amino-N-Butyric Acid	L-Phe-Ala
48	Urea	α-Amino-N-Valeric Acid	Gly-Met
49	Acetamide	ε-Amino-N-Caproic Acid	3-0-β-D-Galactopyranosyl-D-
			Arabinose
50	Adenosine	Parabanic Acid	Salicylic acid
51	Inosine	δ-Amino-N-Valeric Acid	D-Raffinose
52	Adenine	N-Acetyl-L-Glutamic Acid	ß-Methyl-D-Xyloside
53	Guanosine	N-Phthaloyl-L-Glutamic Acid	α-Methyl-D-Mannoside
54	Cytosine	D-Glu	Isoatinose
55	Cytidine	L-Glu	D-Tagatose
56	Thymine	L-Lys	Gentiobiose
57	Uridine	L-Tyr	D-Fucose
58		D-Lys	3-Methyl Glucose
59		D-Asn	D-Ribono-1,4-Lactone
60		L-Gly	L-Glucose
61		Ala-Gly	D-Melezitose
62		Ala-Leu	ß-D-Allose
63		Uracil	D-Arabinose
64		Glucuronamide	ß-Methyl-D-Galactoside
65		N-Acetyl-D-Glucosamine	Amygdalin

66	Nitrite	Sedoheptulosan
67	Nitrate	N-Acetyl-D-Galactosamine
68	Xanthosine	N-Acetyl-D-Glucosaminitol
69	Xanthine	i-Erythritol
70		Lactitol
71		Maltitol
72		D-Val
73		Guanine
74		L- Cys
75		L-Citrulline
76		Met-Ala

_ _

83 Table S2 Summary of FRET responses of 16 hybrid chemoreceptors to tested ligands. All ligand solutions were at 100 µM concentration. The attractant responses

84 are shown in red; and the repellent responses are shown in green; "CR": these responses might be mediated by the cytoplasmic portion of Tar; "--": no specific responses.

85 The numbers are the normalized magnitude of corresponding compound's response to the magnitude of characterized ligand's response or D-glucose's response,

86 whichever is greater. Data are shown as the means and standard deviations of results from at least three biological replicates.

Categories	Compounds	Tar	PctA	PctB	PctC	PctD	CtpM	PA2867	PctP	TlpQ	PA1646	PA4844	PA2573	PA1251	PA2788	PA2920	МсрК	PA4915
Desitive	D glusses	CD	CD	CD	CP	CP	CD	CD	CD	CD	CD	CD	CD	CP	CD	CP	CD	CD
control	D-glucose	CK	CK	CK	CK	CK	CK	CK	CK	СК	СК	CK	CK	CK	CK	CK	CK	CK
control	Dumueto																	
	I yi uvate																	
	Itaconate																	
	Formate																	
	Fumarate	CR																
	Propionate																	
	Succinate	CR																
	Butyrate																	
	Glutarate																	
	D-gluconate																	
	D-tartrate	CR																
Organic acids	Salicylate							2.65 ±										
								0.37ª										
	Nicotinate																	
	Isovalerate																	
	5-Aminovalerate				1.01 ±													
					0.09													
	Methyl 4-				0.97 ±													
	aminobutyrate				0.07													
	β-hydroxybutyrate																	
	Palmitate																	
	Indoleacetate																	
	D-fructose	CR																
	D-mannitol	CR																
Sugars	D-xylose																	
	D-maltose	0.73 ±																
		0.13																

	D-trehalose	CR				 	 			 					
	Glucosamine	CR				 	 			 					
	Uridine	CR				 	 	-		 	-				
	D-ribose					 	 	-		 	-				
	Cytosine				-	 	 			 					
Nucleic acid	Guanine				-	 	 1.22 ±			 					
							0.07								
derivatives	Inosine	-		-	-	 	 1.03 ±	1		 	-		-	-	
							0.08								
	Adenine					 	 0.79 ±			 					
							0.05								
	L-ornithine		1.16 ±	1.30 ±		 	 			 					
			0.10	0.13											
Others	Ethanolamine					 	 			 					
	2-Phenylethylamine					 				 -					
	Acetamide	1	-	1		 	 	1	-	 1	1	-	1		
	Caffeine	-		1		 	 	1	-	 -	1	-	1		
	nH6.0	1.18 ±	0.71 ±		1.06 ±	 	 1.92 ±	1.36 ±		 					
рH	FILOR	0.16	0.16		0.09		0.17	0.20							
P	pH8.0	0.96 ±	1.02 ±		2.31 ±	 	 0.99 ±	0.57 ±		 					
	r	0.11	0.22		0.17		0.11	0.12							

^a*E. coli* cells expressing PA2867-Tar showed a repellent response to salicylate. However, salicylate binding to PA2867 could not be confirmed because of the failure to purify PA2867-LBD as a stable protein, and characterization of this putative ligand was not further pursued.

