
  

Supplementary Materials: 

 

 

“Variational autoencoder-based chemical latent space for large molecular 

structures with 3D complexity” 

 

Toshiki Ochiai, Tensei Inukai, Manato Akiyama, Kairi Furui, Masahito Ohue, Nobuaki 

Matsumori, Shinsuke Inuki, Motonari Uesugi, Toshiaki Sunazuka, Kazuya Kikuchi, 

Hideaki Kakeya, and Yasubumi Sakakibara 

 

  



  

Supplemental Methods 

 

1. NP-VAE algorithm 

The preprocessing of NP-VAE 

There are two objectives in the preprocessing of NP-VAE. The first one is to convert the 

input compound structure into a simpler structure that can be more easily handled. 

Particularly when dealing with large molecular structures, calculating at the single-atom 

level would result in an enormous order both in time and space. To address this, we devised 

a procedure to capture compound structures by decomposing them into several fragments 

(substructures). Also, the presence of loop structures in the molecular graph would require 

a significant computational cost during compound generation in the subsequent Decoder; 

thus, we aim to capture the structure as a tree without loops. The second objective is to 

reshape the compounds so that meaningful physicochemical features can be extracted. 

Aromatic rings like benzene, as well as functional groups deeply involved in the 

physicochemical properties, such as amide and carboxyl groups, should be treated as a 

single fragment rather than a sequence of individual atoms. The compound decomposition 

algorithm was determined based on these objectives. 

In the preprocessing step, we first extract substructures fragmented from the entire 

compound structures according to the following decomposition procedure, and save them 

as substructure labels while converting them into corresponding tree structures 

(Supplementary Figure S3). 

[Decomposition of compound structures into substructures (fragment units)] 

1. Define the compound structure as 𝐺 = (𝑉, 𝐸)  (where 𝑉, 𝐸  represent atoms and 

bonds, respectively), and let the adjacent two atoms be 𝑣𝑖, 𝑣𝑗(∈ 𝑉), and their bond 

be 𝑒𝑖𝑗(∈ 𝐸). When 𝑒𝑖𝑗 is not a ring bond, and both or either of 𝑣𝑖, 𝑣𝑗  are in a ring 

structure, and both have a bond order greater than 1 excluding hydrogen atoms, 

remove 𝑒𝑖𝑗 and decompose. This yields substructures 𝒢1, 𝒢2,…, 𝒢𝑁. 

2. For each of the substructures 𝒢1, 𝒢2,…, 𝒢𝑁, select those that do not have a ring 

structure and have a usage frequency of less than 𝑓𝑐 times in the dataset. Denote 



  

these as 𝒢′1, 𝒢′2,…, 𝒢′𝑛. The ones not selected in this step are saved as substructure 

labels. 

3. Perform functional group-focused decomposition for each of the substructures 𝒢′1, 

𝒢′2,…, 𝒢′𝑛. First, the targeted functional group is an amide group or amide bond. 

Define the substructure as 𝒢′
𝑚
= (𝒱𝑚, ℰ𝑚)(1 ≤ 𝑚 ≤ 𝑛) and let the adjacent two 

atoms be 𝑣𝑖 , 𝑣𝑗(∈ 𝒱𝑚) and their bond 𝑒𝑖𝑗(∈ ℰ𝑚). If either 𝑣𝑖  or 𝑣𝑗  is within the 

amide C(=O)N, and the other is not a hydrogen atom, remove their bond 𝑒𝑖𝑗 and 

decompose. Save C(=O)N as a substructure label, and denote the other 

substructures as 𝑔1
1
, 𝑔1

2
,…, 𝑔1

𝑛′
. 

4. Perform a carboxyl group or ester bond-focused decomposition for each of the 

substructures 𝑔1
1

, 𝑔1
2

,…, 𝑔1
𝑛′

. Define the substructure as 𝑔1
𝑚
=

(𝑣1𝑚, 𝑒
1
𝑚)(1 ≤ 𝑚 ≤ 𝑛′)  and let the adjacent two atoms be 𝑣𝑖 , 𝑣𝑗(∈ 𝑣1𝑚) and 

their bond 𝑒𝑖𝑗(∈ 𝑒1𝑚) . If either 𝑣𝑖  or 𝑣𝑗  is within the carboxyl or ester bond 

C(=O)O, and the other is not a hydrogen atom, remove their bond 𝑒𝑖𝑗  and 

decompose. Save C(=O)N as a substructure label, and denote the other 

substructures as 𝑔2
1
, 𝑔2

2
,…, 𝑔2

𝑛′′
. 

