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Reviewer #1 (Remarks to the Author):

This paper addresses the problem of predicting amino acid sequences that can lead to specific
protein 3D structures. It introduces two interesting ideas, an entropy-based approach for removing
‘noise’ in the residue features and memory-efficient attention with edge awareness.

First, the scope of memory-efficient graph attention is much broader than the problem of inverse
protein folding (IPF.) For example, AlphaFold2’s row attention includes a bias term accounting for
edge-features scales quadratically and the pair-representation track scales cubically (to account
for the triangular inequality). It would be interesting in future works to see how memory-efficient
graph attention could be applied to tasks beyond (IPF.)

Despite the interesting ideas introduced in the manuscript, I had difficulty following the flow of the
discussion and, more importantly, the exact meaning of ‘our model.’

For example, the ‘memory-efficient global graph attention mechanism’ discussion in the main text,
starting on page 4, is not particularly informative. Either it targets readers without prior knowledge
about vanilla attention, and I do not think they can follow much of the arguments, or those
familiars with the attention mechanism, the discussion is relatively shallow.

Returning to the ‘model’ in the Results section, I do not understand what is reported in Table 1. On
top of reporting the performance of existing models (GVP, ProteinMPNN, and ESM), I would expect
one row reporting the model results, which combines the entropy-based approach and the
memory-efficient attention graph attention (with and without partial sequences). I do not
understand the meaning of ‘Ours GVP-GNN,’ and the same for ProteinMPNN and ESM. Moreover,
what is the meaning of ‘Ours’ in Table 2?

For example, is ‘Ours ESM’ trained using the same regimen as the original ESM, using 12M
additional structures predicted from AlphaFold2?

On top of recovery and nssr, it would be interesting to report the perplexity. If I understand
correctly what the authors mean by noise, this could be related to the perplexity score.

I am unsure of the difference between the results in Table 1 and Fig3.A. I understand that Table.1
reports results about partial sequences and Fig 3.A about whole sequences.

The main results reported in Table 1 should be about the entire sequence case (and not partial
sequence), as this is the standard in the literature.

The ablation study assessing the relative importance of global attention and partial input is run by
considering on EnzBench and BR_EnzBench. Running such an ablation on CATH would have been
more interesting, as it allows direct comparison with existing models.

The global graph attention model updates the node and edge features. I have a comment
regarding the edge update on Equation 11. A naive update like in Eq.11 may violate the triangular
inequalities, i.e., edge features that have to fulfill the triangular inequality are not independent.
Such a condition is enforced in AlphaFold2 by considering a cubic update; roughly, an edge e_ij is
updated conditioned on all k: e_ik e_kj. I am curious if the authors thought of such constraints.

Reviewer #2 (Remarks to the Author):

In the manuscript, the authors proposed a refinement model for inverse protein folding, which
designs sequences that are consistent with a given backbone structure and partial sequence
information. The model utilizes an entropy-based masking strategy to construct partial sequence
context for later sequence prediction. In addition, the model introduces pseudo edge features
shared by non-existing edges in its graph model, which significantly reduces the memory usage
compared to fully-connected graph neural networks. The potential significance of this manuscript



comes from two key aspects: first, improvements in the inverse folding process facilitate
structure-based de novo protein design; second, a memory-efficient graph neural network of
equivalent model performance offers a powerful mechanism for reasoning with larger proteins.

However, there are two major concerns with the conclusion drawn from this manuscripts:

1. The authors evaluated model performance based on sequence recovery rate and native
sequence similarity recovery. However, it is unclear how well these designed sequences fold into
the target structures. It is possible that a model with lower sequence recovery rate generates
sequence designs better matching with input target structures. Thus, further in-silico structural
validations are essential for demonstrating the effectiveness of the proposed refinement method.
2. Memory-efficient global attention layer utilizes a shared pseudo edge feature for non-existing
edges in order to save memory. While the authors illustrate the model’s memory advantage in
Figure 6E, it is crucial to compare the predictive performance between the memory-efficient global
attention layer and the original global attention layer (and preferably across several evaluation
tasks). Given provided information in the manuscript, it is inconclusive on the effectiveness and
usefulness of the proposed memory-efficient global attention layer.

In addition, there are several points that requires further clarifications:

1. Details on how base models are trained and evaluated for both entire sequence design and
partial sequence design are needed to better understand the performance of the proposed
refinement model. For example, ProteinMPNN, to some degree, exhibits a tradeoff between
sequence recovery ratio and in-silico success rate, controlled by the training noise level. Thus, it is
important to provide the backbone noise ratio for the ProteinMPNN model used.

2. For full sequence inverse folding, the model relies on base models to generate partial sequence.
What is the strength of the entropy-based mask? What is the percentage of residues that are
provided as context for the later model?

3. For partial sequence design, is ProteinMPNN retrained with partial sequence provided as input?
If not, how are GVP-GNN and ProteinMPNN used for partial sequence design? Moreover, how does
ESM perform on partial sequence design?

4. At training time, what percentage of the residues are masked as unknown?

5. How much overlapping is there among the three evaluation datasets?

Reviewer #3 (Remarks to the Author):

Zhou et al propose a methodology for improving inverse protein folding. In order to demonstrate
the new method a proof of principle is performed in TnpB, a very interesting programmable
nuclease with a compact size.

#general comments
1.TnpB mutant characterization would benefit of more detailed analysis:

-Offtarget activity. The authors hypothesize that a more positive surface increases activity.
However, one concerning possibility is a drop in specificity. Indeed, engineering non specific
charge residues has been use to refine specificity of the related cas9 protein (see Slaymaker et al,
Science 2016). The authors may need to compare offtarget of these nucleases to WT or at least
mention this risk of off-target increase.

-On-target assessment of programmable nuclease activity was performed with nextGen
sequencing followed by indel counting. More details would need to be provided. Additionally, it
would be ideal to use an established methodology to perform this analysis such as CRISPRESSO,
CRISPR-A, CRISPRseek, ... due to the complexities associated with gene editing efficiency
assessment.

