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Peer Review File

Joint multi-ancestry and admixed GWAS reveals the complex 
genetics behind human cranial vault shape



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
In this paper, Goovaerts et al. performed multivariate genome-wide associations on the 
morphologies of cranial vault, using a ancestrally heterogeneous imaging study (Adolescent Brain 
Cognitive Development Study, ABCD) as the discovery cohort. After controlling for global 
ancestries and local ancestries of the ABCD samples, they found 30 independent loci that reached 
genome-wide significant threshold. The authors performed series of follow-up analyses, including 
replications in a single ancestry cohort (UKBiobank), association tests on case trio data, sensitivity 
analyses on the effect sizes (Fst and heterogeneity test), GO enrichment analyses, annotation 
overlap analyses, and genetic overlaps with face and brain measurements. In general, this paper 
is well written and the analyses are comprehensive. It highlights the complex dynamics for 
morphological features originated from the ectoderms, affirming important roles of several cranio-
facial related genes. I only have some minor comments. 
 
1. The authors have performed series of sensitivity analyses on the effects of including global 
ancestry and local ancestry in the model, as well as using stratified approach. Indeed, as the 
author pointed out, using the entire heterogeneous cohort while controlling for both global and 
local ancestry detect the shared signals across populations and thus avoid potential confounds 
originated from the gene by environment correlations. However, it is unclear if the improved 
power is driven just by increasing sample size (6K vs 4K) rather than what the author claimed by 
inclusion of multi-ancestry groups. As the authors showcased, the lack of heterogeneous effects 
and differential allele frequencies indicate their discovered loci is shared and homogeneous across 
populations. It means the multi-ancestry does not provide additional ancestral specific effects 
here. 
 
2. The loci overlapping across the global-local features of face, brain, and cranial vaults are 
fascinating. The results and the discussion on this complex interaction are a bit dense and hard to 
unpack, despite the importance and richness of their materials. I would recommend updating the 
infographics of their Figure 5 to show which genes are shared across regions and which are more 
local specific, and what are their conjectured directions. 
 
3. Unlike the authors’ papers about GWAS on face and GWAS on brain shape, this paper did not 
examine the loci overlaps with other polygenic disorders. Although current emphases on linking 
the discovered genes with the known cranial abnormalities are more important than the polygenic 
pleiotropies with other complex traits, it would be good to know the rationale behind this decision 
from the authors. 
 
4. The Table 2 used “the highest activity” to describe the where the strongest signals are observed 
and the “biased activity” to describe the differential expressions. Not sure if that is the best term 
to use in the context. 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors conducted a multi-ancestral GWAS together with a European replication study on 
human outer head surface and identified 30 genetic loci of which they replicated 20. While this 
reviewer appreciates the authors’ efforts in unveiling the genetic basis of human head shape 
variation, there are several issues that make it difficult to know how novel and how reliable the 
reported findings are. 
 
1) As phenotype basis for their GWAS, the authors used the outer surface of the head obtained 
from MRI, but report all their GWAS results for the cranial vault. They defend their approach by 
stating that the outer head surface represents a proxy for the cranial vault, but do not present 
evidence for this. What is the empirical evidence for this assumption? Why do they claim their 
results in connection with a proxy phenotype and not the phenotype they measured? This must be 



elaborated so that the reader can put the reported genetic findings in the right phenotypic 
perspective. 
2) Performing multi-ancestry GWAS is much less straightforward than single-ancestry GWAS and 
comes with several issues that can lead to false positive findings. This reviewer wonders how 
meaningful the multi-ancestry GWAS is in this case, where the majority of the discovery samples 
and all the replication samples are of single ancestry i.e., European and only a relatively small 
proportion of the discovery samples is of non-European ancestry. How do these limited non-
European samples impact on the genetic findings? It is important to see the full results based on 
European-only samples and compare them with those from the multi-ancestry samples to get a 
practical idea how the intrinsic problems of multi-ancestry GWAS impacted on the presented 
results. The authors very briefly mention a comparison between multi-ancestry discovery and 
European-only discovery, but it seems this analysis was focussed on outcomes of the multi-
ancestry GWAS and in any case was not presented with the needed level of detail. Both analyses, 
European-only and combined, should be reported and the differences critically discussed. 
3) The segmentation approach the authors applied, which they developed previously regarding the 
face, results in several segments of the outer head surface for which the biological relevance 
appears largely questionable if not being absent at all. This reviewer cannot see that the 
segmentation approach was done with a biological hypothesis in mind, which in principle should 
not be done when aiming to study a biological phenomenon. Notably, most of the GWAS findings 
they reported were obtained for “global vault shape”, i.e., the total outer head surface as 
measured without any segmentation. Only very few hits were seen for any of the 14 segments 
generated from the total surface with the segmentation approach. This reviewer largely questions 
the use of the segmentation approach for this phenotype and remains very sceptical about the 
true positive nature of the genetic loci reported solely for segments not overlapping with those 
identified with total shape. Moreover, doing GWAS on multiple phenotypes comes for the price of 
having to consider multiple phenotypes and their correlation in the analysis and interpretation, 
which the authors mostly ignored (see next point). Perhaps a GWAS on the single phenotype of 
total outer head surface would be more powerful and deliver more trustworthy results? 
4) The authors performed 15 separate GWASs for the 15 phenotypes they used from applying their 
segmentation approach. It seems they did not do a meta-analysis on the outcomes of these 15 
GWASs, which would be the normal way to do. Since meta-analysis is a well-established approach, 
the question appears why the authors deviated from this? If the authors were to stick with the 
multiple phenotypes they generated with their segmentation approach despite the criticism 
expressed under point 3, meta-analysis should be conducted and significant study results should 
only be concluded from the meta-analysis outcomes. Also, it can be assumed that there are 
correlations between these 15 phenotypes used, which, in case the authors keep using them, 
should be tested empirically and such correlations, if identified, should be taken into account in the 
GWAS in an appropriate statistical way. 
5) As far as this reviewer can see, the authors left out describing which of the genetic loci they 
identified were discovered for the first time for their phenotype(s), therefore representing new 
knowledge, and which were already identified in previous studies and represent confirmation of 
previously established knowledge. It is unexpected that the authors did not look into this given the 
novelty focus of scientific journals. Why did they not describe this? Given that this is not the first 
genetic study on head shape, it should be clearly described how many and which loci represent 
novel knowledge and how many and which confirm previous knowledge. 
 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The manuscript by Goovaerts et al. describes a large-scale GWAS analysis of the human cranial 
vault shape in the ABCD study cohort with replication in individuals from the UK biobank. The 
manuscript is very comprehensive in scope and while many of the identified loci and candidate 
genes have previously been implicated in craniofacial development, the findings significantly add 
to our understanding of the genetic factors that influence the cranial vault shape. 
 
Major comments: 
• Hierarchical spectral clustering was used to segment the cranial vault into 15 distinct segments. 



It would be useful to understand to what extent the segments correspond to (or overlap) cranial 
vault bones and whether edges of the segments coincide with cranial sutures. 
 
• The extent of damage in the validation dataset and its potential impact on the replication 
analysis of each segment is unclear and should be better explained. For example, an overview of 
the proportion of repaired MRI profiles per segment should be provided. It is also not clear to what 
extent the repair recapitulates the expected shape without validation (e.g. by creating damaged 
profiles and then checking to what extent repair recapitulates the expected shape). Depending on 
the impact of the repair, may be better to exclude segments with too much damage altogether. 
 
• The differential gene expression analysis shows only minor changes between the frontal and 
parietal bones, with log2 fold changes ranging between -1.37 and 0.68. While these differences 
may be statistically significant it is not sufficient to classify genes as ‘frontal’ or ‘parietal’. 
Statements such as “This consistency between gene expression and phenotypic effect could 
suggest that for those genes increased expression drives phenotypic effects.” (line 375) and “This 
may indicate that the downregulation of FGF10 allows for an increased activity of other genes 
involved in shaping the cranial vault” (Line 383) should therefore be moderated. 
 
• Candidate gene assignment relied on GREAT and FUMA analyses combined with manual curation. 
GTEX could provide further supporting evidence for a link to gene expression in e.g. skeletal 
tissues. 
 
Minor comments: 
 
• Line 165, change ‘genome-wide significant’ to ‘genome-wide significance’. 
 
• It would be useful to expand supplementary table 1 to include the coordinates of the 30 genome-
wide significant loci identified after merging. 
 
• Supplementary table 4 is uninterpretable due to the large size. It should be provided as a 
spreadsheet, perhaps with an additional tab that limits the results to only the significant 
expression differences. 
 
