
Supplementary Information for

ProRefiner: An Entropy-based Refining

Strategy for Inverse Protein Folding with

Global Graph Attention

Xinyi Zhou1, Guangyong Chen2*, Junjie Ye3, Ercheng
Wang2,4, Jun Zhang5, Cong Mao5, Zhanwei Li2, Jianye

Hao3, Xingxu Huang2, Jin Tang2 and Pheng Ann Heng1,2

1Department of Computer Science and Engineering, The Chinese
University of Hong Kong, Central Ave, Hong Kong, China.

2Zhejiang Lab, Kechuang Avenue, Hangzhou, China.
3Noah’s Ark Lab, Huawei, Shenzhen, China.

4College of Pharmaceutical Sciences, Zhejiang University,
Hangzhou, China.

5State Key Laboratory of Reproductive Medicine, Nanjing
Medical University, Nanjing, China.

*Corresponding author(s). E-mail(s): gychen@zhejianglab.com;

The PDF file includes:
Supplementary Table 1 to Supplementary Table 6

1



Supplementary Results

Model Perplexity

Perplexity is a useful and commonly reported metric for evaluating autore-
gressive language models. Since autoregressive models generate a token based
on all previous tokens, the probability of a sequence could be computed by the
chain rule, and the model perplexity could be calculated from the probability
of the dataset. Previous inverse folding models generally fall into this category.
However, our ProRefiner belongs to the class of masked language models, such
as BERT, which are discriminative models trained to predict missing tokens
in a given input sequence, and as such, the chain rule does not apply [1, 2],
making perplexity ill-defined for these models [3, 4].

Therefore, we compute the pseudo-perplexity developed for masked lan-
guage models following [4], which is not theoretically well justified but can still
approximate sequence probabilities. In Supplementary Table 1, ProteinMPNN
and ESM-IF1 in the first group are trained on their customized dataset and
other three models are trained on CATH training set.

Supplementary Table 1 Perplexity of models. Perplexity of ProRefiner is
pseudo-perplexity computed following [4].

Model CATH TS50 Latest PDB EnzBench BR EnzBench

ProteinMPNN 5.41 5.12 4.39 4.50 4.92

ESM-IF1 3.99 3.43 2.82 2.95 3.39

GVP-GNN 5.44 4.94 4.43 4.43 5.13

ProteinMPNN-C 5.21 4.52 3.83 3.89 4.47

ProRefiner 3.90 3.62 3.10 3.15 3.67

Sequence Refining on Partial Sequence Design

We have showcased the application of ProRefiner as an add-on module for
refining base models’ sequences within the context of entire sequence design.
However, it is important to note that this application is not limited to entire
sequence design. In this section, we apply the proposed entropy-based mask
and subsequently refinement on partial sequence design. To demonstrate this,
we conduct experiments with base model ESM-IF1. Supplementary Table 2
presents the performance of ESM-IF1 and ProRefiner + ESM-IF1 on partial
sequence design. Note that the first group of models in the table is trained
on CATH training split while ESM-IF1 is trained on a significantly larger
dataset. The results demonstrate that while ESM-IF1 achieves high recovery
and nssr on its own, applying the proposed refinement by ProRefiner can
further enhance performance.
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Supplementary Table 2 Median sequence recovery rates and nssr scores on EnzBench
and BR EnzBench. Data in brackets reports the 95% confidence interval of the median,
estimated from 10,000 bootstrap samples. The three models in the first group are trained
on CATH training split, while ESM-IF1 is trained on a larger customized dataset.