#minor comments

"....(TnpB) is considered to be an evolutionary precursor to CRISPR-Cas system effector protein..."



- CRISPR cas has multiple origins, it seems that TnpB is a likely precursor of Cas12 CRISPR cas
enzymes (Altae-Tran et al, Science 2021). I would rephrase to clarify.



1 Reply to Reviewer 1
1.1 Comment NO. 1

First, the scope of memory-efficient graph attention is much broader than the
problem of inverse protein folding (IPF.) For example, AlphaFold2’s row atten-
tion includes a bias term accounting for edge-features scales quadratically and
the pair-representation track scales cubically (to account for the triangular
inequality). It would be interesting in future works to see how memory-efficient
graph attention could be applied to tasks beyond (IPF.)

Response We would like to express our sincere gratitude to the reviewer for
bringing to our attention the potential direction for future work. The memory-
efficient graph attention module presents an efficient way to model graph-
structured data where global dependency is crucial within the structure. We
will consider applying it to other protein-related tasks and also to the study
of other biomolecules. We have included this future work direction into the
revised manuscript in Conclusion Section. Additionally, in response to the
Comment NO. 2 by Reviewer 2, we have presented preliminary results that
demonstrate the application of our proposed memory-efficient graph attention
to various tasks. The obtained results are comparable to current SOTA results,
indicating the potential of the proposed model architecture.

1.2 Comment NO. 2

Despite the interesting ideas introduced in the manuscript, I had difficulty fol-
lowing the flow of the discussion and, more importantly, the exact meaning of
‘our model.’

Response We apologize for any unclear writing. We agree that the current
wording tend to cause confusion and misunderstanding. Therefore, we have
renamed the proposed model as ”"ProRefiner” in the revised manuscript. We
hope that this clarification will make it easier to follow our work.

In our manuscript, the term ”Our model”, or the ProRefiner in the revise ver-
sion, refers to the proposed sequence refining model. The model is tasked with
BERT [1]-like sequence inpainting conditioned on protein structures. Specifi-
cally, we mask random residues on sequences during training. The model takes
the masked partial sequences and backbone structures as input and learns to
reconstruct the whole sequences. During inference, the input partial sequence
to the model could be constructed in two ways, which leads to two use cases of
ProRefiner. The first one involves using it as a plug-and-play plugin to refine
sequences designed by other base models. We develop an entropy-base residue
selection method to select high-quality predictions from existing models, form-
ing a denoised partial sequence that can be utilized as input for ProRefiner.
This use case is illustrated in Entire Sequence Design Section. We validate
ProRefiner’s ability to consistently refine and improve the sequences designed
by base models, and show its generalizability by experimenting with various



base models. The second use case is to inpaint partial sequences that are pro-
vided as fixed design context. In this setting, the fixed residues can naturally
serve as an oracle partial input sequence to ProRefiner. We illustrate this use
case in Partial Sequence Design Section, where models predict residues on
design shells while amino acids on other positions are fixed.

In summary, the two use cases of ProRefiner differ in the starting sequences of
the design, which can either be from base models or given as context. Together
they demonstrate ProRefiner’s ability to leverage residue environment and
generate high-quality sequences.

We have modified the model introduction part accordingly in Introduction
Section in the manuscript to make the description more clear.

1.3 Comment NO. 3

For example, the ‘memory-efficient global graph attention mechanism’ discus-
sion in the main text, starting on page 4, is not particularly informative. Fither
it targets readers without prior knowledge about vanilla attention, and I do
not think they can follow much of the arguments, or those familiars with the
attention mechanism, the discussion is relatively shallow.

Response Thank you for your valuable feedback on the discussion of
‘memory-efficient global graph attention mechanism’ part. We intended to
provide background information on attention in graph domain for readers with-
out much prior knowledge, and also explain our motivation to propose the
‘memory-efficient global graph attention’. We agree that this part of discus-
sion is not clear enough for readers to follow. We have revised this paragraph
in the manuscript for clarity and depth to the following:

Attention mechanism has been proven effective in modeling global dependen-
cies for sequential data [2]. However, adapting attention to the graph domain
is challenging. Specifically, attention mechanism calculates attention weights
between any two nodes based on their features. For graphs, this requires storing
and manipulating a square matrix of size equal to the number of nodes, which
neglects the sparsity of graph structures and increases the memory complex-
ity to quadratic in terms of node count, posing scalability issues [3, 4]. Some
methods circumvent this by confining attention within node neighborhoods,
losing the global view that makes attention powerful [5-7].

Moreover, these methods do not fully utilize edge features, as they only con-
tribute to attention computation without the ability to be updated or influence
node feature updates [3, 5, 7, 8]. However, edge features have been proven to
be critical in protein structure modeling [9]. In summary, to address these lim-
itations, we aim to design an attention-based model tailored for graphs that
(1) is memory efficient, (2) maintains a global view of dependencies, and (3)
fully incorporates edge features.



1.4 Comment NO. 4

Returning to the ‘model’ in the Results section, I do not understand what s
reported in Table 1. On top of reporting the performance of existing models
(GVP, ProteinMPNN, and ESM), I would expect one row reporting the model
results, which combines the entropy-based approach and the memory-efficient
attention graph attention (with and without partial sequences). I do not under-
stand the meaning of ‘Ours GVP-GNN,’ and the same for ProteinMPNN and
ESM. Moreover, what is the meaning of ‘Ours’ in Table 2¢9 For example, is
‘Ours ESM’ trained using the same regimen as the original ESM, using 12M
additional structures predicted from AlphaFold2?

Response We sincerely apologize for the confusion and misunderstanding
caused. As we replied to Comment NO. 2, we have renamed the model to
ProRefiner, and updated the tables accordingly as follows. We also corrected
the name of the ESM model to ESM-IF1 to match the original authors’ naming
convention.

Table 1 Median sequence recovery rates and nssr scores of ProRefiner with different base
models on three benchmarks. ProRefiner is able to obtain good performance with
relatively poor base models and achieve the highest recovery and nssr with better ones.