• “Other candidate genes were either not differentially expressed, had fewer than one gene count, 
or were not expressed at E15.5.”. Does ‘fewer than one gene count’ refer to the entire library or 
e.g. fewer than one count-per-million reads? Also, what is the threshold used to differentiate 
between expressed and non-expressed genes? 



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
In this paper, Goovaerts et al. performed multivariate genome-wide associations on the 
morphologies of cranial vault, using a ancestrally heterogeneous imaging study (Adolescent Brain 
Cognitive Development Study, ABCD) as the discovery cohort. After controlling for global ancestries 
and local ancestries of the ABCD samples, they found 30 independent loci that reached genome-
wide significant threshold. The authors performed series of follow-up analyses, including replications 
in a single ancestry cohort (UKBiobank), association tests on case trio data, sensitivity analyses on 
the effect sizes (Fst and heterogeneity test), GO enrichment analyses, annotation overlap analyses, 
and genetic overlaps with face and brain measurements. In general, this paper is well written and 
the analyses are comprehensive. It highlights the complex dynamics for morphological features 
originated from the ectoderms, affirming important roles of several cranio-facial related genes. I 
only have some minor comments. 
 
1. The authors have performed series of sensitivity analyses on the effects of including global 
ancestry and local ancestry in the model, as well as using stratified approach. Indeed, as the author 
pointed out, using the entire heterogeneous cohort while controlling for both global and local 
ancestry detect the shared signals across populations and thus avoid potential confounds originated 
from the gene by environment correlations. However, it is unclear if the improved power is driven 
just by increasing sample size (6K vs 4K) rather than what the author claimed by inclusion of multi-
ancestry groups. As the authors showcased, the lack of heterogeneous effects and differential allele 
frequencies indicate their discovered loci is shared and homogeneous across populations. It means 
the multi-ancestry does not provide additional ancestral specific effects here.  
 
Author response: 
With the power-deficit of differentiated SNPs, it is likely that a European-only GWAS with the same 
sample size yields a greater discovery rate over the multi-ancestry one. Therefore, the main aim of 
this sensitivity analysis was to see if it was worthwhile conducting a multi-ancestry GWAS over a 
European-only GWAS. We are unsure if the increased discovery rate is due to boosted sample size 
alone or any other aspects related to multi-ancestry inclusion. Consequently, we carefully reworded 
parts of the text to avoid suggesting that non-European ancestry was responsible for the improved 
discovery rate, but rather that it was something we observed in one GWAS versus the other: 
“Overall, the multi-ancestry GWAS thus achieved a higher discovery rate, identifying 7 more loci, and 
reaching lower P-values in 25 of the 31 loci (80.6%).” 
 
Indeed, most loci show no significant heterogeneity of effect between ancestral groups. For those 
that do, we could not accurately estimate the shape effects in the minority ancestries due to the 
limited sample size. Admixture mapping is a technique that specifically looks for phenotypic 
differences associated with genetic differentiation in an admixed cohort and could theoretically 
identify genetic loci underlying ancestry differences in cranial vault shape. We initially tried 
admixture mapping in the ABCD cohort during early stages of this work but ran into statistical 
problems related to the multivariate phenotypic definition of cranial vault shape as well as the 
limited admixed sample size after filtering and the complex admixture patterns in the cohort. 
Therefore, at the current time, with the current data and models, admixture mapping did not 
contribute any added value to the manuscript, however, we plan on revisiting the approach in future 
work. 
 
2. The loci overlapping across the global-local features of face, brain, and cranial vaults are 
fascinating. The results and the discussion on this complex interaction are a bit dense and hard to 



unpack, despite the importance and richness of their materials. I would recommend updating the 
infographics of their Figure 5 to show which genes are shared across regions and which are more 
local specific, and what are their conjectured directions.  
 
Author response: 
We made changes to Figure 5 to make it more comprehensive and easier to unpack. First, we moved 
panels b (vault-wide genetic correlations with facial segments) and c (vault-wide genetic correlations 
with brain segments) to a supplementary figure. We also added a chord diagram showing all 22 loci 
overlapping with the face (White et al. 2021) or brain (Naqvi et al. 2021). Therein we show which 
genes are shared between which segments between the different structures. 
 
3. Unlike the authors’ papers about GWAS on face and GWAS on brain shape, this paper did not 
examine the loci overlaps with other polygenic disorders. Although current emphases on linking the 
discovered genes with the known cranial abnormalities are more important than the polygenic 
pleiotropies with other complex traits, it would be good to know the rationale behind this decision 
from the authors. 
 
Author response: 
Earlier work indeed demonstrated genetic overlap between several neuropsychiatric/cognitive traits 
and cortical shape, but not facial shape. While their relationship with the brain is more direct, their 
relationship with the face, if any, is much weaker. By similarity, we expect any genetic overlap 
between neuropsychiatric/cognitive traits and normal-range cranial vault shape to be small. Either 
way, we determined that this was outside the scope of the current study. 
 
Nonetheless, we included an Extended Data Table with enriched phenotypes from GWAS Catalog for 
the set of genes annotated to our GWAS loci to provide an unbiased overview of traits with an 
overlapping genetic basis. Specifically, these additional results highlight the overlap with other 
polygenic skeletal phenotypes and cranial vault shape, which we included in the manuscript as: 
 
“In line with the associated mouse phenotypes, we found enriched biological processes related to bone 
development (skeletal system development, osteoblast differentiation, bone development, 
ossification, osteoblast development) and cartilage development (regulation of cartilage development, 
chondrocyte differentiation, cartilage development, positive regulation of cartilage development). 
Furthermore, the analysis yielded enrichments for mesenchyme-related terms (mesenchymal cell 
differentiation, mesenchyme development, connective tissue development), as well as more broad 
terms related to embryonic development (embryo development, embryonic morphogenesis, embryonic 
organ morphogenesis and development, …). In agreement with these terms, enrichment of phenotypes 
in GWAS Catalog using FUMA yielded bone-related traits, including, bone mineral density (heel, skull, 
lumbar spine, …) and height (Supplementary Table 4).” 
 
4. The Table 2 used “the highest activity” to describe the where the strongest signals are observed 
and the “biased activity” to describe the differential expressions. Not sure if that is the best term to 
use in the context.  
 
Author response: 
We made appropriate changes to the wording. Table 1 now uses ‘RNAseq label’ and ‘GWAS label’. 
We further avoided ‘highest activity’ and ‘biased activity’ in the text by using ‘stronger effect’ when 
talking about GWAS effects and ‘higher transcriptional activity’ when talking about differential 
expression. Phrases that were changed, include: 
 
From: the GWAS analysis identified a higher activity in the bone … 



To: the GWAS analysis identified a stronger effect in the region … 
 
From: which all showed a frontal biased activity … 
To: which all showed higher transcriptional activity in the frontal bone … 
 
Reviewer #2 (Remarks to the Author): 
 
The authors conducted a multi-ancestral GWAS together with a European replication study on 
human outer head surface and identified 30 genetic loci of which they replicated 20. While this 
reviewer appreciates the authors’ efforts in unveiling the genetic basis of human head shape 
variation, there are several issues that make it difficult to know how novel and how reliable the 
reported findings are. 
 
1) As phenotype basis for their GWAS, the authors used the outer surface of the head obtained from 
MRI, but report all their GWAS results for the cranial vault. They defend their approach by stating 
that the outer head surface represents a proxy for the cranial vault, but do not present evidence for 
this. What is the empirical evidence for this assumption? Why do they claim their results in 
connection with a proxy phenotype and not the phenotype they measured? This must be elaborated 
so that the reader can put the reported genetic findings in the right phenotypic perspective. 
 
Author response: 
Craniofacial malformations such as craniosynostosis demonstrate how variations in skull shape are 
clearly visible through the outer head surface. This should be no surprise since the soft tissue 
thickness surrounding the neurocranium is thin and does not vary much in thickness as illustrated in 
Figure 3 (https://doi.org/10.1371/journal.pone.0210257.g003 ) from Gietzen et al.1. Therefore, it is  
possible to measure shape variation associated with the neurocranial bones through the outer head 
surface. This is reflected in our findings, which clearly demonstrate the skeletal roles of genes at our 
identified loci. 
 
 

 
Fig 3. From Gietzen et al. 2019 – A method for automatic forensic facial reconstruction based on 
dense statistics of soft tissue thickness – Statistic of the FSTT on a mean skull. Mean and standard 
deviation of FSTT computed from the 43 CT scans. 
(https://doi.org/10.1371/journal.pone.0210257.g003 ) 
 
Furthermore, in practice, measures of the boney cranial vault are routinely taken on the soft-tissue 
envelope.  For example, in traditional anthropometry, measures of cranial vault shape are obtained 
by applying calipers to soft-tissue landmarks2.  In fact, these landmarks (glabella, opisthocranion, 
eurion) have the same names on the skull and immediately overlying soft tissue due to their close 
correspondence.  
 