90 Table S3 Strains, plasmids and oligonucleotides used in this study.

Strains and plasmids	Genotype or relevant characteristics ^a	Reference	
Strains			
Escherichia coli BL21(DE3)	F^- ompT gal dcm lon hsdS _B ($r_B^-m_B^-$) λ (DE3 [lacI lacUV5- T7p07 ind1 sam7 nin5]) [malB ⁺] K-12(λ ^S)	(1)	
E. coli DH5α	F^- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 Δ(lacZYA-argF) U169, hsdR17($r_K^-m_K^+$), λ^-	(2)	
<i>E. coli</i> UU1250	Derivative of RP437; $\Delta aer \Delta tsr \Delta (tar-tap) \Delta trg$	(3)	
E. coli VS181	Derivative of RP437; Δ (<i>cheYcheZ</i>) Δ <i>aer</i> Δ <i>tsr</i> Δ (<i>tar-tap</i>) Δ <i>trg</i>	(4)	
<i>E. coli</i> CC118λpir	araD Δ (ara, leu) Δ lacZ74 phoA20 galK thi-1 rspE rpoB argE recA1 λ pir	(5)	
Pseudomonas aeruginosa PAO1 (WT-Hiroshima)	Prototroph, FP– (sex factor minus)	(6)	
tlpQ::Km	PAO1 derivative, <i>PA2654</i> ::Km; Km ^R	(8)	
pctA::Km	PAO1 derivative, <i>PA4309</i> ::Km; Km ^R	(9)	
pctB::Km	PAO1 derivative, <i>PA4310</i> ::Km; Km ^R	(10)	
pctC::Km	PAO1 derivative, PA4307::Km; Km ^R	(10)	
Pseudomonas aeruginosa PAO1 (WT-Washington)	Wild type strain	(7)	
PA1251::ISlacZ	PAO1 derivative, <i>PA1251::ISlacZ</i> ; Tc ^R	(7)	
PA1646::ISphoA	PAO1 derivative, <i>PA1646::ISphoA</i> ; Tc ^R	(7)	
PA2867::ISlacZ	PAO1 derivative, <i>PA2867::ISlacZ</i> ; Tc ^R	(7)	
PA2920::ISlacZ	PAO1 derivative, <i>PA2961::ISlacZ</i> ; Tc ^R	(7)	
PA4290::ISphoA	PAO1 derivative, <i>PA4290::ISphoA</i> ; Tc ^R	(7)	
PA4520::ISphoA	PAO1 derivative, <i>PA4520::ISphoA</i> ; Tc ^R	(7)	

PA4915::ISphoA	PAO1 derivative, PA4915::ISphoA; Tc ^R	(7)
mcpA::ISphoA	PAO1 derivative, PA0180::ISphoA; Tc ^R	(7)
mcpS::ISlacZ	PAO1 derivative, <i>PA1930::ISlacZ</i> ; Tc ^R	(7)
ctpH::ISlacZ	PAO1 derivative, <i>PA2561::ISlacZ</i> ; Tc ^R	(7)
ctpM::ISlacZ	PAO1 derivative, <i>PA2652::ISlacZ</i> ; Tc ^R	(7)
mcpN::ISlacZ	PAO1 derivative, <i>PA2788::ISlacZ</i> ; Tc ^R	(7)
pctD::ISlacZ	PAO1 derivative, <i>PA4633::ISlacZ</i> ; Tc ^R	(7)
ctpL::ISphoA	PAO1 derivative, <i>PA4844::ISphoA</i> ; Tc ^R	(7)
$\Delta M cpK$	PAO1 derivative, $\triangle PA5072$	(11)
pctP::Sm	PAO1 derivative, PA1608::Sm; Sm ^R	This study