CATH TS50 Latest PDB

Recovery %  nssr % Recovery %  nssr % Recovery %  nssr %
GVP-GNN 41.27 60.81 44.02 63.59 48.02 66.23
ProRefiner + GVP-GNN 49.89 67.93 53.75 69.33 57.77 74.18
Improvement 20.89% 11.71% 22.10% 9.03% 20.30% 12.00%
ProteinMPNN 42.22 60.56 43.88 61.44 49.62 66.45
ProRefiner + ProteinMPNN 51.14 69.05 53.66 71.22 59.30 75.26
Improvement 21.13% 14.02% 22.29% 15.92% 19.51% 13.26%
ProteinMPNN-C 44.94 63.79 49.05 67.87 55.34 71.52
ProRefiner + ProteinMPNN-C 50.82 69.06 54.46 71.43 60.42 75.88
Improvement 13.08% 8.26% 11.03% 5.25% 9.18% 6.10%
ESM-IF1 55.25 71.56 55.78 72.02 63.20 77.33
ProRefiner + ESM-IF1 57.84 74.11 57.81 75.25 65.69 79.66
Improvement 4.69% 3.56% 3.64% 4.48% 3.94% 3.01%

Table 2 Median sequence recovery rates and nssr scores on EnzBench and BR_EnzBench.

EnzBench BR_EnzBench
Recovery %  nssr % Recovery %  nssr %
GVP-GNN 41.38 57.89 29.41 47.83
ProteinMPNN-C 52.00 70.00 40.91 60.00
ProRefiner 57.89 73.68 43.48 60.87

Clarification for Table 1 The proposed ProRefiner is tasked with recon-
structing the whole sequence from partial input conditioned on backbone



structure. In the first case, it can start from sequences designed by base mod-
els, serving as an add-on module to refine sequences. We demonstrate this
use case in Entire Sequence Design Section of the manuscript. Thus, results
in Table 1 are for entire sequence design. It is worth noting that although
ProRefiner always accepts partial sequences as input, what we propose here
is a sequence design pipeline with our model as a refining step and the input
to this pipeline does not contain any sequence information. Therefore, we still
consider this setting as entire sequence design.

Specifically, GVP-GNN/[10], ProteinMPNN [9], ProteinMPNN-C and ESM-
IF1 [11] are base models. ”Ours [base model]”, or "ProRefiner + [base model]”
in the current version, denotes the sequence design pipeline that incorpo-
rates two models: the base model, which provides the initial sequence, and
ProRefiner, which enhances it. The purpose of entropy-based selection within
this pipeline is to identify valuable predictions from the initial sequence. We
use entropy to approximate the base model’s confidence in its predictions
and select residues with highly confident (i.e. low entropy) predictions. These
selected residues constitute a denoised, high-quality partial sequence, which is
then utilized as input for ProRefiner to generate the refined sequences. There-
fore, ”Ours [base model]” reports the results after we employ the ProRefiner
to refine the sequences generated by the corresponding base models.

Clarification for Table 2 ProRefiner can also directly generate sequences
from given partial sequence environment. This scenario is discussed in Partial
Sequence Design Section. Therefore, results in Table 2 are for partial sequence
design and the ProRefiner row in this table reports the design results when
ProRefiner is used independently to fill in the designable residues.

The training dataset for ProRefiner is CATH 4.2 training split. The details on
the training of base models are provided as follows:

¢ GVP-GNN is trained on CATH 4.2 training split, the same training set
as ProRefiner. We use the official code and default training parameters
provided by [10] to train the model.

® ProteinMPNN is trained on selected PDB structures clustered into 25,361
clusters. We use the 48 edges, 0.20A noise version of pretrained model
weights released by [9].

¢ ProteinMPNN-C has the same architecture as ProteinMPNN and we
train this model on the same dataset as ProRefiner.

e ESM-IF1 is trained on CATH 4.3 training set with 16,153 structures and
12 million additional structures predicted by Alphafold2 [12]. We use the
pretrained model weights released by [11].

We apologize again for any confusion caused. We have included a concise
version of the above clarification in the Introduction and Results sections in
the manuscript and hope it will become easier to follow.



1.5 Comment NO. 5

On top of recovery and nssr, it would be interesting to report the perplexity. If
I understand correctly what the authors mean by noise, this could be related to
the perplexity score.

Response Thank you a lot for your valuable feedback and your suggestion
regarding reporting perplexity. While we agree that perplexity is a useful and
commonly reported metric for evaluating language models, we initially chose
not to report it because perplexity is defined for and applies specifically to
classical autoregressive language models. Since autoregressive models generate
one token based on all previous tokens, the probability of a sequence could
be computed by the chain rule, and the perplexity could be calculated from
the probability of the dataset. Previous inverse folding models, including the
base models used in our work, generally fall into this category. However, our
ProRefiner belongs to the class of masked language models, such as BERT,
which are not designed to generate text in the traditional left-to-right manner,
and as such, the chain rule does not apply [1, 13|, making perplexity ill-defined
for these models [14, 15].

Despite this, we understand the importance of providing comprehensive results
and hence compute the pseudo-perplexity developed for masked language
models following [15], which is not theoretically well justified but can still
approximate sequence probabilities. In Table 3, ProteinMPNN and ESM-IF1
in the first group are trained on their customized dataset and other three
models including our ProRefiner are trained on CATH training set. Although
ProRefiner may have higher perplexity than ESM-IF1 on certain datasets,
it outperforms other models by a significant margin and exhibits similar
perplexity to ESM-IF1, which is trained on a much larger dataset than ours.

Table 3 Perplexity of models. Perplexity of ProRefiner is pseudo-perplexity computed
following [15].