5. Perform an aldehyde or ketone-focused decomposition for each of the substructures 

𝑔2
1
, 𝑔2

2
,…, 𝑔2

𝑛′′
. Define the substructure as 𝑔2

𝑚
= (𝑣2𝑚, 𝑒

2
𝑚)(1 ≤ 𝑚 ≤ 𝑛′′) 

and let the adjacent two atoms be 𝑣𝑖 or 𝑣𝑗  and their bond 𝑒𝑖𝑗(∈ 𝑒3𝑚). If either 𝑣𝑖 or 

𝑣𝑗  is in the aldehyde or ketone group C(=O) and the other is not a hydrogen atom, 

remove their bond 𝑒𝑖𝑗  and decompose. Save C(=O) as a substructure label and 

define the remaining substructures as 𝑔3
1
, 𝑔3

2
,…, 𝑔3

𝑛′′′
. 

6. Lastly, for each of the substructures 𝑔3
1

, 𝑔3
2

,…, 𝑔3
𝑛′′′

, decomposition is 

performed focusing on hydroxyl groups or ether bonds. Define the substructure as 

𝑔3
𝑚
= (𝑣3𝑚, 𝑒

3
𝑚)(1 ≤ 𝑚 ≤ 𝑛′′′)  and let the two adjacent atoms be 𝑣𝑖 , 𝑣𝑗(∈

𝑣3𝑚) and their bond 𝑒𝑖𝑗(∈ 𝑒3𝑚). If either 𝑣𝑖 or 𝑣𝑗  is an oxygen atom and the other 

is a carbon atom, remove their bond 𝑒𝑖𝑗  and decompose. Save all the resulting 

substructures as substructure labels. 

 



  

When defining the tree structure 𝒯 corresponding to the compound structure 𝐺, the number 

of nodes in 𝒯  matches the number of substructures, and edges are drawn between 

neighboring substructures within 𝐺 . At each node of 𝒯 , the ECFP calculated from the 

corresponding substructure is stored as a feature vector. 

The root node of each tree structure is determined based on the CANGEN algorithm of 

RDKit [25]. In other words, the priority of each atom is determined based on its 

connectivity value and atomic number, and the root node is uniquely determined by this 

priority. 

 

NP-VAE encoder 

In the Encoder, feature extraction of compound structures is performed combining two 

processes (Supplementary Figure S4). First, for each ECFP stored in the nodes of the tree 

structure 𝒯, a feature vector ℎ is obtained using Child-Sum Tree-LSTM [22]. Let 𝐶(𝑗) be 

all the child nodes of node 𝑗, 𝑥𝑗 be the ECFP of node 𝑗, ℎ𝑗  be the hidden state of node 𝑗 in 

the Tree-LSTM, 𝑖𝑗 be the input gate, 𝑜𝑗 be the output gate, 𝑐𝑗 be the memory cell, and 𝑓𝑗𝑘 

be the forget gate for child node 𝑘 of node 𝑗. The Child-Sum Tree-LSTM is defined by the 

following equations: 

ℎ𝑗 = 𝑜𝑗 ⊙ tanh(𝑐𝑗)  

𝑜𝑗 = sigmoid(𝑊𝑜𝑥𝑗 + 𝑈𝑜ℎ̃𝑗 + 𝑏𝑜)  

ℎ̃𝑗 = ∑ ℎ𝑘
𝑘∈𝐶(𝑗)

  

𝑐𝑗 = 𝑖𝑗 ⊙𝑢𝑗 + ∑ 𝑓𝑗𝑘 ⊙𝑐𝑘
𝑘∈𝐶(𝑗)

  

𝑖𝑗 = sigmoid(𝑊𝑖𝑥𝑗 + 𝑈𝑖ℎ̃𝑗 + 𝑏𝑖)  

𝑢𝑗 = tanh(𝑊𝑢𝑥𝑗 + 𝑈𝑢ℎ̃𝑗 + 𝑏𝑢)  

𝑓𝑗𝑘 = sigmoid(𝑊𝑓𝑥𝑗 + 𝑈𝑓ℎ𝑘 + 𝑏𝑓)  

sigmoid(𝑝) =
1

1 + exp(−𝑝)
  

tanh(𝑝) =
exp(𝑝) − exp(−𝑝)

exp(𝑝) + exp(−𝑝)
  



  

Here, ⊙  represents the element-wise product, 𝑊𝑖 ,𝑊𝑓 ,𝑊𝑜 ,𝑊𝑢, 𝑈𝑖 , 𝑈𝑓 , 𝑈𝑜 , 𝑈𝑢  are the 

weights learned in the fully connected layers, and 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜 , 𝑏𝑢 are the learned constants 

(biases).  