Plasmids

pET28a (+)	Km ^R ; Protein expression vector	Novagen
pKG116	Cm ^R ; Expression vector, salicylate inducible; for generation Type 2 and Type 3 hybrid chemoreceptor	(12)
pKNG101	Sm ^R ; OriR6K mob, mutant generation vector	(13)
pGEMT®	Ap ^R ; mutant generation vector	Invitrogen
pHC8	Ap ^R ; Expression vector, salicylate inducible; for generation type 1 hybrid chemoreceptor	This study
pSB13	Cm ^R ; Tar expression plasmid, pKG116 derivative, T768 was mutated to C768 to remove the NdeI restriction site	(14)
pVS88	Ap ^R ; CheY-EYFP / CheZ-ECFP expression plasmid used for type 2 and type 3 hybrid chemoreceptor	(4)
pWX16	Cm ^R ; CheY-EYFP / CheZ-ECFP expression plasmid used for type 1 hybrid chemoreceptor	This study
pOB30	Ap ^R ; GFP expression plasmid	(15)

pET28_PA2654-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA2654-LBD	This study
pET28_PA4915-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA4915-LBD	This study
pET28_PA4844-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA4844-LBD	This study
pET28_PA5072-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA5072-LBD	This study
pET28_PA2788-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA2788-LBD	This study
pET28_PA4310-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA4310-LBD	This study
pET28_PA4309-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA4309-LBD	This study
pET28_PA4307-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA4307-LBD	This study
pET28_PA4633-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA4633-LBD	This study
pET28_PA1608-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA1608-LBD	This study
pET28_PA2573-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA2573-LBD	This study
pET28_PA2652-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA2652-LBD	This study
pET28_PA2867-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA2867-LBD	This study
pET28_PA2920-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA2920-LBD	This study

pET28_PA1251-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA1251-LBD	This study
pET28_PA1646-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA1646-LBD	This study
pET28_PA2561-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA2561-LBD	This study
pET28_PA4520-LBD	Km ^R ; pET28a (+) derivative containing a DNA fragment encoding PA4520-LBD	This study
PA2654-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA2654 [1-373]-Tar [198-553];	This study
PA4915-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA4915 [1-198]-Tar [198-553];	This study
PA4844-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA4844 [1-312]-Tar [198-553];	This study
PA2573-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA2573 [1-190]-Tar [198-553];	This study
PA2788-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA2788 [1-187]-Tar [198-553];	This study
PA4310-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA4310 [1-288]-Tar [198-553];	This study
PA4310-Tar_T2	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA4310 [1-353]-Tar [268-553];	(16)
PA4309-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA4309 [1-288]-Tar [198-553];	This study
PA4309-Tar_T2	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA4309 [1-354]-Tar [269-553];	(16)
PA4307-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA4307 [1-291]-Tar [198-553];	This study

PA4307-Tar_T2	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA4307 [1-356]-Tar [268-553];	(17)
PA4633-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA4633 [1-369]-Tar [198-553];	This study
PA4633-Tar_T2	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA4633 [1-435]-Tar [267-553];	(18)
PA1608-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA1608 [1-187]-Tar [198-553];	This study
PA1608-Tar_T2	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA1608 [1-264]-Tar [267-553];	This study
PA2652-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA2652 [1-220]-Tar [198-553];	This study
PA2652-Tar_T2	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA2652 [1-284]-Tar [267-553];	This study
PA5072-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA5072 [1-299]-Tar [198-553];	This study
PA5072-Tar_T3	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA5072 [1-299]-VLYHC-Tar [203-553];	This study
PA2867-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA2867 [1-149]-Tar [198-553];	This study
PA2867-Tar_T3	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA2867 [1-149]-PTTTA-Tar [203-553];	This study
PA2920-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA2920 [1-203]-Tar [198-553];	This study
PA2920-Tar_T3	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA2920 [1-203]-CLAPP-Tar [203-553];	This study
PA1251-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA1251 [1-197]-Tar [198-553];	This study