Because the vault refers to a broad anatomical region which may include the skull alone or the skull 
plus its soft tissue envelope,  a precise phenotypic definition is required and given to avoid confusing 
the reader. We had previously already done so in the first sentence of the results section and in 
Extended Data Figure 1: “Cranial vault shape, herein defined as the outer head surface 
encompassing the supraorbital ridge and extending towards the occipital bone, was extracted from 
structural MRIs (Extended Data Fig 1; Methods)”  



To further clarify that a regional definition for the cranial vault is used, we also modified the first 
sentence of the introduction to read: 
“The cranial vault – the globular portion of the head, shaped by flat, plate-like bones that surround 
and protect the brain (…)” 
 
Furthermore, we avoid using the term ‘proxy’ altogether, and changed: 
“Due to their close correspondence, the outer soft-tissue vault surface served as a proxy for the 
underlying cranial bones.” 
To: 
“Since the outer soft-tissue layer in this region is thin and uniform, shape variation associated with 
the neurocranial bones is well captured by our phenotypic definition.” 
 
2) Performing multi-ancestry GWAS is much less straightforward than single-ancestry GWAS and 
comes with several issues that can lead to false positive findings. This reviewer wonders how 
meaningful the multi-ancestry GWAS is in this case, where the majority of the discovery samples and 
all the replication samples are of single ancestry i.e., European and only a relatively small proportion 
of the discovery samples is of non-European ancestry. How do these limited non-European samples 
impact on the genetic findings? It is important to see the full results based on European-only 
samples and compare them with those from the multi-ancestry samples to get a practical idea how 
the intrinsic problems of multi-ancestry GWAS impacted on the presented results. The authors very 
briefly mention a comparison between multi-ancestry discovery and European-only discovery, but it 
seems this analysis was focussed on outcomes of the multi-ancestry GWAS and in any case was not 
presented with the needed level of detail. Both analyses, European-only and combined, should be 
reported and the differences critically discussed.  
 
Author response: 
The ABCD cohort is an ancestrally diverse cohort with only 5,746 out of 11,099 (51.8%) European 
participants based on the ancestry inference described in the manuscript. The other 48.2% of 
participants were mostly admixed, had very little Asian ancestry, and could not be further stratified 
into any substantial parental populations. Therefore, the aim of this work has always been to 
conduct a multi-ancestry study as opposed to omitting almost half of the cohort in a Euro-centric 
study. While the literature is rapidly expanding with regards to multi-ancestry meta-analysis in 
stratified cohorts, literature on joint multi-ancestry and admixed GWAS remains relatively scarce. 
Thus, as a GWAS in an ancestrally complex US sample our study represents a valuable contribution 
to the existing literature. 
 
Upon initial submission, our manuscript described how the inclusion of 2,504 non-European samples 
in a cohort of 6,772 US participants 

- yielded stronger GWAS signals at the majority of loci shared with a European-only GWAS; 
- yielded 8 additional genome-wide significant GWAS signals, while losing one relative to the 

European-only GWAS; 
- reduced statistical power for high Fst SNPs; 
- resulted in an enrichment of shared SNPs across ancestries; 
- and yielded consistent effect sizes across ancestries. 

We have now expanded the multi-ancestry versus European GWAS comparison. In a supplementary 
document we show that for each locus the latent shapes and association profile (i.e., the pattern of 
P-values across hierarchical segments) is highly concordant between both GWASs. Additionally, we 
show colocalization of the signal at each locus using LocusZoom and LocusCompare plots. 
Furthermore, we updated the infographic that compared signal strength in both GWASs to be less 
focused on the multi-ancestry GWAS and better show which loci were shared or not. In conclusion, 



we have extensively demonstrated how the inclusion of non-European individuals affected genetic 
findings. This paragraph was extensively reworked in the text and now reads: 
“We next performed a sensitivity analysis to evaluate the discovery of genome-wide loci when 
including or excluding the 2,504 non-European-ancestry GWAS cohort subjects. To this end, a locus 
was considered to be overlapping between both GWASs if the corresponding lead SNPs were within 
250 kb, resulting in a joint set of 31 unique loci (Extended Data Fig 7). Among these loci, 22 were 
shared, of which 17 (17/22; 77.3%) reached lower P-values in the multi-ancestry GWAS (Extended 
Data Fig 7). Moreover, 8 loci were unique to the multi-ancestry GWAS, and one locus (rs563186113) 
was unique to the European-only GWAS. Nonetheless, all those 9 loci still showed some degree of 
association in the other GWAS. Overall, the multi-ancestry GWAS thus achieved a higher discovery 
rate, identifying 7 more loci, and reaching lower P-values in 25 of the 31 loci (80.6%). Furthermore, 
shape effects and segment-wise association profiles were highly concordant between both GWASs at 
each of the 31 loci (Supplementary Information 2). At 21 loci (21/31; 67.7%), the same segment 
generated the lowest P-value, and at 5 more loci (5/31; 16.1%) the lowest P-values were generated in 
segments that were directly related. Strong co-localization was observed for the genomic signals in 
both GWASs as shown by LocusZoom and LocusCompare plots in Supplementary Information 2. 
Altogether, the analyses conducted in this section extensively demonstrated which aspects of the 
genetic findings were influenced by the inclusion of non-European individuals” 
 
3) The segmentation approach the authors applied, which they developed previously regarding the 
face, results in several segments of the outer head surface for which the biological relevance 
appears largely questionable if not being absent at all. This reviewer cannot see that the 
segmentation approach was done with a biological hypothesis in mind, which in principle should not 
be done when aiming to study a biological phenomenon. Notably, most of the GWAS findings they 
reported were obtained for “global vault shape”, i.e., the total outer head surface as measured 
without any segmentation. Only very few hits were seen for any of the 14 segments generated from 
the total surface with the segmentation approach. This reviewer largely questions the use of the 
segmentation approach for this phenotype and remains very sceptical about the true positive nature 
of the genetic loci reported solely for segments not overlapping with those identified with total 
shape. Moreover, doing GWAS on multiple phenotypes comes for the price of having to consider 
multiple phenotypes and their correlation in the analysis and interpretation, which the authors 
mostly ignored (see next point). Perhaps a GWAS on the single phenotype of total outer head 
surface would be more powerful and deliver more trustworthy results?  
 
Author response: 
Since the aim of the study was to study cranial vault shape variation, we reasoned that shape 
variation could directly inform the segmentation, resulting in an unbiased and data-driven approach, 
such as used in earlier work on the face and brain. Additionally, the segmentation approach works in 
conjunction with PCA, i.e., grouping correlated vertices yields more efficient dimensionality 
reduction, aiding with association testing. This approach represents only one of many ways to 
segment the cranial vault. The resulting segment edges do not coincide with cranial sutures, 
however, that does not indicate a lack of biological meaning. Fundamentally, a data-driven 
segmentation will capture biological aspects of shape variation that are not immediately obvious to 
a single human observer. 
 
To attempt to expose the underlying biological drivers of the segmentation, we examined the 
vertex-wise shape effects of all lead SNPs with genome-wide significant effects on global cranial 
vault shape, i.e., those SNPs whose discovery was not dependent on the segmentation approach. 
Specifically, we looked at the regions on the cranial vault where those SNPs effects were the largest 
by looking at the 95th percentile of absolute shape deformation associated with each vertex. This 
revealed deformation hotspots, many of which located on the midline, and thus clearly coinciding 



with sutures. Interestingly, overlaying our data-driven segmentation revealed how the deformation 
hotspots get more isolated and focused on within each hierarchical layer of segmentation. Strikingly, 
the smallest segments were centered around specific hotspots. Hence, we show how our data-
driven segmentation has plausible biological underpinnings and is clearly influenced by suture-
associated shape variation. Extended Data Figure 3 shows these segments and hotspots. 
 
As we have shown previously with facial surface shape and brain shape, the global-to-local 
segmentation approach used here yields replicable associations what would otherwise have been 
missed by limiting to a global definition of the vault.  While it is true that few additional hits were 
seen for the other 14 segments (all segments, excluding the full cranial vault), this could not be 
known a priori given the poor understanding of normal-range cranial vault shape. Hence, we 
retained the segmentation approach to show that SNPs affecting vault shape mostly do so on a 
global level, which is a result in itself. Still, certain loci showed strong effects on local segments only. 
Examples include rs3936018, near TBX15 associated specifically with the frontal region (P = 4.10e-
19), and previously identified to be associated with forehead morphology3. Another example is 
rs11609649 near ALX1, which also showed association locally with the frontal region (P = 8.24e-10), 
and not with the posterior regions, matching in situ expression patterns in mouse embryos 
(https://www.informatics.jax.org/assay/MGI:3508780 ). While for those loci, we observed effects in 
the regions where they were expected, it is interesting to see the lack of significant association in 
other regions of the vault and affirming their localized roles. Moreover, we identified a signal near 
SHH, which was only locally associated with cranial vault shape, has a well-established role in 
craniofacial development, and was replicated in the UKBB. 
 