EnzBench BR EnzBench
n = 51 n = 320

Recovery % nssr % Recovery % nssr %

GVP-GNN 41.38[36.36,42.86] 57.89[55.00,63.16] 29.41[27.27,31.58] 47.83[47.37,52.17]

ProteinMPNN-C 52.00[50.00,59.09] 70.00[65.00,77.78] 40.91[40.00,42.48] 60.00[59.09,60.87]

ProRefiner 57.89[55.00,63.64] 73.68[70.59,78.26] 43.48[41.64,44.44] 60.87[59.09,63.64]

ESM-IF1 60.71[57.89,66.67] 77.27[68.42,81.25] 52.63[50.00,56.52] 72.00[69.57,73.91]

ProRefiner+ESM-IF1 64.29[61.11,72.73] 81.82[75.00,85.71] 54.55[50.00,59.09] 72.00[69.57,72.73]

Target Structure Recovery

We investigate how well the designed sequences can fold into target struc-
tures. We conduct structural evaluation on TS50 and CATH datasets for entire
sequence design and EnzBench dataset for partial sequence design. For par-
tial sequence design, we additionally report the performance of ESM-IF1 and
ProRefiner + ESM-IF1 as in previous section. We predict the structures of
designed sequences and report their TM-score and RMSD compared to tar-
get structures, and the pLDDT computed by the folding algorithm. Due to
limited resources, we utilized Alphafold2, a computationally intensive and
resource-demanding method, to fold the two relatively small datasets, TS50
and EnzBench. We run Alphafold2 with both MSA and searched templates
and select the top-ranked structures as our predicted structures. Meanwhile,
we employ ESMFold [5] for folding the largest dataset, CATH. We run 3
recycles for each sequence. Results are reported in Supplementary Table 3 ∼
Supplementary Table 5.

We observe that the sequence recovery and structural recovery of the
model are not positively correlated. While some methods, such as ESM-IF1
and ProRefiner, achieves significantly higher sequence recovery than other
methods, their improvement in structure recovery is limited. Meanwhile, the
discrepancies in structure recovery among the models are significantly smaller
than those in sequence recovery. Models exhibit similar levels of structure
recovery, despite the variations in their performance of sequence prediction
accuracy. We believe that this may be due to the fact that the recovery of
target structures is a more complex metric than sequence recovery. It is influ-
enced by a variety of factors beyond the accuracy of the predicted sequence,
including the accuracy of the folding algorithm itself. We also speculate that
prior models may have hit an accuracy ceiling for structure recovery when rely-
ing solely on optimizing sequence recovery as training objective, as evidenced
by their similar structure recovery performance. Overcoming this may require
directly optimizing structure recovery in an end-to-end framework. We plan
to investigate the problem and explore this direction in future research.
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Supplementary Table 3 The median TM-score, RMSD and pLDDT for predicted
structures on dataset TS50 (n = 50). Data in brackets reports the 95% confidence interval
of the median, estimated from 10,000 bootstrap samples. Alphafold2 is used to predict the
structures of sequences designed by models.

Model TM-score ↑ RMSD ↓ pLDDT ↑
ProteinMPNN 0.971[0.962,0.977] 0.948[0.693,1.136] 95.163[94.222,95.924]

ProRefiner + ProteinMPNN 0.967[0.960,0.973] 0.940[0.809,1.091] 94.679[94.184,95.584]

ProteinMPNN-C 0.969[0.961,0.973] 0.997[0.746,1.223] 94.716[94.291,95.295]

ProRefiner + ProteinMPNN-C 0.971[0.960,0.976] 0.886[0.777,1.156] 95.362[94.240,95.553]

ESM-IF1 0.974[0.966,0.981] 0.838[0.722,1.116] 95.186[94.253,96.045]

ProRefiner + ESM-IF1 0.972[0.963,0.978] 0.873[0.754,1.152] 94.853[94.147,95.688]

Supplementary Table 4 The median TM-score, RMSD and pLDDT for predicted
structures on dataset CATH (n = 1,120). Data in brackets reports the 95% confidence
interval of the median, estimated from 10,000 bootstrap samples. ESMFold is used to
predict the structures of sequences designed by models.