Model CATH TS50 Latest PDB  EnzBench BR_EnzBench
ProteinMPNN 5.41 5.12 4.39 4.50 4.92
ESM-IF1 3.99 3.43 2.82 2.95 3.39
GVP-GNN 5.44 4.94 4.43 4.43 5.13
ProteinMPNN-C 5.21 4.52 3.83 3.89 4.47
ProRefiner 3.90 3.62 3.10 3.15 3.67

Regarding the meaning of noise, we apply the residue selection technique dur-
ing inference stage to filter out less confident, noisy predictions from base
models and then use ProRefiner to improve the denoised sequences. However,
we understand that when computing perplexity, the input to models should
be ground truth sequences without any noise, and the goal is to estimate
the probability of ground truth sequences with model output. Therefore, the



effect of the proposed denoising technique may not be reflected in the perplex-
ity metric. We sincerely appreciate your feedback and hope this explanation
addresses your concerns. We have included the results of model perplexity in
the Supplementary Information.

1.6 Comment NO. 6

I am unsure of the difference between the results in Table 1 and Fig3.A. I
understand that Table.1 reports results about partial sequences and Fig 3.A
about whole sequences. The main results reported in Table 1 should be about
the entire sequence case (and not partial sequence), as this is the standard in
the literature.

Response We apologize for any confusion caused by the lack of clarity in our
writing. The results in Table 1 is about entire sequence design as we clarified
in previous response. The results in Figure 3.A is about the ablation study
on the entropy-based residue selection operation. This operation is intended
to remove noisy predictions in sequences generated by base models. We would
like to validate its effectiveness by removing the entropy-based selection in the
entire sequence design, which means the ProRefiner is presented with the com-
plete sequences predicted by base models. The ablation results are reported
in Figure 3.A. As shown in the figure, the recovery rate without residue selec-
tion is significantly lower, indicating that ProRefiner can indeed benefit from a
denoised partial sequence. More details are added to the description for Figure
3.A in Results section.

1.7 Comment NO. 7

The ablation study assessing the relative importance of global attention and
partial input s run by considering on EnzBench and BR_EnzBench. Running
such an ablation on CATH would have been more interesting, as it allows direct
comparison with existing models.

Response

Table 4 Recovery of ProRefiner (the last row) and two ablated models, either without
global attention view or without partial sequence input. The base model to produce the
results on CATH is ESM-IF1. The p-values when comparing two ablated models to
ProRefiner are reported.

Model CATH EnzBench BR_-EnzBench
Global Partial Recovery %  p-value Recovery % p-value Recovery %  p-value
Attention  Input

v 57.26 1.6e-5 55.56 0.0397 42.86 0.0259
v 57.21 0.0023 56.52 0.0137 35.71 2.1e-16
v v 57.84 N/A 57.89 N/A 43.48 N/A




Thank you for suggesting conducting ablation study on CATH dataset. In
Figure 6.D, we report the performance of ablated models on CATH. We plot
their recovery rate at different masking percentages to compare their robust-
ness to input sequence noise. Additionally, we have added the ablation results
on CATH with base model ESM-IF1 to Table 3 of the manuscript. We con-
duct paired two-sided t-test to compare the ablated models with ProRefiner.
It is observed that we get p-value < 0.05 on all datasets, indicating a signifi-
cant improvement of introducing the global attantion view and input partial
sequence. We have updated the Table 3 of the manuscript accordingly.

1.8 Comment NO. 8

The global graph attention model updates the node and edge features. I have
a comment regarding the edge update on FEquation 11. A naive update like
in Fq.11 may violate the triangular inequalities, i.e., edge features that have
to fulfill the triangular inequality are not independent. Such a condition is
enforced in AlphaFold2 by considering a cubic update; roughly, an edge e_ij is
updated conditioned on all k: e_ik e_kj. I am curious if the authors thought of
such constraints.

Response We sincerely appreciate the reviewer for your comment on triangle
inequalities. We agree that satisfying the triangle inequality constraint could
be important to ensure edge features are representable as valid 3D structures.
We have tried employing the triangle multiplicative update and triangle self-
attention proposed by Alphafold2 [12] in our model. We replace edge update
in our model with triangle multiplicative update and triangle self-attention
and denote this model as ProRefiner + TriAtten. We train the models on
sequences cropped to a maximum length of 128 for a proof of concept, due
to the memory issue introduced by triangular update. According to Figure 1,
triangular update slows down convergence on training set, and leads to overfit
problem as shown by validation loss. We then remove the proposed pseudo
edge feature technique and allow triangular update to operate on real edge
features. This model is denoted as ProRefiner + TriAtten - PsFeat. Removing
pseudo edge features further increases model complexity and results in slightly
more overfitting. Inference results of the three models are presented in Table 5.
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Table 5 Results on CATH and EnzBench. ESM-IF1 is used as the base model for
inference on CATH.

CATH EnzBench
Recovery %  nssr % Recovery %  nssr %
ProRefiner + TriAtten - PsFeat 56.05 72.80 47.37 63.64
ProRefiner + TriAtten 56.03 72.59 48.15 62.50
ProRefiner 57.37 73.73 50.00 69.57

Due to the above empirical results, we chose to employ the simple edge update
manner in our current implementation. However, we believe that the triangle
inequality constraint is still very important in the context of 3D structure
modeling. The above overfitting problem could be addressed by incorporating
more training data, adjusting training parameters or exploring more simplified
model architecture to ensure the constraint [16, 17]. We leave these directions
for future work. We have added a concise version of the above discussion as a
remark on Eq.11 in the manuscript.

2 Reply to Reviewer 2
2.1 Comment NO. 1

The authors evaluated model performance based on sequence recovery rate
and natiwe sequence similarity recovery. However, it is unclear how well these
designed sequences fold into the target structures. It is possible that a model
with lower sequence recovery rate generates sequence designs better matching
with input target structures. Thus, further in-silico structural validations are
essential for demonstrating the effectiveness of the proposed refinement method.