Regarding the remark that loci with local effects still show some association for the global cranial 
vault, Supplementary Information 1 clearly shows that the global shape effects of those loci are 
consistent with the local shape effects. Also note that the association profile across the segments is 
not random, often showing a gradient of association strength from local to global segments. This is 
exactly what one should expect if the true effect of a locus is indeed local, i.e., that considering a 
larger set of vertices increases the total variance in the phenotype while the variance explained by 
the genotype does not increase with the same extent, thereby resulting in a statistically weaker 
association. We have updated the infographics in Supplementary Information 1 to better show this. 
Additionally, we indicated which segments were replicated in the UKBB. 
 
4) The authors performed 15 separate GWASs for the 15 phenotypes they used from applying their 
segmentation approach. It seems they did not do a meta-analysis on the outcomes of these 15 
GWASs, which would be the normal way to do. Since meta-analysis is a well-established approach, 
the question appears why the authors deviated from this? If the authors were to stick with the 
multiple phenotypes they generated with their segmentation approach despite the criticism 
expressed under point 3, meta-analysis should be conducted and significant study results should 
only be concluded from the meta-analysis outcomes. Also, it can be assumed that there are 
correlations between these 15 phenotypes used, which, in case the authors keep using them, should 
be tested empirically and such correlations, if identified, should be taken into account in the GWAS 
in an appropriate statistical way.  
 
Author response: 
Many GWAS meta-analyses assume that there is no sample overlap between GWASs, such as 
Fisher’s P, Stouffers Z, and inverse-variance weighted (IVW) meta-analysis (which additionally 
assumes the same effect size across traits). This assumption is  violated in our study, as samples fully 
overlap between each of the 15 GWASs. Furthermore, most other approaches require (signed) effect 
size estimated and their standard errors (e.g., METAL, MTAG, metaCCA, C-GWAS) which are not 
yielded by our multivariate regression using CCA. Hence, while meta-analysis of GWAS is common 



practice, most of the current implementations are simply not compatible with studies like ours 
where there is complete sample overlap and no signed effect size estimates (and their standard 
errors) are available. We therefore went with an approach that makes no assumptions on sample 
overlap, requires only P-values, and has been applied before in similar studies (Naqvi et al., White et 
al.). An overview of meta-analysis methods is given in the table below. 
 

Mehtod Citation Assumptions Input Why this method is not 
applicable to our cranial vault 
GWAS 

Fisher’s P / 
Stouffers Z 

 No sample 
overlap 

P-values Samples overlap fully between 
segments. 

Inverse 
variance 
weighted / 
Fixed effect 
meta-
analysis 

 No sample 
overlap, beta 
constant across 
traits 

Signed Z-scores (or signed betas), standard 
errors on beta 

Samples overlap fully between 
segments. 
CCA does not yield z-scores, 
nor betas. 
Effects likely differ across 
segments. 

minP Tippett 
(1931) 

Samples can 
overlap 

P-values, individual level data (to 
calculate Neff) 

Applicable! 

METAL Willer 
(2010)4 

Samples can 
overlap 

Signed Z-scores or beta + SE (based on 
IVW) 

CCA does not yield signed 
betas 

Empirical 
Brown’s 
Method / 
Kost’s 
Mehtod 

Poole 
(2016)5 

Samples can 
overlap 

P-values, individual level univariate traits 
(can be adapted) 

Applicable! 

metaCCA Cichonska 
(2016)6 

Samples can 
overlap 

Beta + SE CCA does not yield betas 

MTAG Turley 
(2018)7 

Samples can 
overlap (Relies 
on bivariate LD-
score regression 
to estimate 
sample overlap) 

Signed Z-scores or beta + SE (based on 
IVW) 

Relies on LD-score regression: 
- No stadardized 
implementation for 
multivariate test statistics 
- Does not work in multi-
ancestry cohort. 

Cauchy test Liu (2020)8 Samples can 
overlap 

Pvalues Applicable! 

C-GWAS Xiong 
(2022)9 

Samples can 
overlap 

P-values, signed betas (based on IVW) CCA does not yield signed 
betas 

 
 
To combine our GWAS results across multiple segments, we take for each SNP the minimal P-value 
across the 15 segments (minP). Since correlation between the segments is expected (due to e.g., the 
hierarchical nature of segments), a Bonferroni correction based on 15 independent tests would be 
overly stringent. For a more accurate adjustment, we estimated the number of effective 
independent tests per SNP following Kanai (2016) and ran 10,000 genotype-phenotype associations 
under the null by permutation testing in a way that preserved the correlational structure of our 
phenotypes. This was repeated for 500 random SNPs and yielding an estimate of 11.44 (±0.55) 
independent traits. 
 



To illustrate the robustness of this estimate, we have additionally estimated the number of effective 
traits using several other approaches:  
 
First, we repeated the permutation testing for our 30 lead SNPs, yielding an estimate for the number 
of effective traits of 11.28 (±0.50). 
 
Second, we applied several methods to estimate the number of effective traits from a trait-
correlation matrix. We used three methods: 1) Li & Ji (2005)10, 2) Galwey (2009)11, and 3) Li (2011)12 
on three different correlation matrices: 1) based on the P-values from the GWAS, 2) based on the 
Chi-squared statistics from the GWAS, and 3) based on the Spearman genetic correlation matrix 
(methods). All three correlation matrices yielded highly concordant results across methods. 
 
Method P-values Chi-squares Genetic correlation 
Li & Ji (2005) 11.00 10.00 10.00 
Galwey (2009) 11.27 10.84 10.98 
Li (2011) 8.87 8.52 8.57 
 
While these estimates mostly agree on a number of effective traits, the most conservative estimate 
of 11.44 was obtained based on 10,000 permutations of 500 random SNPs. We therefore adjusted 
the genome-wide significance threshold (instead of the P-values themselves) using Bonferroni 
correction based on 11.44 effective traits, resulting in a study-wide threshold of 4.37e-9 (i.e., 5e-8 / 
11.44). 
 
In short, we tried several approaches to estimate the number of effective traits, thereby taking into 
account the correlational structure between the phenotypes. We showed robustness of our 
estimates and used the most conservative estimate to adjust the significance threshold. 
 
5) As far as this reviewer can see, the authors left out describing which of the genetic loci they 
identified were discovered for the first time for their phenotype(s), therefore representing new 
knowledge, and which were already identified in previous studies and represent confirmation of 
previously established knowledge. It is unexpected that the authors did not look into this given the 
novelty focus of scientific journals. Why did they not describe this? Given that this is not the first 
genetic study on head shape, it should be clearly described how many and which loci represent 
novel knowledge and how many and which confirm previous knowledge. 
 
Author response: 
Only HMGA2 was previously identified in two separate GWASs on head circumference. None of the 
other loci were previously identified in GWAS on cranial vault dimensions (head circumference, 
maximum cranial length, maximum cranial length, and cephalic index). This has now been indicated 
in the text: 
Among these signals, only the locus near HMGA2 has been previously identified in GWAS on cranial 
vault dimensions. 
 
As already mentioned in the text, several loci overlap with the facial GWAS of White et al. 2021. 
These loci and their associated segments are shown in the updated Figure 5. 
 
Reviewer #3 (Remarks to the Author): 
 
The manuscript by Goovaerts et al. describes a large-scale GWAS analysis of the human cranial vault 
shape in the ABCD study cohort with replication in individuals from the UK biobank. The manuscript 



is very comprehensive in scope and while many of the identified loci and candidate genes have 
previously been implicated in craniofacial development, the findings significantly add to our 
understanding of the genetic factors that influence the cranial vault shape. 
 
Major comments: 
• Hierarchical spectral clustering was used to segment the cranial vault into 15 distinct segments. It 
would be useful to understand to what extent the segments correspond to (or overlap) cranial vault 
bones and whether edges of the segments coincide with cranial sutures. 
 
Author response: 
Generally, the segment edges of our data-driven approach do not coincide with sutures. 
 