PA1251-Tar_T3	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA1251 [1-197]-IWSLA-Tar [203-553];	This study
PA1646-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA1646 [1-313]-Tar [198-553];	This study
PA1646-Tar_T3	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA1646 [1-313]-CLYMA-Tar [203-553];	This study
PA2561-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA2561 [1-224]-Tar [198-553];	This study
PA2561-Tar_T3	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA2561 [1-224]-NYKNG-Tar [203-553];	This study
PA4520-Tar_T1	Ap ^R ; pHC8 derivative containing a DNA fragment encoding PA4520 [1-331]-Tar [198-553];	This study
PA4520-Tar_T3	Cm ^R ; pKG116 derivative containing a DNA fragment encoding PA2520 [1-331]-LICDS-Tar [203-553];	This study
pGEMT®-PA1608	Ap ^R ; pGEMT® derivative containing DNA fragment of PA1608	This study
pKNG101-PA1608	Sm ^R , pKNG101 derivative containing DNA fragment of PA1608	This study

91 ^aAp, ampicillin; Km, kanamycin; Tc, tetracycline; Cm, chloramphenicol; Sm, streptomycin

Oligonucleotide	Sequence (5'-3')	Purpose
DA 2654 I BD E	GTGCCGCGCGGCAGCCATATGCAACATTCCAGTGTT	
FA2034-LDD_F	CTGGTTAAG	Construction of
	ACGGAGCTCGAATTCGGATCCCTATTCGCGGCGCAT	pET28_PA2654-LBD
PA2034-LDD_K	GTCATCAAGT	
	GTGCCGCGCGGCAGCCATATGTCTCGTCTGGACGCA	
FA4913-LBD_I	AGCTT	Construction of
	ACGGAGCTCGAATTCGGATCCCTAGCGCATACTATC	pET28_PA4915-LBD
1 A4713-LDD_K	GTAGCGTTT	

	GTGCCGCGCGGCAGCCATATGCGCGCCATGGAACGT	
TA4044-LDD_T	CCGT	Construction of
	ACGGAGCTCGAATTCGGATCCCTACTGCCCTTGCAA	pET28_PA4844-LBD
PA4844-LBD_K	ACGCTGAC	
PA2573-I BD F	GTGCCGCGCGGCAGCCATATGCGCCTTGGGAAAGCA	
TA25/5-LDD_T	TTAAGTG	Construction of
PA2573 I RD R	ACGGAGCTCGAATTCGGATCCCTAACGCATGCTATCT	pET28_PA2573-LBD
$1A25/5-LDD_K$	TCACGCGC	
PA2788-I BD F	GTGCCGCGCGGCAGCCATATGAGTATGAGCATCTCG	
	CCGGAAA	Construction of
PA2788-LBD R	ACGGAGCTCGAATTCGGATCCCTACTGAGTATGCTG	pET28_PA2788-LBD
TA2700-LDD_K	AACAGAATCC	
PA/310-I BD F	GTGCCGCGCGGCAGCCATATGAATGATAGCTTACAG	
	CGTGCTT	Construction of
	ACGGAGCTCGAATTCGGATCCCTAGCTAGTGCGCAG	pET28_PA4310-LBD
IA4510-LDD_K	TTTGGTT	
PA/300-I BD F	GTGCCGCGCGGCAGCCATATGAACGACTACTTACAG	
	CGCAAC	Construction of
PAA300-LED P	ACGGAGCTCGAATTCGGATCCCTAGCTAACGCGAAA	pET28_PA4309-LBD
1 A+507-LDD _K	TTTTGACAGC	
PA4307-I BD F	GTGCCGCGCGGCAGCCATATGGACTACCGTCAGCGT	
	GAAG	Construction of
PA4307-LED P	ACGGAGCTCGAATTCGGATCCCTACGAGGTACGAAA	pET28_PA4307-LBD
TA+507-LDD_K	CTCTGAG	
PA4633-I BD F	GTGCCGCGCGGCAGCCATATGCGCACCCAAGAACTG	
1 A+035-LDD_1	GTTC	Construction of
PA4633-LED P	ACGGAGCTCGAATTCGGATCCCTAACTCATCCCCAG	pET28_PA4633-LBD
1 A4055-LDD_K	AATATCCTG	
	GTGCCGCGCGGCAGCCATATGCGCATGGGCAGCCTG	
TA1000-LDD_T	AACGA	Construction of
	ACGGAGCTCGAATTCGGATCCCTAGCTGTGGTATACT	pET28_PA1608-LBD
PA1608-LBD_K	TCATCA	
	GTGCCGCGCGGCAGCCATATGAAGAAGCAGGCCGAT	
1 A2032-LDD_1	GCCGA	Construction of
DA 7657 I DD D	ACGGAGCTCGAATTCGGATCCCTAGGTGCCGATGCG	pET28_PA2652-LBD
PA2032-LBD_K	CTCGTCAAT	