Response We sincerely appreciate your suggestions on evaluating the struc-
ture recovery of target structures. We conduct structural evaluation on TS50
and CATH datasets for entire sequence design and EnzBench dataset for
partial sequence design. For partial sequence design, we additionally report
the performance of ESM-IF1 (previously named as ESM) and ProRefiner +
ESM-IF1 (previously denoted as Ours ESM) as required in Comment NO. 5.
We predict the structures of designed sequences and report their TM-score
and RMSD compared to target structures, and the pLDDT computed by the
folding algorithm. Due to limited resources, we utilized Alphafold2, a compu-
tationally intensive and resource-demanding method, to fold the two relatively
small datasets, TS50 and EnzBench. Meanwhile, we employ ESMFold [18] for
folding the largest dataset, CATH. Results are reported in Table 6 ~ Table 8.

We observe that the sequence recovery and structural recovery of the mod-
els are not positively correlated. While some methods, such as ESM-IF1 and
our model (now named as ProRefiner), achieves significantly higher sequence
recovery than other methods, their improvement in structure recovery is lim-
ited. Meanwhile, the discrepancies in structure recovery among the models



are significantly smaller than those in sequence recovery. Models exhibit simi-
lar levels of structure recovery, despite the variations in their performance of
sequence prediction accuracy. We believe that this may be due to the fact that
the recovery of target structures is a more complex metric than sequence recov-
ery. It is influenced by a variety of factors beyond the accuracy of the predicted
sequence, including the accuracy of the folding algorithm itself. We also spec-
ulate that prior models may have hit an accuracy ceiling for structure recovery
when relying solely on optimizing sequence recovery as training objective, as
evidenced by their similar structure recovery performance. Overcoming this
may require directly optimizing structure recovery in an end-to-end frame-
work. We plan to investigate the problem and explore this direction in future
research.

Table 6 The median TM-score, RMSD and pLDDT for predicted structures on dataset
TS50. Alphafold2 is used to predict the structures of sequences designed by models.

Model TM-score T+ RMSD | pLDDT 1
ProteinMPNN 0.971 0.948 95.163
ProRefiner + ProteinMPNN 0.967 0.940 94.679
ProteinMPNN-C 0.969 0.997 94.716
ProRefiner + ProteinMPNN-C 0.971 0.886 95.362
ESM-IF1 0.974 0.838 95.186
ProRefiner + ESM-IF1 0.972 0.873 94.853

Table 7 The median TM-score, RMSD and pLDDT for predicted structures on dataset
CATH. ESMFold is used to predict the structures of sequences designed by models.

Model TM-score T  RMSD | pLDDT 1
ProteinMPNN 0.861 10.851 86.501
ProRefiner + ProteinMPNN 0.848 11.151 86.223
ProteinMPNN-C 0.845 11.142 84.991
ProRefiner + ProteinMPNN-C 0.848 11.026 85.352
ESM-IF1 0.854 10.827 85.559
ProRefiner + ESM-IF1 0.852 10.897 85.665

Table 8 The median TM-score, RMSD and pLLDDT for predicted structures on dataset
EnzBench. Alphafold2 is used to predict the structures of sequences designed by models.

Model TM-score © RMSD | pLDDT 1
GVP-GNN 0.977 0.906 95.365
ProteinMPNN-C 0.983 0.812 95.598
ProRefiner 0.982 0.848 95.974
ESM-IF1 0.981 0.833 96.118
ProRefiner + ESM-IF1 0.983 0.804 96.112




While our model’s improvement in structure recovery may be limited, we
believe that its high sequence recovery is still a significant achievement. Our
method represents important progress on the sequence recovery front, set-
ting the stage for future work to translate these gains into improved structure
accuracy and tightly coupled sequence and structure recovery. We appreci-
ate your insightful comments again and the aforementioned results have been
incorporated into the Supplementary Information due to limited space.

2.2 Comment NO. 2

Memory-efficient global attention layer utilizes a shared pseudo edge feature
for non-existing edges in order to save memory. While the authors illustrate
the model’s memory advantage in Figure 6F, it is crucial to compare the pre-
dictive performance between the memory-efficient global attention layer and
the original global attention layer (and preferably across several evaluation
tasks). Given provided information in the manuscript, it is inconclusive on the
effectiveness and usefulness of the proposed memory-efficient global attention
layer.

Response We appreciate your comments on the comparison with the original
global attention layer. We agree that comparing the predictive performance is
important and necessary. In addition to the original Inverse Protein Folding
task, we conduct experiments on the following evaluation tasks. In all tasks,
we use ProRefiner to denote the models with the proposed memory-efficient
global attention layer, and ProRefiner - PsFeat to denote the models using
the original global attention layer, without learning pseudo edge features to
approximate global attention.

® Relative Solvent Accessibility (RSA). We train models to predict
the relative solvent accessibility of residues. Both models have 4 attention
layers and model inputs are protein sequences and backbone structures.
Input residue graphs are constructed as in Inverse Protein Folding. A scalar
between 0 and 1 is output for each residue through a Sigmoid layer. We
employ DSSP program [19] to calculate the RSA of each residue in CATH
dataset, and evaluate on its testing split. Evaluation metric is the Pearson
correlation coefficient between predicted and actual RSA.

¢ Ligand Binding Affinity (LBA) We predict the binding affinity of ligands
to their corresponding proteins based on the co-crystallized structure of the
protein-ligand complex. Both models have 4 attention layers. Model inputs
are the atoms of the pocket and ligand. An atom graph is constructed for
each protein-ligand pair by connecting each atom with its 64 nearest neigh-
bors. The models are trained to predict —log(K'), where K is the binding
affinity in Molar units. We employ the LBA dataset from [20] split by 30%
sequence identity. Evaluation metric is the Pearson correlation coefficient
between predicted and actual affinity.
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Fig. 2 Recovery rate and nssr scores of ProRefiner and ProRefiner - PsFeat on different
benchmarks. ESM-IF1 is used as base model for inference on CATH.

¢ Small Molecule Properties (SMP) We predict two properties of small
molecules: dipole moment (¢) and zero point vibrational energy (ZPVE).
Both models have 4 attention layers. Model inputs are the atoms of
molecules. Two atoms are connected in a graph if their distance is less than
4.5 A. The models are trained to predict the corresponding property of the
molecule. We employ the SMP dataset from [20] and use mean absolute
error as metric.