To help understand how cranial vault shape variation influenced the hierarchical segmentation, we 
examined the vertex-wise shape effects of all lead SNPs with genome-wide significant effects on 
global cranial vault shape, i.e., those SNPs whose discovery was not dependent on the segmentation 
approach. Specifically, we looked at the regions on the cranial vault where those SNPs effects were 
the largest by looking at the 95th percentile of absolute shape deformation associated with each 
vertex. This revealed deformation hotspots, many of which located on the midline, and thus clearly 
coinciding with sutures. Interestingly, overlaying our data-driven segmentation revealed how the 
deformation hotspots get more isolated within each hierarchical layer of segmentation. Strikingly, 
the smallest segments were centered around specific hotspots. Extended Data Figure 3 shows these 
segments and hotspots.  
 
Therefore, it appears that the data-driven segmentation captures units of shape variation as these 
local foci of deformation rather than individual bones. 
 
• The extent of damage in the validation dataset and its potential impact on the replication analysis 
of each segment is unclear and should be better explained. For example, an overview of the 
proportion of repaired MRI profiles per segment should be provided. It is also not clear to what 
extent the repair recapitulates the expected shape without validation (e.g. by creating damaged 
profiles and then checking to what extent repair recapitulates the expected shape). Depending on 
the impact of the repair, may be better to exclude segments with too much damage altogether. 
 
Author response: 
First, we reference the original work that describes in detail the defacing of the MRIs so that the 
reader can easily understand the extend of the damage. We added the following sentence to the 
first paragraph of the methods: 
“The process of anonymization has been described in detail by Alfaro-Almagro et al..” 
 
Because all MRIs were defaced using the same procedure, i.e., by masking voxels of the face 
(including forehead) and ears, the corresponding local vault segments (e.g., 5, 6, 7, 11, 12, 13) and all 
bigger vault segments (e.g., 1,2,3) were at least partially damaged in every single scan. Therefore, 
any approach that relies on the use of intact, undamaged segments would not be productive, which 
is also the reason that the UKBB was used as a replication dataset, not as a discovery dataset. 
 
While almost all segments were partially damaged in all MRIs, they were still rich in individual level 
shape variation, especially those segments where the damage affected only a small fraction of the 
total surface area (e.g., segment 1). This is evidenced by the fact that, despite this damage, we were 
able to replicate 20 of 30 GWAS signals.  We therefore approached this problem as a missing data 
problem, explicitly modeled the damaged regions as missing, and filled in the missing data based on 
the most plausible shape variation as modelled by an active shape model built from the ABCD vault 



data. In other words, we filled in the damaged regions by an average, expected shape instead of 
trying to recapitulate the shape that was originally present. We appropriately changed wording to 
make this clearer in the text:  
“Specifically, we masked all vertices in the damaged regions (Extended Data Fig 4) across all images 
and restricted these vertices from contributing to the deformation of the template during mapping, 
essentially treated the damaged regions as missing data. Recompletion of the missing regions was 
done by statistical data imputation, where an active shape model159 constructed from the processed 
ABCD vault data was used to impute the position of the masked vertices. To further mitigate any 
impact of the damage on the surface registration, non-rigid deformations of the template were 
constrained by the active shape model, i.e., it replaced the more general freeform non-rigid 
deformation model in the MeshMonk150 toolbox. This resulted in cranial vault shapes that realistically 
represented cranial vaults according to the active shape model but lacked individual level variation in 
the damaged regions. Consequently, the segment-wise replication rate  decreased based on the 
extend of data treated as missing (Extended Data Fig 4).” 
 
Additionally, we included panel b in Extended Data Figure 4 to show the fraction of vertices in each 
segment that was masked and treated as missing. Moreover, panel d clearly illustrates how the 
replication rate decreases when the fraction of missing data within a segment increases. A 
replication rate of 0 is expected when an entire segment is treated as missing, thus showing no 
inflation of the replication rate. 
 
In conclusion, it was not our aim to recomplete damaged parts as close to the original shapes as 
possible. Instead the procedure we used deals with the damaged parts as missing data, and the 
results illustrate as expected, that a higher rate of missing data in a segment, leads to a lower 
replication rate. This is now illustrated clearly in the revised document. 
 
• The differential gene expression analysis shows only minor changes between the frontal and 
parietal bones, with log2 fold changes ranging between -1.37 and 0.68. While these differences may 
be statistically significant it is not sufficient to classify genes as ‘frontal’ or ‘parietal’. Statements such 
as “This consistency between gene expression and phenotypic effect could suggest that for those 
genes increased expression drives phenotypic effects.” (line 375) and “This may indicate that the 
downregulation of FGF10 allows for an increased activity of other genes involved in shaping the 
cranial vault” (Line 383) should therefore be moderated. 
 
Author response: 
The sentence:  
“This consistency between gene expression and phenotypic effect could suggest that for those genes 
increased expression drives phenotypic effects.” 
has now been removed altogether. 
 
The sentence:  
“This may indicate that the downregulation of FGF10 allows for an increased activity of other genes 
involved in shaping the cranial vault.”  
has been replaced by:  
“The strong parietal localization of the FGF10 GWAS signal combined with a lower transcriptional 
activity may indicate differential FGF10 dosage sensitivity between both tissues, where the 
developing parietal bone could be more sensitive to small changes in FGF10 levels. Alternative 
explanations exist and exact mechanisms could be a subject for functional follow-up studies. 
Altogether, our data suggests that some genes may have a predominant frontal or parietal 
contribution to cranial vault shape.” 
 



Additionally, in the discussion: 
“Nonetheless, Fgf10, Zeb2, and Adamtsl3 showed a predominant parietal association with cranial 
vault shape while being downregulated in the parietal mouse tissue. This may indicate that their 
down-regulation drives phenotypic effects.”  
was changed to:   
“Nonetheless, Fgf10, Zeb2, and Adamtsl3 showed a predominant parietal association with cranial 
vault shape while being downregulated in the parietal mouse tissue. It is possible that the parietal 
tissue is more sensitive to alterations in corresponding protein levels. If so, genetic variation relating 
to gene regulation would be expected to have a more pronounced effect despite the lower overall 
transcriptional activity relative to the frontal tissue. Functional assays could test this idea.” 
whereby we propose a possible and testable hypothesis. 
 
• Candidate gene assignment relied on GREAT and FUMA analyses combined with manual curation. 
GTEX could provide further supporting evidence for a link to gene expression in e.g. skeletal tissues. 
 
Author response: 
We have now used GTEx data of 22 tissues (Supplementary Table 10) relevant for the cranial vault to 
look for eQTLs co-locating with our GWAS hits. Specifically, we looked at all protein coding genes 
within 1 Mb of our GWAS lead SNPs and performed Bayesian colocalization with the R package 
‘coloc’13. Each gene with an eQTL overlapping with a GWAS loci with > 0.7 posterior probability was 
included as a candidate gene at that locus. All eQTLs overlapping with any GWAS locus with > 0.5 
posterior probability are listed in Supplementary Table 11 with their corresponding tissue. 
 
Additionally, we now moved the candidate genes per locus to Supplementary Table 1 and indicated 
for each candidate gene the source of its annotation (FUMA, GREAT, closest TSS, literature, and GTEx 
eQTL) to provide extra clarity to the reader. 
 
Minor comments: 
 
• Line 165, change ‘genome-wide significant’ to ‘genome-wide significance’. 
 
Author response: 
We thank the reviewer for noticing this typo. This was adapted accordingly. 
 
• It would be useful to expand supplementary table 1 to include the coordinates of the 30 genome-
wide significant loci identified after merging. 
 
Author response: 
At the moment, supplementary table 1 already contains the lead SNPs after merging the 15 
segments. We have now also included in which segment the association was most significant. 
 
• Supplementary table 4 is uninterpretable due to the large size. It should be provided as a 
spreadsheet, perhaps with an additional tab that limits the results to only the significant expression 
differences. 
 
Author response: 
We have now limited supplementary table 4 to our set of GWAS candidate genes only. 
 
• “Other candidate genes were either not differentially expressed, had fewer than one gene count, 
or were not expressed at E15.5.”. Does ‘fewer than one gene count’ refer to the entire library or e.g. 
fewer than one count-per-million reads? Also, what is the threshold used to differentiate between 



expressed and non-expressed genes? 
 
Author response: 
“Fewer than one gene count” is referring to the unnormalized raw count that was performed by the 
summarizeOverlaps function (vignette provided here for reference: 
https://bioconductor.org/packages/devel/bioc/vignettes/GenomicAlignments/inst/doc/summarizeO
verlaps.pdf) to provide raw counts to Deseq2. For this setup, if there were fewer than 1 raw hit 
counted for any of the 6 grouped samples sequenced, the gene was removed from the analysis to 
speedup downstream computational analysis. We clarified this in the text.  “Not expressed at E15.5” 
in this context means the same thing and refers to the same filtering. We removed this wording to 
avoid confusion. 
 