Second, we compute the ECFP for the entire compound structure. This is denoted as 𝑥0, 

and by inputting it into the 𝐿-layer fully connected layers, we obtain the output 𝑥𝐿. The 

output 𝑥𝐿 is defined by the following formula, with the weights and biases of the 𝑙-th fully 

connected layer denoted as 𝑊𝑙 and 𝑏𝑙, respectively. 

𝑥𝑙 = 𝑊𝑙𝑥𝑙−1 + 𝑏𝑙(1 ≤ 𝑙 ≤ 𝐿)  

Lastly, we sum up the feature vector ℎ0, which corresponds to the root node obtained from 

the Tree-LSTM, and the output 𝑥𝐿  of the fully connected layers. Using random noise 

𝜀~𝑁(0, 𝐼), we compute the latent variable 𝑧 via the reparameterization trick. With the 

weights of the fully connected layers denoted as 𝑊𝑒𝑛𝑐 ,𝑊𝜇,𝑊𝜎 and biases as 𝑏𝑒𝑛𝑐 , 𝑏𝜇, 𝑏𝜎, 

the expression is as follows. 

𝑧 = 𝜇 + 𝜀 ⊙ 𝜎  

𝜇 = 𝑊𝜇ℎ𝐺 + 𝑏𝜇  

𝜎 = 𝑊𝜎ℎ𝐺 + 𝑏𝜎   

ℎ𝐺 = [𝑊𝑒𝑛𝑐(ℎ0 + 𝑥𝐿) + 𝑏𝑒𝑛𝑐]  

 

NP-VAE decoder 

In the Decoder, based on the input latent variable 𝑧, a tree structure is generated using a 

depth-first sequential algorithm and is then converted to a compound structure for output 

(Supplementary Figure 5). NP-VAE decoder consists of seven procedures: Root label 

prediction, Topological prediction, Bond prediction, Label prediction, Update the variable 

𝑧, Conversion to compound structure, and Chirality Assignment.  

[Root label prediction] 

In the first step of the Decoder, called Root label prediction, we predict the substructure 

label that will be assigned to the initially generated root node. The prediction of 

substructure labels is selected from all the substructure labels obtained during the 

preprocessing of NP-VAE. The input latent variable 𝑧 to the Decoder is fed into 𝐿𝑟 fully 

connected layers, and a multi-class classification is performed. The output 𝑢𝐿𝑟  is 



  

represented by the following equations, where 𝑊𝑟
𝑙, 𝑏𝑟

𝑙  are the weights and biases of the 

fully connected layer at the 𝑙-th level, respectively: 

𝑢𝑙 = tanh(𝑊𝑟
𝑙𝑢𝑙−1 + 𝑏𝑟

𝑙 )(1 ≤ 𝑙 ≤ 𝐿𝑟 − 1)  

𝑢𝐿𝑟 = softmax(𝑊𝑟
𝐿𝑟𝑢𝐿𝑟−1 + 𝑏𝑟

𝐿𝑟)  

Here, 𝑢0 = 𝑧, and the index of the selected substructure label is argmax(𝑢𝐿𝑟). Note that: 

softmax(𝑝𝑖) =
exp(𝑝𝑖)

∑ exp(𝑝𝑗)𝑗

  

[Topological prediction] 

In Topological prediction, we predict whether or not to generate a new child node under 

the current node. If it is predicted to generate a child node, we then proceed to bond 

prediction and label prediction. On the other hand, if it is predicted not to generate a child 

node, we terminate the Decoder process (Break) if the node is at the root position; otherwise, 

we backtrack from the current node to its parent node (Backtrack). Input 𝑧𝑡 is fed into the 

fully connected layer to perform binary classification. The output 𝑢𝜏 is represented by the 

following equation, where 𝑊𝜏, 𝑏𝜏 are the weights and biases of the fully connected layer, 

respectively: 

𝑢𝜏 = softmax(𝑊𝜏𝑧𝑡 + 𝑏𝜏)  

When argmax(𝑢𝜏) = 0, no child node is created, and when argmax(𝑢𝜏) = 1, an attempt 

is made to generate a child node.  