Model TM-score ↑ RMSD ↓ pLDDT ↑
ProteinMPNN 0.861[0.852,0.867] 10.851[10.099,11.500] 82.315[81.909,82.698]

ProRefiner + ProteinMPNN 0.848[0.840,0.858] 11.151[10.286,11.686] 82.069[81.527,82.443]

ProteinMPNN-C 0.845[0.836,0.852] 11.142[10.462,11.836] 80.574[80.141,81.031]

ProRefiner + ProteinMPNN-C 0.848[0.835,0.855] 11.026[10.283,11.762] 80.996[80.469,81.585]

ESM-IF1 0.854[0.846,0.862] 10.827[10.242,11.629] 81.693[81.224,82.230]

ProRefiner + ESM-IF1 0.852[0.847,0.862] 10.897[10.324,11.664] 81.976[81.286,82.476]

Supplementary Table 5 The median TM-score, RMSD and pLDDT for predicted
structures on dataset EnzBench (n = 51). Data in brackets reports the 95% confidence
interval of the median, estimated from 10,000 bootstrap samples. Alphafold2 is used to
predict the structures of sequences designed by models.

Model TM-score ↑ RMSD ↓ pLDDT ↑
GVP-GNN 0.977[0.964,0.983] 0.906[0.622,1.570] 95.365[93.981,96.326]

ProteinMPNN-C 0.983[0.971,0.990] 0.812[0.528,1.171] 95.598[94.775,96.890]

ProRefiner 0.982[0.972,0.988] 0.848[0.608,1.143] 95.974[94.742,96.466]

ESM-IF1 0.981[0.971,0.989] 0.833[0.523,1.260] 96.118[94.871,96.695]

ProRefiner + ESM-IF1 0.983[0.972,0.990] 0.804[0.517,1.015] 96.112[94.869,96.801]

Comparison with Vanilla Global Attention

In addition to the Inverse Protein Folding task, we conduct experiments on the
following evaluation tasks to compare the predictive performance of the pro-
posed memory-efficient global attention and the vanilla self-attention. We still
use ProRefiner to denote the models with the memory-efficient global atten-
tion layers, and ProRefiner - PsFeat to denote the models using the original
global attention layers.

• Relative Solvent Accessibility (RSA). We train models to predict the relative
solvent accessibility of residues. Both models have 4 attention layers and
model inputs are protein sequences and backbone structures. Input residue

4



graphs are constructed as in Inverse Protein Folding. A scalar between 0
and 1 is output for each residue through a Sigmoid layer. We employ DSSP
program [6] to calculate the RSA of each residue in CATH dataset, and
evaluate on its testing split. Evaluation metric is the Pearson correlation
coefficient between predicted and actual RSA.

• Ligand Binding Affinity (LBA) We predict the binding affinity of ligands
to their corresponding proteins based on the co-crystallized structure of the
protein-ligand complex. Both models have 4 attention layers. Model inputs
are the atoms of the pocket and ligand. An atom graph is constructed for
each protein-ligand pair by connecting each atom with its 64 nearest neigh-
bors. The models are trained to predict − log(K), where K is the binding
affinity in Molar units. We employ the LBA dataset from [7] split by 30%
sequence identity. Evaluation metric is the Pearson correlation coefficient
between predicted and actual affinity.

• Small Molecule Properties (SMP) We predict two properties of small
molecules: dipole moment (µ) and zero point vibrational energy (ZPVE).
Both models have 4 attention layers. Model inputs are the atoms of
molecules. Two atoms are connected in a graph if their distance is less than
4.5 Å. The models are trained to predict the corresponding property of the
molecule. We employ the SMP dataset from [7] and use mean absolute error
as metric.

Supplementary Table 6 Performance of ProRefiner and ProRefiner - PsFeat on 4 tasks.
The metric for RSA and LBA is Pearson correlation between the predicted values and true
values of all samples in the datasets (higher the better). The metric for SMP tasks is mean
absolute error (lower the better). Data in brackets reports the 95% confidence interval of
the mean, estimated from 10,000 bootstrap samples.

RSA LBA SMP - µ SMP - ZPVE

n = 172,106 n = 490 n = 12,943 n = 12,943

ProRefiner - Psfeat 0.897 0.542 0.153[0.150,0.156] 4.626e− 4[4.550e−4,4.705e−4]

ProRefiner 0.888 0.539 0.166[0.162,0.169] 6.112e− 4[5.989e−4,6.238e−4]

According to results in Supplementary Table 6, the performance of ProRe-
finer is slightly worse but remains generally comparable to that of ProRefiner
- PsFeat on all tasks.
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