The method used to calculate differential expression are referenced in (Love, Huber, and Anders 
2014). Ultimately, the package estimates size factors (controls for differences in library size), 
calculates gene-wise dispersions, shrinks the estimates to more accurately model the read counts, 
and fits them to a gamma-Poisson distribution. A Wald test (taking the shrunken estimate of the 
logarithmic fold change divided by its standard error) is performed resulting in a Wald test p-value 
and adjusted for multiple testing using a Benjamini-Hochberg correction. An adjusted p-value of 0.05 
was used as the cutoff to determine whether a gene was differentially expressed or not. 
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REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have addressed all of my concerns and suggestions. The updated figures and tables 
are appropriate and well-organized. I have no more comments on this version of the manuscript. 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
I am not satisfied with the limited way the authors revised their manuscript concerning most of my 
previous comments. I can see in the authors extensive responses to my previous comments, but 
also to those of the other reviewers, that the authors prefer to argue and provide lots of text and 
other information in figures and tables in their rebuttal letter to support their views in the initially 
submitted manuscript, while use very little of all this to revise their manuscript accordingly. This is 
not the way how reviewers’ comments should be treated by authors as far as I see it, unless a 
reviewer gets something completely wrong, which is not the case here as can be seen by the 
extensive replies the authors provide in their rebuttal letter. The reviewers identified issues that 
likely other readers will also see as problems later on. Replying in their rebuttal letter without 
revising their manuscript accordingly does not help solving these problems. Therefore, I encourage 
the authors to include their replies to my previous comments in their revised manuscript. If they 
decide to keep ignoring my previous comments in their revised manuscript, I am out of this 
process and it is up to the editor to make a decision without me as external reviewer. 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have addressed all my prior comments satisfactorily and I have no further additions. 
 
 



Reviewer #2 (Remarks to the Author):  
 
I am not satisfied with the limited way the authors revised their manuscript concerning most of my 
previous comments. I can see in the authors extensive responses to my previous comments, but also 
to those of the other reviewers, that the authors prefer to argue and provide lots of text and other 
information in figures and tables in their rebuttal letter to support their views in the initially 
submitted manuscript, while use very little of all this to revise their manuscript accordingly. This is 
not the way how reviewers’ comments should be treated by authors as far as I see it, unless a 
reviewer gets something completely wrong, which is not the case here as can be seen by the 
extensive replies the authors provide in their rebuttal letter. The reviewers identified issues that 
likely other readers will also see as problems later on. Replying in their rebuttal letter without 
revising their manuscript accordingly does not help solving these problems. Therefore, I encourage 
the authors to include their replies to my previous comments in their revised manuscript. If they 
decide to keep ignoring my previous comments in their revised manuscript, I am out of this process 
and it is up to the editor to make a decision without me as external reviewer. 
 
Authors’ response: 
While it is hard to know what remains to be addressed, we did implement several additional changes 
to further improve the manuscript.  
 
Specifically, we included an additional paragraph in the discussion which rephrases parts of our 
initial answer to the Reviewer’s comment 3 as: 
“As we have shown previously with facial surface shape and brain shape, the global-to-local 
segmentation approach used here yielded replicable associations that would otherwise have been 
missed by limiting to a global definition of the vault. While few additional hits were detected for the 
14 segments that were not the global cranial vault, this could not have been known a priori given the 
poor understanding of normal-range cranial vault shape. Hence, we retained the segmentation 
approach to show that SNPs affecting vault shape mostly do so on a global level. Still, certain loci 
showed significant effects on local segments only, whereby the association strength decreased 
gradually going from a local to a global level, though still with some degree of association with the 
global cranial vault. This is exactly what one should expect if the true effect of a locus is indeed local, 
i.e., that considering a larger set of vertices increases the total variance in the phenotype while the 
variance explained by the genotype does not increase with the same extent, thereby resulting in a 
statistically weaker association. One example is rs3936018 near TBX15, which was associated 
specifically with the frontal region, and previously identified to be associated with forehead 
morphology. Another example is rs11609649 near ALX1, which also showed association locally with 
the frontal region, and not with the posterior regions, matching in situ expression patterns in mouse 
embryos. While for those loci, we observed effects in the regions where they were expected, it is 
interesting to see the lack of any significant association in other regions of the vault, thereby affirming 
their localized roles.” 
 
Additionally, we included Supplementary Methods 1 to provide more detail regarding the 
methodology used to address the Reviewer’s comment 4.  
 
Below is an overview of the initial numbered comments and responses. All changes to the 
manuscript resulting from those comments are summarized under each comment. 
 
 
 
 
 



Initial comments by Reviewer #2 
 
Reviewer comments (black) are followed by a summary of the comments; a list of how each point 
was addressed in the manuscript; and the original author responses. Text in blue relates to the initial 
review; while purple text documents the additional changes made based on the latest comment by 
Reviewer 2. 
 
Reviewer #2 (Remarks to the Author): 
 
The authors conducted a multi-ancestral GWAS together with a European replication study on 
human outer head surface and identified 30 genetic loci of which they replicated 20. While this 
reviewer appreciates the authors’ efforts in unveiling the genetic basis of human head shape 
variation, there are several issues that make it difficult to know how novel and how reliable the 
reported findings are. 
 
(each comment starts on a new page) 
  



1) As phenotype basis for their GWAS, the authors used the outer surface of the head obtained from 
MRI, but report all their GWAS results for the cranial vault. They defend their approach by stating 
that the outer head surface represents a proxy for the cranial vault, but do not present evidence for 
this. What is the empirical evidence for this assumption? Why do they claim their results in 
connection with a proxy phenotype and not the phenotype they measured? This must be elaborated 
so that the reader can put the reported genetic findings in the right phenotypic perspective. 
 
Author interpretation of the reviewers comments: 

a) The outer head surface is used to measure cranial vault shape variation, why not report 
results for “outer head surface”? 

b) If using outer head surface to capture the morphology of the underlying bones, what is the 
empirical evidence for this? 

c) In order for the reader to put findings in the right phenotypic perspective, it needs to be 
clear that the phenotype analyzed is the outer head surface. 

 
Summary of revisions to the manuscript: 
To address point b) we changed: 
“Due to their close correspondence, the outer soft-tissue vault surface served as a proxy for the 
underlying cranial bones.” 
To: 
“Since the outer soft-tissue layer in this region is thin and uniform, shape variation associated with 
the neurocranial bones is well captured by our phenotypic definition.” 
where we also cite Gietzen et al. 
 
To avoid confusion in relation to point c), we changed: 
“The cranial vault – the globular portion of the skull comprised of flat, plate-like bones that surrounds 
and protects the brain – shows considerable size and shape variation within and among human 
populations.” 
To: 
“The cranial vault – the globular portion of the head, shaped by flat, plate-like bones that surround 
and protect the brain – shows considerable size and shape variation within and among human 
populations.” 
 
Author response to the reviewer: 
Craniofacial malformations such as craniosynostosis demonstrate how variations in skull shape are 
clearly visible through the outer head surface. This should be no surprise since the soft tissue 
thickness surrounding the neurocranium is thin and does not vary much in thickness as illustrated in 
Figure 3 (https://doi.org/10.1371/journal.pone.0210257.g003 ) from Gietzen et al.1. Therefore, it is  
possible to measure shape variation associated with the neurocranial bones through the outer head 
surface. This is reflected in our findings, which clearly demonstrate the skeletal roles of genes at our 
identified loci. 
 
 

 
Fig 3. From Gietzen et al. 2019 – A method for automatic forensic facial reconstruction based on 
dense statistics of soft tissue thickness – Statistic of the FSTT on a mean skull. Mean and standard 
deviation of FSTT computed from the 43 CT scans. 
(https://doi.org/10.1371/journal.pone.0210257.g003 ) 



 
Furthermore, in practice, measures of the boney cranial vault are routinely taken on the soft-tissue 
envelope.  For example, in traditional anthropometry, measures of cranial vault shape are obtained 
by applying calipers to soft-tissue landmarks2.  In fact, these landmarks (glabella, opisthocranion, 
eurion) have the same names on the skull and immediately overlying soft tissue due to their close 
correspondence.  
 
Because the vault refers to a broad anatomical region which may include the skull alone or the skull 
plus its soft tissue envelope,  a precise phenotypic definition is required and given to avoid confusing 
the reader. We had previously already done so in the first sentence of the results section and in 
Extended Data Figure 1: “Cranial vault shape, herein defined as the outer head surface 
encompassing the supraorbital ridge and extending towards the occipital bone, was extracted from 
structural MRIs (Extended Data Fig 1; Methods)”  
To further clarify that a regional definition for the cranial vault is used, we also modified the first 
sentence of the introduction to read: 
“The cranial vault – the globular portion of the head, shaped by flat, plate-like bones that surround 
and protect the brain (…)” 
 
Furthermore, we avoid using the term ‘proxy’ altogether, and changed: 
“Due to their close correspondence, the outer soft-tissue vault surface served as a proxy for the 
underlying cranial bones.” 
To: 
“Since the outer soft-tissue layer in this region is thin and uniform, shape variation associated with 
the neurocranial bones is well captured by our phenotypic definition.” 
 