Table 9 Performance of ProRefiner and ProRefiner - PsFeat on 4 tasks. The metric for
RSA and LBA is Pearson correlation (higher the better) and the metric for SMP tasks is
mean absolute error (lower the better).

RSA LBA SMP-u SMP-ZPVE
ProRefiner - PsFeat 0.895 0.542 0.153 4.626e-4
ProRefiner 0.889  0.539 0.166 6.112e-4

Results for Inverse Protein Folding are presented in Figure 2. We experiment
on CATH dataset with base model ESM-IF1 for entire sequence design and
EnzBench and BR_EnzBench datasets for partial sequence design. The results
indicate that while ProRefiner shows slightly greater performance variance on
certain benchmarks, its overall performance remains similar and comparable
to that of ProRefiner - PsFeat. This is further validated by its comparable
performance on other tasks according to results in Table 9. We have included
the above results on Inverse Protein Folding task in the manuscript and the
results on other tasks in the Supplementary Information.

2.3 Comment NO. 3

Details on how base models are trained and evaluated for both entire sequence
design and partial sequence design are needed to better understand the perfor-
mance of the proposed refinement model. For example, ProteinMPNN, to some
degree, exhibits a tradeoff between sequence recovery ratio and in-silico success
rate, controlled by the training noise level. Thus, it is important to provide the
backbone noise ratio for the ProteinMPNN model used.

Response Thank you for your valuable suggestion. Here are the details for
the base models.
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¢ GVP-GNN is trained on CATH 4.2 training split, the same training set as
ProRefiner. We use the official code and default parameters provided by [10]
to train and evaluate the model.

® ProteinMPNN is trained on selected PDB structures clustered into 25,361
clusters. We use the 48 edges, 0.20A noise version of pretrained model
weights, as it is the default model option in evaluation parameters [9].

¢ ProteinMPNN-C has the same architecture as ProteinMPNN and we
train this model on CATH 4.2 training split for fair comparison with our
model in the partial sequence design setting.

e ESM-IF1 is trained on CATH 4.3 training set with 16,153 structures and
12 million additional structures predicted by Alphafold2 [12]. We use the
pretrained model weights released by [11].

The same base models are used for entire sequence design and partial sequence
design. We have added the above information to the Results Section in the
manuscript.

2.4 Comment NO. 4

For full sequence inverse folding, the model relies on base models to generate
partial sequence. What is the strength of the entropy-based mask? What is the
percentage of residues that are provided as context for the later model?

Response Thank you for your comments on the strength and usage of the
entropy-based mask. The entropy-based mask is designed to filter out noisy
and less valuable residue identity predictions made by base models. This allows
ProRefiner to decode sequences conditioned on a more reliable and denoised
residue environment, without being affected by errors from previous predic-
tions. This helps to avoid the error accumulation problem that can occur
with autoregressive methods. We have demonstrated the effectiveness of the
entropy-based mask in Figure 3.A of the manuscript. The results show that
the recovery rate is significantly lower without the entropy mask, especially
when the base model is less accurate. These results indicate that the noise in
previous predictions could greatly limit the quality of subsequent generation.
Using entropy mask can effectively remove the noise and provide the later
model with a higher quality residue environment as a starting point.

To account for the varying ability of different base models to recover native
sequences, we provide different percentages of residues to ProRefiner depending
on the base model being used. The percentage of residues chosen for each
base model is determined based on the recovery rate on the validation set
of CATH. We experimented with percentages ranging from 5% to 50% for
each base model, and selected the percentage resulting in the highest recovery
rate on the validation set. Specifically, we chose 10% for GVP-GNN, 10%
for ProteinMPNN, 15% for ProteinMPNN-C, and 35% for ESM-IF1. These
percentages are roughly correlated with the sequence recovery performance
of each base model. The above details on the usage of entropy-based mask
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have been included in Entire Sequence Design with Base Model Section in the
manuscript.

2.5 Comment NO. 5

For partial sequence design, is Protein MPNN retrained with partial sequence
provided as input? If not, how are GVP-GNN and ProteinMPNN wused for
partial sequence design? Moreover, how does ESM perform on partial sequence
design?

Response We apologize for the lack of clarity. We didn’t retrained Pro-
teinMPNN and use the released pretrained model instead as we replied to
Comment NO. 3. We agree that many existing methods, including GVP-GNN,
ProteinMPNN and ESM-IF'1, are not specifically trained with partial sequence
input. They are autoregressive models trained to predict the next residue in
a sequence given the preceding residues as context. However, they can still be
used for partial sequence design and ProteinMPNN and ESM-IF1 have built-
in implementations for partial sequence generation in their released codebase.
The implementation is similar to the standard autoregressive generation setup,
where the model generates one residue at a time by conditioning on the previ-
ously generated residues, except that in partial sequence decoding, some of the
residues are already known and fixed. Specifically, when a residue is generated,
we check if it is one of the fixed residues provided in the partial sequence and if
it is, we replace it with the corresponding fixed residue. Otherwise, we keep the
generated one. Then, the model moves forward to generate the next residue.
Different from autoregressive models, the ProRefiner is trained in a masked
language model manner, which is tasked to fill in masked residues based on
partial input sequences. It decodes unknown residues in parallel, without hav-
ing to generate and check each residue individually. The above details can be
found in Partial Sequence Design Section.

Table 10 Median sequence recovery rates and nssr scores on EnzBench and
BR_EnzBench. The three models in the first group are trained on CATH training split,
while ESM-IF1 is trained on a larger customized dataset.

