Supplementary Material to:

Diagnostic performance of host protein signatures as a triage test for active pulmonary TB

Lisa Koeppel^{1*}, Claudia M Denkinger^{1,2,7}, Romain Wyss², Tobias Broger^{1,2}, Novel N Chegou⁸, Jill M Dunty³, Kerry Scott³, Tatiana Cáceres⁴, Elloise Dutoit⁵, Cesar Ugarte-Gil^{4,11}, Mark Nicol^{5,6}, Eduardo Gotuzzo⁴, Paul L A M Corstjens⁹, Annemieke Geluk¹⁰, Jayne Sutherland¹², George B Sigal³, Emmanuel Moreau², Audrey Albertini², Anna Mantsoki², Stefano Ongarello², Gerhard Walzl⁸, Marta Fernandez Suarez²

¹Division of Infectious disease and Tropical Medicine, University of Heidelberg, Heidelberg, Germany

²FIND, Geneva, Switzerland

³Meso Scale Diagnostics, LLC., Rockville, Maryland, United States of America

⁴Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú

⁵Division of Medical Microbiology at the University of Cape Town (UCT), Cape Town, South Africa

⁶Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia

⁷German Center for Infection Research (DZIF), Heidelberg University Hospital Partner Site, Heidelberg, Germany

⁸DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical

Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human

Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South

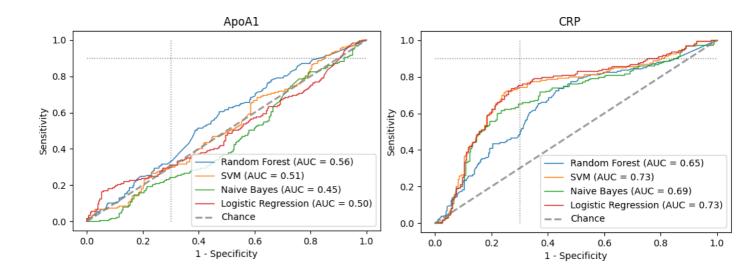
Africa

⁹Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden,

Netherlands

¹⁰Department of Infectious Diseases, Leiden University Medical Center, Leiden, The

Netherlands


¹¹School of Medicine, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru

¹²TB Research Group, Vaccines and Immunity Theme, MRC Unit The Gambia at LSHTM, Fajara,

The Gambia.

*Corresponding author Email: Lisa Koeppel, l.koeppel@uni-heidelberg.de

Figure S1: Performance of ApoA1 and CRP individually

Caption: The dotted line indicates the TPP with 90% sensitivity and 70% specificity.

Abbreviations: SVM: Support Vector Machine; AUC: area under the curve

Figure S2: When excluding I-309, taking more than 3 biomarkers did not substantially improve accuracy of the prediction towards the TPP.

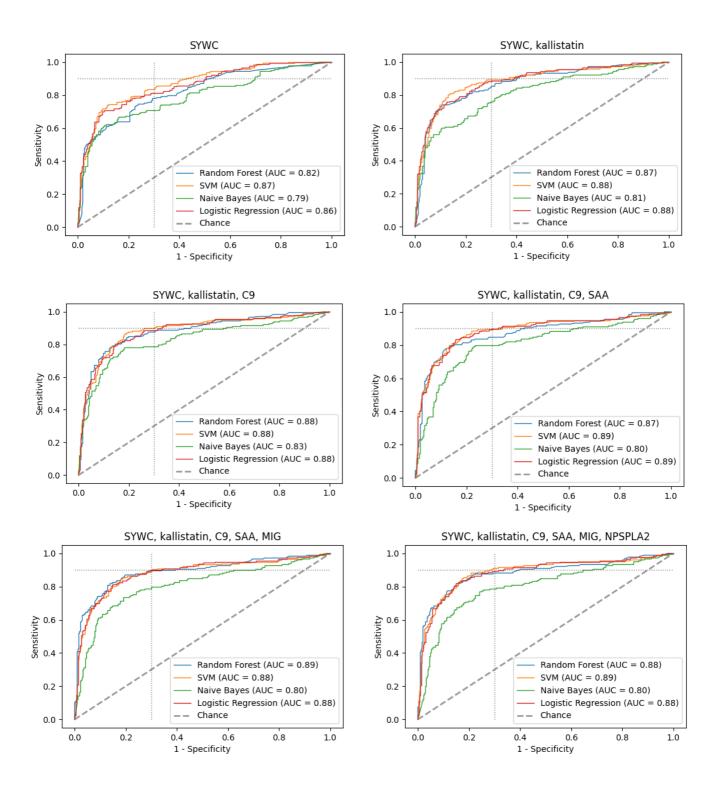


Figure S3: Most promising biomarker combination for HIV positive patients reaching minimal target accuracy of the TPP with all algorithms except Naïve Bayes. The sample size is 110.