DA 5072 I BD E	GTGCCGCGCGGCAGCCATATGAGCAATCGTACCTTA	
1 A3072-LDD_1	ACCCATC	Construction of
	ACGGAGCTCGAATTCGGATCCCTAACGATCACGGGA	pET28_PA5072-LBD
FAJ0/2-LDD_K	CGCGGTA	
PA2867-I BD F	GTGCCGCGCGGCAGCCATATGCAACAAGAAGCCGCG	
	GGG	Construction of
PA2867-I BD R	ACGGAGCTCGAATTCGGATCCCTAACGATCTGCAAA	pET28_PA2867-LBD
	CACTTGCCAA	
PA2920-LBD F	GTGCCGCGCGGCAGCCATATGCAATTAAATGAAAGC	
	AATCAACG	Construction of
PA2920-LBD R	ACGGAGCTCGAATTCGGATCCCTACTGCTGCCAACG	pET28_PA2920-LBD
	ATGGC	
PA1251-LBD F	GTGCCGCGCGGCAGCCATATGCGCATGGGTAGCCTG	
	AATCG	Construction of
PA1251-LBD R	ACGGAGCTCGAATTCGGATCCCTAATCTGCCGCCTCA	pET28_PA1251-LBD
	GCTGTAGA	
PA1646-LBD F	GTGCCGCGCGGCAGCCATATGCAACGCTTTGCCCGC	
	TTACA	Construction of
PA1646-LBD R	ACGGAGCTCGAATTCGGATCCCTACGAATTTGTGCG	pET28_PA1646-LBD
	CAGGGAGTG	
PA2561-LBD F	GTGCCGCGCGGCAGCCATATGACCGGTGATGTGCGT	
	GCATAT	Construction of
PA2561-LBD R	ACGGAGCTCGAATTCGGATCCCTAGGTGCGACGCGC	pET28_PA2561-LBD
	CTCAGCGCT	
PA4520-LBD F	GTGCCGCGCGGCAGCCATATGTATCTGGTACGTGAC	
	GCATAC	Construction of
PA4520-LBD R	ACGGAGCTCGAATTCGGATCCCTACTGCGTACGGAC	pET28_PA4520-LBD
	CTGTTGT	
PA1608_MUT_F	AGTTTCGCCCTGATCACCG	Construction of
PA1608_MUT_R	TTCCTGGATGTTGGCGATCAT	pKNG101-PA1608
pKG116-seq_F	AAGCCATAAGGAGTACCATATG	Sequencing for hybrid
pKG116-seq_R	TTACTTATTTATCCGCGGATC	Chemoreceptor_T2&T3
pET28a-seq_F	GTGCCGCGCGGCAGCCATATG	Sequencing for LBD
pET28a-seq_R	ACGGAGCTCGAATTCGGATCCCTA	expression plasmids
Hybrid-Seq_F	AGCCATAAGGAGTACCATATG	Sequencing for hybrid