EnzBench BR_EnzBench
Recovery %  nssr % Recovery %  nssr %
GVP-GNN 41.38 57.89 2941 47.83
ProteinMPNN-C 50.00 70.00 40.91 60.00
ProRefiner 57.89 73.68 43.48 60.87
ESM-IF1 60.71 77.27 52.63 71.71
ProRefiner + ESM-IF1 65.38 81.82 54.55 72.00

We report the performance of ESM-IF1 on partial sequence design in Table 10.
Note that the three models in the first group in the table are trained on
CATH training split and ESM-IF1 is trained on a much larger dataset. We
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further apply the proposed entropy-based mask to the results of ESM-IF1 and
subsequently conduct sequence refinement with ProRefiner, and denote this
result as ProRefiner + ESM-IF1. The results demonstrate that while ESM-IF1
achieves higher recovery and nssr on its own, applying the proposed refinement
by ProRefiner can further enhance performance, as evidenced by the improved
metrics for ProRefiner + ESM-IF1. This demonstrates the broad applicability
of our proposed sequence refining approach when applied to existing state-of-
the-art models like ESM-IF1. The results mentioned above have been included
in Supplementary Information.

2.6 Comment NO. 6

At training time, what percentage of the residues are masked as unknown?

Response We apologize for not providing enough details in the manuscript.
At training time, we randomly mask 70% of the residues as unknown. Among
the remaining 30% of the residues whose identity is available to the model, we
randomly select 3% and replace their identity with random amino acid types.
The intuition of introducing noise to the partial input sequence is that during
inference, the residue environment may still contain a small amount of noise
even after applying the entropy-based mask. By training with noise, we aim
to teach the model not to fully rely on the input partial environment. The
above discussion has been incorporated to Graph Representation of Proteins
Section.

2.7 Comment NO. 7

How much overlapping is there among the three evaluation datasets?

Response Thank you for your comment regarding the dataset overlap. We
have identified four structures that are shared between the CATH test split
and the TS50 dataset. There are no structures that overlap between the Latest
PDB dataset and the other two datasets. The above details have been included
in Entire Sequence Design Section in the manuscript.

3 Reply to Reviewer 3

3.1 Comment NO. 1

Offtarget activity. The authors hypothesize that a more positive surface
increases activity. However, one concerning possibility is a drop in specificity.
Indeed, engineering non specific charge residues has been use to refine speci-
ficity of the related cas9 protein (see Slaymaker et al, Science 2016). The
authors may need to compare offtarget of these nucleases to WT or at least
mention this risk of off-target increase.

Response
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Fig. 3 Indel formation at the on-target and off-target sites observed for TnpB WT and
TnpB K84R. Off-target sites are chosen following [21].

We appreciate your valuable suggestion on reporting off-target activity. We
conduct experiments on the TnpB variant with the highest activity, TnpB
K84R, and compare its off-target effects with those of the wild-type (WT)
TnpB. The results are presented in Figure 3. As shown in the figure, the
mutation of the site to arginine enhances the protein’s affinity for DNA and
increases its activity. This also leads to a degree of non-specific cleavage, which
may compromise the nuclease’s specificity. We have included the above discus-
sion into Application on Transposon-associated transposase B Section of the
manuscript.

3.2 Comment NO. 2

On-target assessment of programmable nuclease activity was performed with
nextGen sequencing followed by indel counting. More details would need to be
provided. Additionally, it would be ideal to use an established methodology to

perform this analysis such as CRISPRESSO, CRISPR-A, CRISPRseek, ... due
to the complexities associated with gene editing efficiency assessment.

Response Thank you for your insightful comments regarding the assess-
ment of our programmable nuclease activity. We used CRISPResso2 to analyse
Indels. The parameters are as follows: minimum of 80% homology for align-
ment to the amplicon sequence, quantification window of 20 bp and ignoring
substitutions to avoid false positives. The above details can be found in Appli-
cation on Transposon-associated transposase B Section of the manuscript. We

hope that these details address your concerns, and we are grateful for your
valuable feedback.

3.3 Comment NO. 3

”....(TnpB) is considered to be an evolutionary precursor to CRISPR-Cas sys-
tem effector protein...” - CRISPR cas has multiple origins, it seems that TnpB
is a likely precursor of Cas12 CRISPR cas enzymes (Altae-Tran et al, Science
2021). I would rephrase to clarify.
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Response We apologize for the lack of clarity. We have rephrased the sentence
to the following in the manuscript:

Transposon-associated transposase B (TnpB) is thought to be the ancestor of
Casl2, the type V CRISPR effector [22, 23].
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Reviewer #1 (Remarks to the Author):

I want to thank the authors for their efforts to answer my questions, and I don't have any further
concerns.

Reviewer #2 (Remarks to the Author):

Thank you for addressing my concerns in my previous comment and validating the pipeline with
additional experiments. Overall, this paper introduces a refinement model that further improves
inverse folding performance. In addition, the memory-efficient global attention mechanism
provides a possible way to reduce the memory usage, without significantly trading off on the
performance of global attention. There are two minor points that would require further
clarifications:

1. How is AlphaFold2 used for structural evaluation? Does it utilize only MSA of the designed
sequence, or does it utilize both MSA and searched templates?

2. Comparing the results in Supplementary Table 4 with the results in Supplementary Table 3 (or
Supplementary Table 5), there is a significant drop in structural recovery performance in terms of
both TM score and RMSD. What are the main reasons behind this drop in performance? Also, it
would be useful to confirm if this is the effect of switching in datasets or the effect of switching in
structure prediction models.

Reviewer #3 (Remarks to the Author):

Authors revisions solved all my concerns. No more comments from my side.



1 Reply to Reviewer 1

We sincerely appreciate your time and effort in reviewing our manuscript.
We are grateful for your valuable comments, which have helped us refine the
quality and clarity of our manuscript.

2 Reply to Reviewer 2

2.1 Comment NO. 1

How is AlphaFold2 used for structural evaluation? Does it utilize only MSA of
the designed sequence, or does it utilize both MSA and searched templates?

Response Thank you a lot for your valuable feedback. We run Alphafold2
with both MSA and searched templates. We run relaxation for all 5 models
and take the structures ranked first as the predicted structures. The above
details, including more details on ESMFold usage, have been included in the
Supplementary Information.