[Bond prediction] 

In Bond prediction, we predict the type of bond between the current node’s substructure 

and the substructure of the newly generated child node. Input 𝑧𝑡 is fed into the 𝐿𝑏-layer 

fully connected layer to perform ternary classification. The output 𝑢𝐿𝑏  is represented by 

the following equations, where 𝑊𝑏
𝑙 , 𝑏𝑏

𝑙  are the weights and biases of the 𝑙 -th fully 

connected layer, respectively: 

𝑢𝑙 = tanh(𝑊𝑏
𝑙𝑢𝑙−1 + 𝑏𝑏

𝑙 )(1 ≤ 𝑙 ≤ 𝐿𝑏 − 1)  

𝑢𝐿𝑏 = softmax(𝑊𝑏
𝐿𝑏𝑢𝐿𝑏−1 + 𝑏𝑏

𝐿𝑏)  

Here, 𝑢0 = 𝑧𝑡 , and when argmax(𝑢𝐿𝑏) = 0 , a single bond is attempted, when 

argmax(𝑢𝐿𝑏) = 1, a double bond is attempted, and when argmax(𝑢𝐿𝑏) = 2, a triple bond 

connection is attempted. 



  

[Label prediction] 

In Label prediction, we predict the substructure label that corresponds to the newly 

generated child node. Input 𝑧𝑡  is fed into the 𝐿𝑠-layer fully connected layer to perform 

multiclass classification. The output 𝑢𝐿𝑠 is represented by the following equations, where 

𝑊𝑠
𝑙, 𝑏𝑠

𝑙  are the weights and biases of the 𝑙-th fully connected layer, respectively: 

𝑢𝑙 = tanh(𝑊𝑠
𝑙𝑢𝑙−1 + 𝑏𝑠

𝑙)(1 ≤ 𝑙 ≤ 𝐿𝑠 − 1) (𝐿1) 

𝑢𝐿𝑠 = softmax(𝑊𝑠
𝐿𝑠𝑢𝐿𝑠−1 + 𝑏𝑠

𝐿𝑠) (𝐿2) 

Here, 𝑢0 = 𝑧𝑡, and the index of the selected substructure label is argmax(𝑢𝐿𝑠). 

If not in training mode, after Label Prediction, it is checked whether the selected 

substructure label can be connected to the parent node’s substructure label (resulting in a 

chemically valid structure after connection). If the connection is successful, the next target 

node is set as the newly generated child node. If the connection cannot be made correctly, 

the prediction in Bond Prediction is changed from triple bond to double bond, or from 

double bond to single bond, and the connection is attempted again. If the connection still 

cannot be made with a single bond, the connection is attempted with the substructure label 

with the next highest prediction probability in equation (𝐿2). If the connection still fails, 

the connection is repeatedly attempted with the higher predicted substructures up to the 

specified top n. If all connections fail, the generation of the child node is stopped, and the 

current node’s parent node is set as the next target node (Backtrack). 

[Update 𝒛] 

After label prediction or backtrack, we compute 𝑧𝑡+1 from 𝑧𝑡 using a fully connected layer. 

The output 𝑧𝑡+1 is defined by the following equation, where 𝑊 and 𝑏 are the weights and 

biases of the fully connected layer, respectively. 

𝑧𝑡+1 = tanh(𝑊(𝑧𝑡 + ℎ𝑖) + 𝑏)  

Here, ℎ𝑖  is the feature vector obtained by performing the Child-Sum Tree-LSTM 

computation, which represents the features at node 𝑖 after propagating the ECFP stored in 

each node in the tentative tree structure. During child node generation, the features are 

transmitted through backward propagation from the root node to the leaf node, and that 

child node is set as node 𝑖  (Supplementary Figure S6(a)). On the other hand, during 

backtrack, after the backward propagation from the root node to the leaf node, a forward 



  

propagation from the leaf node to the root node is performed, and the Backtrack destination 

parent node is set as node 𝑖 (Supplementary Figure S6(b)).  

[Conversion to the corresponding compound structure] 

In Conversion to compound structure, after generating the tree structure, the substructure 

labels of each node are connected and converted into the corresponding compound 

structure. Since information about the atoms corresponding to the bonding sites within the 

substructure and their bonding order is already included in the substructure labels, the 

compound structure can be uniquely determined from the generated tree structure 

(Supplementary Figure S6(c)). 