Hybrid-Seq_R	AGCAGAATCAATACCACCAC	Chemoreceptor_T1	
PA1608-T2_F1	AGCCATAAGGAGTACCATATGATGTCTTTGCGCAGT ATGCC		
PA1608-T2_R1	CCTTCGCGGACATGCTGGATGGTCTGGCGCAGTTG	Construction of PA1608- Tar_T2	
PA1608-T2_F2	CATCCAGCATGTCCGCGAAGGTTCAGAT		
Tar-T2_R2	GGATCCTCAAAATGTTTCCCAGTTT		
PA2652-T2 F1	AGCCATAAGGAGTACCATATGATGCGTCTGACCCTG		
172052-12_11	AA	Construction of PA2652-	
PA2652-T2_R1	CCTTCGCGGACATGCCGCACCAGACCGTGGATC	Tar_T2	
PA2652-T2_F2	GTGCGGCATGTCCGCGAAGGTTCAGAT		
Tar-T3_F	TTGATTCTGCTGGTGGCGTG	Construction for hybrid	
nVC116 Tor T2 D	TACTTATTTATCCGCGGATCCTCAAAATGTTTCCCAG	Chemorecentor T3	
pK0110_1ai-15_K	TTTGGATCTTG	enemoreceptor_15	
PA 5072-T3 F	AGCCATAAGGAGTACCATATGATGTATGATTGGTGG		
1115072 15_1	GTCTTG	Construction of PA5072-	
PA5072-T3 R	CCACCAGCAGAATCAANNNNNNNNNNNNNNNGGCT	Tar_T3	
11100/2 10_10	GCAATCAGCCATAA		
PA2867-T3 F	AGCCATAAGGAGTACCATATGATGGGTACGTGGATT		
	TCGGAT	Construction of PA2867-	
PA2867-T3 R	CCACCAGCAGAATCAANNNNNNNNNNNNNNAAGC	Tar_T3	
	ATCAGCACTAAAAC		
PA2920-T3_F	AGCCATAAGGAGTACCATATGATGCTGCAATGGTTC		
	GCC	Construction of PA2920-	
PA2920-T3_R	CCACCAGCAGAATCAANNNNNNNNNNNNNNNNAAAC	Tar_T3	
	AGTCCAAAGGCAAC		
PA1251-V3_F	AGCCATAAGGAGTACCATATGATGCTTCTTCGTCGCA	C () () (DA1251	
		Construction of PA1251-	
PA1251-T3_R		1ar_15	
PA1646-T3_F	CGTCG	Construction of PA 1646-	
	CCACCAGCAGAATCAANNNNNNNNNNNNAACC	Tar T3	
PA1646-T3_R	AGCAATGCTAAAAC	110	
	AGCCATAAGGAGTACCATATGATGCCTGCTTCTCCTG	Construction of PA2561-	
PA2561-T3_F	G	Tar_T3	

	DA 2561 T2 D	CCACCAGCAGAATCAANNNNNNNNNNNNNNNACCA	
	1A2501-15_K	ATCAGCACCAATGA	
	PA4520-T3 F	AGCCATAAGGAGTACCATATGATGAAAAACCGTATTG	
	174520-15_1	TACCCG	Construction of PA4520-
	PA4520-T3 P	CCACCAGCAGAATCAANNNNNNNNNNNNNNNCACC	Tar_T3
	1A+520-15_K	ACCGCCAACGCTGC	
93			
94			
05			
95			
96			
97			
98			
99			
100			
101			
102			
103			

Protein		Ligand		The second se		
Name	Concentration (µM)	Name	Concentration (mM)	1'emperature (°C)	C) Injection C) volume (μL)	Analysis buffer composition
PctA-LBD	39	L-ornithine	1	30	4.8	5 mM Tris, 5 mM Pipes, 5 mM Mes, 10 % glycerol (vol/vol), 150 mM NaCl, pH 7.0
PctB-LBD	50	L-ornithine	20	30	12.8	5 mM Tris, 5 mM Pipes, 5 mM Mes, 10 % glycerol (vol/vol), 150 mM NaCl, pH 7.0
PctC-LBD	120	Methyl 4-aminobutyrate	20	25	14.4	5 mM Tris, 5 mM Pipes, 5 mM Mes, 10 % glycerol (vol/vol), 150 mM NaCl, pH 7.0
	120	5-aminovalerate	5	25	3.2	
TlpQ-LBD	93	2-phenylethylamine	20	15	11.2	5 mM Tris, 5 mM Pipes, 5 mM Mes, 10 %
	147	Tyramine	20	25	6.4	glycerol (vol/vol), 150 mM NaCl, pH 7.0
PA1608-LBD	65	Hypoxanthine	2	20	4.8	10 mM sodium phosphate, pH 5.5
PA4915-LBD	92	2-phenylethylamine	5	25	12.8	40 mM Potassium phosphate, 10 % glycerol (vol/vol), pH 7.0

104 Table S4 Experimental conditions used for microcalorimetric titrations

115

114 References

1.