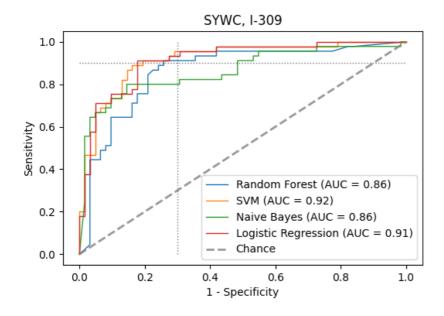


Table S1: Quantitative data on concentration and fold-changes of the single host markers at the global level

Host marker	Quantative value	Quantative value	Fold change
	TB positives	TB negative	TB negative/
	Mean, [25th and 75th	Mean, [25th and 75th	TB positive
	percentiles]	percentiles]	Mean, [25th and 75th
			percentiles]
NPS-PLA2	244205	100354	0.41
	[23340, 262547]	[10250, 38946]	[0.44, 0.15]
SYWC	201565	60320	0.3
	[74824, 245329]	[32178, 67047]	[0.43, 0.27]
C9	87393926	58914995	0.67
	[58647252, 104369085]	[34953155, 69637726]	[0.6, 0.67]
LBP	10638841	5779719	0.54
	[4960943, 12109847]	[2566144, 6192901]	[0.52, 0.51]
CRP	184468404	67569950	0.37
	[44442307, 260598048]	[2747640, 44603133]	[0.06, 0.17]
SAA	270013188 [22332527, 301088370]	131027361 [2291012, 29324382]	0.49 [0.1, 0.1]
Kallistatin	16858488	26393738	1.57
	[10120463, 20992742]	[17787049, 30075939]	[1.76, 1.43]
Ferritin	640926	342358	0.53
	[175864, 735009]	[72881, 416977]	[0.41, 0.57]
ApoA1	2137295290	10841296498	5.07
	[626983785, 1542702584]	[977186634, 1921571968]	[1.56, 1.25]
IP-10	1958	571	0.29
	[487, 2348]	[173, 599]	[0.36, 0.25]
I-309	126	24	0.19
	[36, 100]	[15, 27]	[0.41, 0.27]
MIG	6266	1558	0.25
	[2082, 6809]	[585, 1704]	[0.28, 0.25]

Table S2: Quantitative data on concentration and fold-changes of the single host markers in Peru for the top 3 performing host markers

Host marker	Quantative value	Quantative value	Fold change
Ranking	TB positives	TB negative	TB negative/
	Mean, [25th and 75th	Mean, [25th and 75th	TB positive
	percentiles]	percentiles]	Mean, [25th and 75th
			percentiles]
Best: SYWC	165617, [75509, 210373]	32060, [21220, 31858]	0.19 [0.28, 0.15]
2 nd best: CRP	215182996, [69348432, 289583579]	13990406, [2853470, 13741375]	0.07 [0.04, 0.05]
3 rd best: I-309	86, [47, 92]	22, [13, 25]	0.26, [0.29, 0.27]

Table S3: Quantitative data on concentration and fold-changes of the single host markers in South Africa for the top 3 performing host markers

Host marker	Quantative value	Quantative value	Fold change
Ranking	TB positives	TB negative	TB negative/
	Mean, [25th and 75th	Mean, [25th and 75th	TB positive
	percentiles]	percentiles]	Mean, [25th and 75th
			percentiles]
Best: I-309	177, [47, 162]	23, [14, 24]	0.13, [0.3, 0.15]
2 nd best: SYWC	248059, [137744, 308120]	77205, [44388, 89431]	0.31, [0.32, 0.29]
3 rd best: MIG	6800, [3133, 8563]	1626, [439, 1934]	0.24, [0.14, 0.23]