 
  



2) Performing multi-ancestry GWAS is much less straightforward than single-ancestry GWAS and 
comes with several issues that can lead to false positive findings. This reviewer wonders how 
meaningful the multi-ancestry GWAS is in this case, where the majority of the discovery samples and 
all the replication samples are of single ancestry i.e., European and only a relatively small proportion 
of the discovery samples is of non-European ancestry. How do these limited non-European samples 
impact on the genetic findings? It is important to see the full results based on European-only 
samples and compare them with those from the multi-ancestry samples to get a practical idea how 
the intrinsic problems of multi-ancestry GWAS impacted on the presented results. The authors very 
briefly mention a comparison between multi-ancestry discovery and European-only discovery, but it 
seems this analysis was focussed on outcomes of the multi-ancestry GWAS and in any case was not 
presented with the needed level of detail. Both analyses, European-only and combined, should be 
reported and the differences critically discussed.  
 
Author interpretation of the reviewer’s comment: 

a) How do the limited non-European ancestry samples impact genetic findings? 
b) It is important to see the full European-only GWAS results. 
c) The European-only and multi-ancestry GWAS results need to be discussed more elaborately 

and in a way that does not focus solely on the multi-ancestry results. 
 
Summary of revisions to the manuscript: 
To address points a) and b), Supplementary Data 2 was added, listing all overlapping loci between 
the European-only, and Multi-ancestry GWAS. For each locus overlap, a figure is provided showing 1) 
the shape effects associated with the locus is both GWASs; 2) the P-value profile across the 15 
hierarchical segments; and 3) LocusZoom plots and a LocusCompare plot to show the signal co-
localization. 
 
To address point b) and c), Supplementary Figure 8 was completely overhauled and now shows a 
Miami plot comparing both GWASs. This plot clearly indicates 1) which loci were shared; 2) which 
loci were unique and to which GWAS; and 3) in which GWAS the signal was the strongest. 
 
To address point a) and c), results from both GWASs were analyzed and compared more elaborately 
in the results section of the manuscript. Initially the paragraph read: 
“We next performed a sensitivity analysis to evaluate the discovery of genome-wide loci when 
including or excluding non-European-ancestry GWAS cohort subjects. For each of the 30 genome-
wide lead SNPs from the main GWAS (n = 6,772), we selected the most significant SNP from the 
European-only GWAS (n = 4,198) within 250 kb and in LD (r2 > 0.2) to represent the same locus. In 
total 25 out of 30 (83.3%) loci reached a lower P-value in the multi-ancestry GWAS. Compared to the 
European-only GWAS, we identified 8 additional genomic loci at genome-wide significance (P < 5e-8) 
(Extended Data Fig 7) while only a single additional locus (rs563186113) reached genome-wide 
significance (P = 4.10e-8) in the European-only GWAS exclusively. The overall lower P-values and net 
gain of 7 additional genomic loci demonstrate the increased sensitivity resulting from the inclusion of 
non-European-ancestry participants.” 
And was then changed into: 
“We next performed a sensitivity analysis to evaluate the discovery of genome-wide loci when 
including or excluding the 2,504 non-European-ancestry GWAS cohort subjects. To this end, a locus 
was considered to be overlapping between both GWASs if the corresponding lead SNPs were within 
250 kb, resulting in a joint set of 31 unique loci (Supplementary Figure 8). Among these loci, 22 were 
shared, of which 17 (17/22; 77.3%) reached lower P-values in the multi-ancestry GWAS 
(Supplementary Figure 8). Moreover, 8 loci were unique to the multi-ancestry GWAS, and one locus 
(rs563186113) was unique to the European-only GWAS. Nonetheless, all those 9 loci still showed 
some degree of association in the other GWAS. Overall, the multi-ancestry GWAS thus achieved a 



higher discovery rate, identifying 7 more loci, and reaching lower P-values in 25 of the 31 loci 
(80.6%). Furthermore, shape effects and segment-wise association profiles were highly concordant 
between both GWASs at each of the 31 loci (Supplementary Data 2). At 21 loci (21/31; 67.7%), the 
same segment generated the lowest P-value, and at 5 more loci (5/31; 16.1%) the lowest P-values 
were generated in segments that were directly related. Strong co-localization was observed for the 
genomic signals in both GWASs as shown by LocusZoom and LocusCompare plots in Supplementary 
Data 2. Altogether, the analyses conducted in this section extensively demonstrated which aspects of 
the genetic findings were influenced by the inclusion of non-European individuals.” 
 
Author response to the reviewer: 
The ABCD cohort is an ancestrally diverse cohort with only 5,746 out of 11,099 (51.8%) European 
participants based on the ancestry inference described in the manuscript. The other 48.2% of 
participants were mostly admixed, had very little Asian ancestry, and could not be further stratified 
into any substantial parental populations. Therefore, the aim of this work has always been to 
conduct a multi-ancestry study as opposed to omitting almost half of the cohort in a Euro-centric 
study. While the literature is rapidly expanding with regards to multi-ancestry meta-analysis in 
stratified cohorts, literature on joint multi-ancestry and admixed GWAS remains relatively scarce. 
Thus, as a GWAS in an ancestrally complex US sample our study represents a valuable contribution 
to the existing literature. 
 
Upon initial submission, our manuscript described how the inclusion of 2,504 non-European samples 
in a cohort of 6,772 US participants 

- yielded stronger GWAS signals at the majority of loci shared with a European-only GWAS; 
- yielded 8 additional genome-wide significant GWAS signals, while losing one relative to the 

European-only GWAS; 
- reduced statistical power for high Fst SNPs; 
- resulted in an enrichment of shared SNPs across ancestries; 
- and yielded consistent effect sizes across ancestries. 

We have now expanded the multi-ancestry versus European GWAS comparison. In a supplementary 
document we show that for each locus the latent shapes and association profile (i.e., the pattern of 
P-values across hierarchical segments) is highly concordant between both GWASs. Additionally, we 
show colocalization of the signal at each locus using LocusZoom and LocusCompare plots. 
Furthermore, we updated the infographic that compared signal strength in both GWASs to be less 
focused on the multi-ancestry GWAS and better show which loci were shared or not. In conclusion, 
we have extensively demonstrated how the inclusion of non-European individuals affected genetic 
findings. This paragraph was extensively reworked in the text and now reads: 
“We next performed a sensitivity analysis to evaluate the discovery of genome-wide loci when 
including or excluding the 2,504 non-European-ancestry GWAS cohort subjects. To this end, a locus 
was considered to be overlapping between both GWASs if the corresponding lead SNPs were within 
250 kb, resulting in a joint set of 31 unique loci (Supplementary Figure 8). Among these loci, 22 were 
shared, of which 17 (17/22; 77.3%) reached lower P-values in the multi-ancestry GWAS 
(Supplementary Figure 8). Moreover, 8 loci were unique to the multi-ancestry GWAS, and one locus 
(rs563186113) was unique to the European-only GWAS. Nonetheless, all those 9 loci still showed 
some degree of association in the other GWAS. Overall, the multi-ancestry GWAS thus achieved a 
higher discovery rate, identifying 7 more loci, and reaching lower P-values in 25 of the 31 loci 
(80.6%). Furthermore, shape effects and segment-wise association profiles were highly concordant 
between both GWASs at each of the 31 loci (Supplementary Information 2). At 21 loci (21/31; 67.7%), 
the same segment generated the lowest P-value, and at 5 more loci (5/31; 16.1%) the lowest P-
values were generated in segments that were directly related. Strong co-localization was observed 
for the genomic signals in both GWASs as shown by LocusZoom and LocusCompare plots in 
Supplementary Information 2. Altogether, the analyses conducted in this section extensively 



demonstrated which aspects of the genetic findings were influenced by the inclusion of non-European 
individuals” 
 
 
  



3) The segmentation approach the authors applied, which they developed previously regarding the 
face, results in several segments of the outer head surface for which the biological relevance 
appears largely questionable if not being absent at all. This reviewer cannot see that the 
segmentation approach was done with a biological hypothesis in mind, which in principle should not 
be done when aiming to study a biological phenomenon. Notably, most of the GWAS findings they 
reported were obtained for “global vault shape”, i.e., the total outer head surface as measured 
without any segmentation. Only very few hits were seen for any of the 14 segments generated from 
the total surface with the segmentation approach. This reviewer largely questions the use of the 
segmentation approach for this phenotype and remains very sceptical about the true positive nature 
of the genetic loci reported solely for segments not overlapping with those identified with total 
shape. Moreover, doing GWAS on multiple phenotypes comes for the price of having to consider 
multiple phenotypes and their correlation in the analysis and interpretation, which the authors 
mostly ignored (see next point). Perhaps a GWAS on the single phenotype of total outer head 
surface would be more powerful and deliver more trustworthy results?  
 