116 CG, Park HS, Ségurens B, Kim SC, Oh TK, Lenski RE, Studier FW, Daegelen P, Kim JF. 2009. Genome 117 sequences of Escherichia coli B strains REL606 and BL21(DE3). J Mol Biol 394:644-652. 118 2. Woodcock DM, Crowther PJ, Doherty J, Jefferson S, Decruz E, Noyer-Weidner M, Smith SS, Michael MZ, 119 Graham MW. 1989. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine 120 methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469-3478. 121 3. Ames P, Studdert CA, Reiser RH, Parkinson JS. 2002. Collaborative signaling by mixed chemoreceptor 122 teams in Escherichia coli. Proc Natl Acad Sci U S A 99:7060-7065. 123 Sourjik V, Berg HC. 2004. Functional interactions between receptors in bacterial chemotaxis. Nature 4. 124 428:437-441. 125 5. Herrero M, De Lorenzo V, Timmis KN. 1990. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J 126 127 Bacteriol 172:6557-6567. 128 6. Holloway BW, Krishnapillai V, Morgan AF. 1979. Chromosomal genetics of Pseudomonas. Microbiol Rev 129 43:73-102. 130 7. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy 131 R, Chun-Rong L, Guenthner D, Bovee D, Olson M V., Manoil C. 2003. Comprehensive transposon mutant 132 library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100:14339-14344. 133 8. Kim HE, Shitashiro M, Kuroda A, Takiguchi N, Kato J. 2007. Ethylene Chemotaxis in Pseudomonas 134 aeruginosa and Other Pseudomonas Species. Microbes Environ 22:186-189. 135 9. Kuroda A, Kumano T, Taguchi K, Nikata T, Kato J, Ohtake H. 1995. Molecular cloning and characterization 136 of a chemotactic transducer gene in Pseudomonas aeruginosa. J Bacteriol 177:7019. 137 10. Taguchi K, Fukutomi H, Kuroda A, Kato J, Ohtake H. 1997. Genetic identification of chemotactic 138 transducers for amino acids in Pseudomonas aeruginosa 3223-3229. 139 Martín-Mora D, Ortega A, Reyes-Darias JA, García V, López-Farfán D, Matilla MA, Krell T. 2016. 11. 140 Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis 141 Toward α-Ketoglutarate. Front Microbiol 7.

Jeong H, Barbe V, Lee CH, Vallenet D, Yu DS, Choi SH, Couloux A, Lee SW, Yoon SH, Cattolico L, Hur

Burón-Barral MDC, Gosink KK, Parkinson JS. 2006. Loss- and gain-of-function mutations in the F1-HAMP
 region of the *Escherichia coli* aerotaxis transducer Aer. J Bacteriol 188:3477–3486.

144 145	13.	Kaniga K, Delor I, Cornelis GR. 1991. A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of <i>Yersinia enterocolitica</i> . Gene 109:137–141.
146	14.	Bi S, Jin F, Sourjik V. 2018. Inverted signaling by bacterial chemotaxis receptors. Nat Commun 9.
147 148	15.	Bi S, Pollard AM, Yang Y, Jin F, Sourjik V. 2016. Engineering Hybrid Chemotaxis Receptors in Bacteria. ACS Synth Biol 5:989–1001.
149 150	16.	Reyes-Darias JA, Yang Y, Sourjik V, Krell T. 2015. Correlation between signal input and output in PctA and PctB amino acid chemoreceptor of <i>Pseudomonas aeruginosa</i> . Mol Microbiol 96:513–525.
151 152 153	17.	Reyes-Darias JA, García V, Rico-Jiménez M, Corral-Lugo A, Lesouhaitier O, Juárez-Hernández D, Yang Y, Bi S, Feuilloley M, Muñoz-Rojas J, Sourjik V, Krell T. 2015. Specific gamma-aminobutyrate chemotaxis in <i>pseudomonads</i> with different lifestyle. Mol Microbiol 97:488–501.
154 155	18.	Matilla MA, Velando F, Tajuelo A, Martín-Mora D, Xu W, Sourjik V, Gavira JA, Krell T. 2022. Chemotaxis of the Human Pathogen <i>Pseudomonas aeruginosa</i> to the Neurotransmitter Acetylcholine. MBio 13.
156		