2.2 Comment NO. 2

Comparing the results in Supplementary Table 4 with the results in Supple-
mentary Table 3 (or Supplementary Table 5), there is a significant drop in
structural recovery performance in terms of both TM-score and RMSD. What
are the main reasons behind this drop in performance? Also, it would be useful
to confirm if this is the effect of switching in datasets or the effect of switching
in structure prediction models.

Response We sincerely appreciate your comments on the structure recovery
drop in CATH dataset. To confirm if this drop is due to using ESMFold instead
of Alphafold2, we use ESMFold to evaluate the other two datasets, TS50 and
EnzBench. The results are shown in Table 1 and 2. It could be observed that
switching to ESMFold leads to a slight performance drop in term of TM-score
and RMSD and a significant drop in pLDDT.

Table 1 The median TM-score, RMSD and pLLDDT for predicted structures on dataset
TS50. ESMFold is used to predict the structures of sequences designed by models.

Model TM-score T RMSD | pLDDT 1
ProteinMPNN 0.957 1.177 85.991
ProRefiner + ProteinMPNN 0.951 1.466 85.199
ProteinMPNN-C 0.947 1.456 83.127
ProRefiner + ProteinMPNN-C 0.949 1.462 85.209
ESM-IF1 0.957 1.344 85.529
ProRefiner + ESM-IF1 0.956 1.285 84.758

We have observed that the CATH dataset contains many structures with miss-
ing coordinates, which we handle by padding them with 0 coordinates during



Table 2 The median TM-score, RMSD and pLDDT for predicted structures on dataset
EnzBench. ESMFold is used to predict the structures of sequences designed by models.

Model TM-score T RMSD | pLDDT 1
GVP-GNN 0.953 1.418 84.072
ProteinMPNN-C 0.954 1.302 84.809
ProRefiner 0.960 1.400 84.823
ESM-IF1 0.960 1.184 85.094
ProRefiner + ESM-IF1 0.954 1.267 85.217

Table 3 The median TM-score, RMSD and pLDDT for predicted structures on dataset
CATH (all) and the subset of structures without missing coordinates (valid). ESMFold is
used to predict the structures of sequences designed by models.

Model TM-score 1 RMSD |
all valid all valid
ProteinMPNN 0.861 0.866 10.851 2.872
ProRefiner + ProteinMPNN 0.848 0.837 11.151 3.316
ProteinMPNN-C 0.845 0.833 11.142 3.510
ProRefiner + ProteinMPNN-C  0.848 0.829 11.026 3.190
ESM-IF1 0.854 0.846 10.827 3.166
ProRefiner + ESM-IF1 0.852 0.841 10.897 3.362

evaluation, while the TS50 and EnzBench datasets do not have this issue.
To validate if the presence of missing portions in structures will impact the
comparison of these structures with the predicted ones, we exclude structures
with missing coordinates from the CATH dataset. As a result, we obtained a
subset of 282 structures. The structure recovery on this subset can be found
in Table 3. It can be observed that the RMSD metric, which is known to be
more sensitive to local structural variations [1], is largely improved on the valid
subset. On the other hand, the TM-score values remain roughly the same.

We further plot the scatter plot between sequence length and TM-score with
ESMFold as the folding algorithm. To simplify the presentation, we focus on
two representative models, namely ProteinMPNN and ESM-IF1, which are
trained on distinctly different training sets. As illustrated in Fig. 1 a and b,
models tend to obtain higher TM-scores on longer sequences, while displaying
a larger performance variance on shorter ones. This is further supported by
Fig. 1 ¢ and d, where we investigate the deviation of Ca coordinates of residues
on different secondary structures after superimposing the predicted structures
onto native ones using the Kabsch algorithm [2, 3]. Notably, residues located
on helices and coils from shorter sequences tend to exhibit a greater devi-
ation. The observed larger structural variations on helix residues align with
our manuscript’s findings, where we identified lower sequence recovery rates
in helical regions. The performance decline on coils might be attributed to
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Fig. 1 a-b. Scatter plot between sequence length and TM-score of sequences predicted
by PorteinMPNN (a) and ESM-IF1 (b) folded by ESMFold. For CATH dataset, only the
valid subset without missing coordinates is plotted. c-d. The deviation of Ca coordinates
of residues on different secondary structures after superimposing the predicted structures
by ProteinMPNN (c) and ESM-IF1 (d) onto native ones. ”Short” refers to residues from
sequences with a length less than 100, while ”Long” refers to those longer than 100 residues.

the inherent challenge in accurately modeling coil structures by folding mod-
els, depicted by lower pLDDT values (median pLDDT of 82.64 for coils versus
90.81 and 91.92 for helices and strands). In light of this, we count the sequences
in each dataset. Within the CATH valid subset, 32.6% sequences have a length
less than 100 and among these short sequences 87.8% residues are located on
helices or coils. TS50 and EnzBench have 16.0% and 2.0% short sequences and
75.5% and 76.1% residues are located on helices or coils respectively. Based
on the above discussion, we believe that the presence of a higher proportion of
short sequences containing helices and coils also contributes to the structure
recovery drop on CATH dataset.

In summary, several factors might contribute to the observed performance gap:
(1) ESMFold model yields significantly lower pLDDT values and slightly lower
performance on TM-score and RMSD metrics; (2) the presence of structures
with missing coordinates leads to increased RMSD values; (3) the dataset
contains a large portion of short sequences with structures that are generally
difficult for models to recover. We would like to express our gratitude for
bringing our attention to this performance discrepancy. It would be a promising
future direction to focus on enhancing the model’s performance specifically on
short sequences, which would greatly benefit the design of small proteins or
peptides such as cathelicidins. It is also worth further research to explore other



potential factors contributing to this issue, which will help guide advancements
in inverse protein folding models.

3 Reply to Reviewer 3

We would like to sincerely thank you for taking the time to review our
work. Your feedback has been invaluable in improving the clarity and
comprehensiveness of our work.
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