[Chirality assignment] 

In Assignment of chirality, to handle three-dimensional information of compounds in the 

Encoder, ECFP with chirality information is used. In the Decoder, the latent variable 𝑧 is 

input to the 𝐿𝑐-layer fully connected layer, and the predicted ECFP value is output. The 

output 𝑢𝐿𝑐  is defined by the following equation, where the weights and biases of the 𝑙-th 

fully connected layer are 𝑊𝑐
𝑙 and 𝑏𝑐

𝑙 , respectively. 

𝑢𝑙 = tanh(𝑊𝑐
𝑙𝑢𝑙−1 + 𝑏𝑐

𝑙)(1 ≤ 𝑙 ≤ 𝐿𝑐 − 1)  

𝑢𝐿𝑐 = sigmoid(𝑊𝑐
𝐿𝑐𝑢𝐿𝑐−1 + 𝑏𝑐

𝐿𝑐)  

𝑢0 = 𝑧  

Here, the dimension of 𝑢𝐿𝑐 is same as the bit size of ECFP. After the two-dimensional 

structure of the compound is output based on the aforementioned sequential algorithm, all 

possible stereoisomers are enumerated and their ECFP is calculated. The Euclidean 

distance between them and 𝑢𝐿𝑐  is computed, and the three-dimensional structure 

corresponding to the ECFP with the smallest distance is selected as the output compound 

structure. 

 

Learning 

During training, to ensure proper learning, even if an incorrect prediction is made in the 

decoding process that cannot reconstruct the input data, the learning proceeds by 

propagating feature values on the tree structure, replacing it with the correct one for 

reconstruction. Additionally, to ensure that the latent space generated by NP-VAE not only 

accounts for structural information of compounds but also incorporates functional 



  

information, such as bioactivity, the latent variable 𝑧  is input to the 𝐿𝑝 -layer fully 

connected layer for predicting the activity value of the input compounds. The output 𝑢𝐿𝑝 

is defined by the following formula, with the weights and biases of the 𝑙-th fully connected 

layer represented by 𝑊𝑝
𝑙 and 𝑏𝑝

𝑙 , respectively. 

𝑢𝑙 = 𝑊𝑝
𝑙𝑢𝑙−1 + 𝑏𝑝

𝑙 (1 ≤ 𝑙 ≤ 𝐿𝑝)  

𝑢0 = 𝑧  

By adding the difference loss between the predicted value 𝑢𝐿𝑝 and the true activity value 

in the loss function, functional information is incorporated into the chemical latent space. 

The loss function during NP-VAE training consists of a weighted sum of the cross-entropy 

loss (𝐶𝐸) calculated from each prediction task in the Decoder, the KL divergence (𝐷𝐾𝐿) 

representing the distance between the distribution 𝑄(𝑧|𝑋)  of latent variables and the 

Gaussian distribution, the binary cross-entropy loss (𝐵𝐶𝐸) in three-dimensional structure 

prediction, and the mean squared error (𝑀𝑆𝐸) in functional information prediction. Let the 

ground truth values for Root Label prediction, Topological prediction, Label prediction, 

and Bond prediction be 𝑦𝑟, 𝑦𝜏, 𝑦𝑠, and 𝑦𝑏 respectively (represented by a vector where the 

index of the correct label is 1 and all others are 0), and let the true ECFP value be 𝑦𝑐 and 

the true functional information be 𝑦𝑝. The loss function 𝐿 is defined as follows: 

𝐿 = 𝛼 ⋅ 𝐶𝐸(𝑦𝑟 , 𝑢𝐿𝑟) + 𝛽 ⋅∑ 𝐶𝐸(𝑦𝜏,𝑖, 𝑢𝜏)
𝑖

+ 𝛾 ⋅∑ 𝐶𝐸(𝑦𝑠,𝑗, 𝑢𝐿𝑠)
𝑗

+ 𝛿 ⋅∑ 𝐶𝐸(𝑦𝑏,𝑗, 𝑢𝐿𝑏)
𝑗

+𝜀 ⋅ 𝐵𝐶𝐸(𝑦𝑐, 𝑢𝐿𝑐) + 𝜖 ⋅ 𝑀𝑆𝐸 (𝑦𝑝, 𝑢𝐿𝑝) + 𝜁 ⋅ 𝐷𝐾𝐿[𝑄(𝑧|𝑋)‖𝑃(𝑧)]

 

𝐶𝐸(𝑦, �̂�) = −𝑦log�̂�  

𝐵𝐶𝐸(𝑦, �̂�) = −[𝑦log�̂� + (1 − 𝑦) log(1 − �̂�)]  

𝑀𝑆𝐸(𝑦, �̂�) = (𝑦 − �̂�)2  

𝐷𝐾𝐿[𝑄(𝑧|𝑋)‖𝑃(𝑧)] = −
1

2
∑ (1 + log𝜎𝑑

2 − 𝜇𝑑
2 − 𝜎𝑑

2)
𝑑

  

Here, 𝛼，𝛽，𝛾，𝛿，𝜀，𝜖, and 𝜁 are hyperparameters used to adjust the contribution of 

each term. 