Table S4: Quantitative data on concentration and fold-changes of the single host markers in Vietnam for the top 3 performing host markers

Host marker	Quantative value	Quantative value	Fold change
	TB positives	TB negative	TB negative/
	Mean, [25 th and 75 th	Mean, [25 th and 75 th	TB positive
	percentiles]	percentiles]	Mean, [25 th and 75 th
			percentiles]
Best: SYWC	249225, [68864, 273974]	65683, [41459, 72606]	0.26, [0.6, 0.27]
2 nd best: I-309	135, [34, 75]	27, [17, 31]	0.2 [0.5, 0.42]
3 rd best: IP-10	2052, [500, 2020]	644, [336, 647]	0.31 [0.67, 0.32]

Table S5: Definition of TB status

Description	TB status
Positive MTB culture	Definite tuberculosis
	(smear pos / smear neg)
Negative MTB culture, negative smear and response to TB	Clinical tuberculosis
treatment	
Smear negative, Xpert and culture negative on all sputum	Non-tuberculosis disease
samples and exhibition symptom resolution in the	
absence of tuberculosis treatment at the 2–3-month	
follow-up visit	

Table S6: Biomarker combinations ranked according to their value of the negative loglikelihood stratified by country

No of	Best combination	Second best combination	Third best combination
biomarkers	[marker(s)] Loglikelihood,	[marker(s)] Loglikelihood,	[marker(s)] Loglikelihood,
combined	AUC for logistic regression	AUC for logistic regression	AUC for logistic regression
South Africa			
1	[I-309] 60, 0.89	[SYWC] 66, 0.90	[MIG] 73, 0.89
2	[SYWC, I-309]	[C9, I-309]	[kallistatin, I-309]
l	51, 0.93	52, 0.90	55, 0.89
3	[SYWC, I-309, C9]	[I-309, C9, SAA]	[I-309, SYWC, SAA]
	47, 0.93	48, 0.91	50, 0.93
Peru			
1	[SYWC] 26, 0.88	[CRP] 29, 0.88	[1-309] 29, 0.90
2	[SYWC, C9]	[ApoA1, CRP]	[I-309, SYWC]
	40.1, 0.92	40.5, 0.88	40.6, 0.92
3	[SYWC, I-309, ApoA1]	[SYWC, CRP, ApoA1]	[SYWC, C9, ApoA1]
	19, 0.93	19, 0.91	20, 0.92
Vietnam			
1	[SYWC] 74, 0.84	[I-309] 82, 0.82	[IP-10] 89, 0.76
2	[SYWC, Ferritin]	[SYWC, I-309]	[SYWC, kallistatin]
	73, 0.84	74, 0.84	74, 0.83
3	[SYWC, I-309, Ferritin]	[SYWC, Ferritin, kallistatin]	[SYWC, kallistatin, SAA]
	72, 0.84	73, 0.83	73, 0.83

Text S1: Additional information regarding MSD U-PLEX assay testing

For each host biomarker, antibodies were first screened to identify suitable antibody pairs when not previously identified by MSD (kallistatin, NPS-PLA2, SYWC, ferritin) and single-plex testing was conducted for calibrator titration and native protein recognition in human serum. Then, feasibility of multiplexing and further qualification of the panels were performed by

collecting data on cross-reactivity between the members of the panel, calibrator curves, dilution linearity in diluent, spike recovery in diluent, reproducibility and finally stability of the host biomarkers in human serum.

Each plate run during sample testing included a set of eight calibration samples (created by a 1:4 serial dilution of the assay calibration standard), the three controls and up to 37 serum samples, all run in duplicate. The assays were calibrated by fitting the relationship of the calibration sample signals to their assigned concentrations with a four-parameter logistic (4-PL) model using 1/Y² weighting. Quantitation of the samples and controls was carried out by back-fitting the assay signals to the 4-PL model, and then correcting for the sample dilution.

The custom assay panels were created using antibodies pairs that are available commercially from MSD as R-PLEX® or U-PLEX antibody sets, with the exception of the NPS-PLA2 and SYWC assays, which used prototype antibody pairs selected specifically for this study. The custom panels were qualified through verification studies characterizing cross-reactivity between the assay targets in each panel, dilution linearity in diluent, spike recovery in diluent,

reproducibility and stability of the host biomarkers in human serum.