 

  



  

Supplemental Figures 

 

Supplemental Figure S1. Compound structures for each dataset. Compared to the 

compounds in ZINC used in previous studies, the evaluation dataset contains compounds 

with a larger number of atoms. DrugBank and Project datasets are even larger and contain 

complex structures without repeating units.   

 

 

Supplemental Figure S2. Plot illustrating the size distributions of the molecules 

generated by all models. Each distribution is highly divergent, indicating the generation 

of diverse molecular weights..   

 

 

Supplemental Figure S3. Plot depicting the correlation between NP-likeness score and 

embedding distance. We calculated the correlation between the embedding distance and 

the difference of NP-likeness scores for randomly sampled pairs of points in the latent 

space.   

 

 

Supplemental Figure S4. Frequency graph of NP-likeness scores for DrugBank, 

chemotherapy drugs, and molecular-targeted drugs. Compared to DrugBank overall, 

molecular-targeted drugs have a sharp peak at a lower position, while chemotherapy drugs 

have a peak at a higher position. It can be seen that the majority of molecular-targeted drugs 

have NP-likeness scores distributed within a limited range.   

 

 

Supplemental Figure S5. Preprocessing of NP-VAE. (a) Decompose the compound 

structure by focusing on the ring structures and extract the resulting fragments as 

substructure labels. For linear substructures, if their usage frequency in the dataset is lower 

than the hyperparameter 𝑓𝑐 , further decomposition focusing on functional groups and 



  

bonds is performed to extract substructure labels. (b) Convert the compound structure to 

the corresponding tree structure. The number of nodes in the tree structure is equal to the 

number of substructures, with edges drawn between neighboring substructures. Each node 

stores the ECFP calculated from the corresponding substructure.  

 

 

Supplemental Figure S6. Encoder architecture of NP-VAE. The encoder extracts 

compound structure features through two pathways. For the tree structure created in the 

preprocessing, Tree-LSTM is used to propagate the features from leaf nodes to the root 

node, obtaining the feature vector ℎ0 with micro-scale information. In addition, ECFP is 

calculated from the entire compound structure, and a feature vector 𝑥𝐿 with macro-scale 

information is obtained through 𝐿 layers of fully connected layers. Finally, the sum of the 

two feature vectors ℎ0 and 𝑥𝐿 is input to a fully connected layer, and the latent variable 𝑧 

is calculated using the reparameterization trick.   

 

 

Supplemental Figure S7. Decoder algorithm of NP-VAE. Based on the latent variable 

𝑧, a compound structure is generated using a depth-first algorithm. In Root label prediction, 

the substructure corresponding to the root node is predicted. In Topological prediction, it 

is predicted whether to create a new child node under the current target node. In Bond 

prediction and Label prediction, the type of bond with the child node and the substructure 

corresponding to the child node are predicted, respectively. The latent variable 𝑧  is 

sequentially updated and used for prediction in the next iteration. The obtained tree 

structure can be uniquely converted to a compound structure.   

 

 

Supplemental Figure S8. Updating 𝒛. (a) If a child node is generated under the current 

target node, 𝑧 is updated by reverse feature propagation from the root node to the leaf node 

in the provisional tree structure. (b) If a child node is not generated under the current target 

node and Backtracking is performed, 𝑧  is updated by performing reverse feature 



  

propagation in the provisional tree structure, followed by forward feature propagation in 

the opposite direction. (c) The substructure labels also store information about which atoms 

are bonded to adjacent substructures in which order. Therefore, substructures are uniquely 

bonded depending on the position of the target node, and the structure is converted from a 

tree structure to a compound structure.  
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Supplementary Figure S3

𝑟 = 0.19𝑟 = 0.14

Pearson correlation between the embedding distance and the difference of NP-likeness scores 

for randomly sampled pairs of points, (a) in the latent space constructed by incorporating NP-

likeness scores, and (b) in the latent space constructed using only the structural information.
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