Author interpretation of the reviewer’s comment: 

a) The biological underpinnings of the segmentation approach are not obvious. 
b) The associations with smaller segments may be false positives. 
c) It could be beneficial to only report on the global vault GWAS, and omit the segmentation. 

 
Summary of revisions to the manuscript: 
To address a), we performed an additional analysis to investigate how genetic effects vary in 
magnitude across the cranial vault and added Supplementary Figure 3. Based on this analysis, it 
appears that the data-driven segmentation captures units of shape variation as local foci of 
deformation rather than individual bones. This was reported on in results as: 
“To demonstrate that our data-driven segmentation approach is capturing genetically salient aspects 
of vault shape variation, we examined the effects of discovered SNPs per vertex on the entire dense 
3D mesh.  Based on the 21 lead SNPs that were significantly (P < 5e-8) associated with global vault 
shape, we calculated deformation hotspots (Supplementary Fig. 3), which we defined as local regions 
of the cranial vault where effects attained a greater magnitude relative to their immediate 
surroundings. Most of these hotspots were located along the midline, coinciding with sutures, and 
two hotspots were located laterally. These results show  that without including any SNPs whose 
phenotypic associations were dependent on the segmentation approach, a pattern of deformation 
hotspots was obtained that aligns almost perfectly with our vault segmentation. This provides 
confirmation that our data-driven approach can capture biologically meaningful information and is 
capable of doing so with a fraction of the computational bandwidth required to perform vertex-wise 
analyses.” 
And with corresponding methods reported on in the methods section. 
 
To address b), we adapted the infographics in Supplementary Data 1 to more clearly show which 
associations and wich segments were replicated in the UK Biobank sample, thereby clearly showing a 
good replication rate for smaller segments (taking in consideration the damage in the replication 
images). 
 
Our line of reasoning regarding point c) and as expressed in the author response below, was added 
to the discussion as: 
“As we have shown previously with facial surface shape and brain shape, the global-to-local 
segmentation approach used here yielded replicable associations that would otherwise have been 
missed by limiting to a global definition of the vault. While few additional hits were detected for the 
14 segments that were not the global cranial vault, this could not have been known a priori given the 
poor understanding of normal-range cranial vault shape. Hence, we retained the segmentation 



approach to show that SNPs affecting vault shape mostly do so on a global level. Still, certain loci 
showed significant effects on local segments only, whereby the association strength decreased 
gradually going from a local to a global level, though still with some degree of association with the 
global cranial vault. This is exactly what one should expect if the true effect of a locus is indeed local, 
i.e., that considering a larger set of vertices increases the total variance in the phenotype while the 
variance explained by the genotype does not increase with the same extent, thereby resulting in a 
statistically weaker association. One example is rs3936018 near TBX15, which was associated 
specifically with the frontal region, and previously identified to be associated with forehead 
morphology. Another example is rs11609649 near ALX1, which also showed association locally with 
the frontal region, and not with the posterior regions, matching in situ expression patterns in mouse 
embryos. While for those loci, we observed effects in the regions where they were expected, it is 
interesting to see the lack of any significant association in other regions of the vault, thereby affirming 
their localized roles.” 
 
Author response to the reviewer: 
Since the aim of the study was to study cranial vault shape variation, we reasoned that shape 
variation could directly inform the segmentation, resulting in an unbiased and data-driven approach, 
such as used in earlier work on the face and brain. Additionally, the segmentation approach works in 
conjunction with PCA, i.e., grouping correlated vertices yields more efficient dimensionality 
reduction, aiding with association testing. This approach represents only one of many ways to 
segment the cranial vault. The resulting segment edges do not coincide with cranial sutures, 
however, that does not indicate a lack of biological meaning. Fundamentally, a data-driven 
segmentation will capture biological aspects of shape variation that are not immediately obvious to 
a single human observer. 
 
To attempt to expose the underlying biological drivers of the segmentation, we examined the 
vertex-wise shape effects of all lead SNPs with genome-wide significant effects on global cranial 
vault shape, i.e., those SNPs whose discovery was not dependent on the segmentation approach. 
Specifically, we looked at the regions on the cranial vault where those SNPs effects were the largest 
by looking at the 95th percentile of absolute shape deformation associated with each vertex. This 
revealed deformation hotspots, many of which located on the midline, and thus clearly coinciding 
with sutures. Interestingly, overlaying our data-driven segmentation revealed how the deformation 
hotspots get more isolated and focused on within each hierarchical layer of segmentation. Strikingly, 
the smallest segments were centered around specific hotspots. Hence, we show how our data-
driven segmentation has plausible biological underpinnings and is clearly influenced by suture-
associated shape variation. Supplementary Figure 3 shows these segments and hotspots. 
 
As we have shown previously with facial surface shape and brain shape, the global-to-local 
segmentation approach used here yields replicable associations what would otherwise have been 
missed by limiting to a global definition of the vault.  While it is true that few additional hits were 
seen for the other 14 segments (all segments, excluding the full cranial vault), this could not be 
known a priori given the poor understanding of normal-range cranial vault shape. Hence, we 
retained the segmentation approach to show that SNPs affecting vault shape mostly do so on a 
global level, which is a result in itself. Still, certain loci showed strong effects on local segments only. 
Examples include rs3936018, near TBX15 associated specifically with the frontal region (P = 4.10e-
19), and previously identified to be associated with forehead morphology3. Another example is 
rs11609649 near ALX1, which also showed association locally with the frontal region (P = 8.24e-10), 
and not with the posterior regions, matching in situ expression patterns in mouse embryos 
(https://www.informatics.jax.org/assay/MGI:3508780 ). While for those loci, we observed effects in 
the regions where they were expected, it is interesting to see the lack of significant association in 
other regions of the vault and affirming their localized roles. Moreover, we identified a signal near 



SHH, which was only locally associated with cranial vault shape, has a well-established role in 
craniofacial development, and was replicated in the UKBB. 
 
Regarding the remark that loci with local effects still show some association for the global cranial 
vault, Supplementary Information 1 clearly shows that the global shape effects of those loci are 
consistent with the local shape effects. Also note that the association profile across the segments is 
not random, often showing a gradient of association strength from local to global segments. This is 
exactly what one should expect if the true effect of a locus is indeed local, i.e., that considering a 
larger set of vertices increases the total variance in the phenotype while the variance explained by 
the genotype does not increase with the same extent, thereby resulting in a statistically weaker 
association. We have updated the infographics in Supplementary Information 1 to better show this. 
Additionally, we indicated which segments were replicated in the UKBB. 
 
 
  



4) The authors performed 15 separate GWASs for the 15 phenotypes they used from applying their 
segmentation approach. It seems they did not do a meta-analysis on the outcomes of these 15 
GWASs, which would be the normal way to do. Since meta-analysis is a well-established approach, 
the question appears why the authors deviated from this? If the authors were to stick with the 
multiple phenotypes they generated with their segmentation approach despite the criticism 
expressed under point 3, meta-analysis should be conducted and significant study results should 
only be concluded from the meta-analysis outcomes. Also, it can be assumed that there are 
correlations between these 15 phenotypes used, which, in case the authors keep using them, should 
be tested empirically and such correlations, if identified, should be taken into account in the GWAS 
in an appropriate statistical way.  
 
Author interpretation of the reviewer’s comment: 

a) The 15 GWASs were not meta-analyzed, even though this would be the ‘normal’ thing to do. 
b) Correlations between the phenotypes should be tested empirically and taken into account. 

 
Summary of revisions to the manuscript: 
While point b) was already addressed by the original manuscript, additional calculations were 
performed to show robustness and were reported in the text as: 
“Each permuted genotype was tested for association with the 15 cranial vault segments and the 
lowest P-value was retained. We then divided 0.05 by the 5th percentile of the resulting 10,000 P-
values to estimate the number of effective GWAS runs performed. This was repeated for 500 random 
SNPs, resulting in an average effective number of phenotypes of 11.44 (SD: 0.56). The effective 
number of phenotypes was additionally estimated following the same approach using the 30 lead 
SNP as well as using three eigenvalue-based methods157–159 on the 15 x 15 segment-segment 
correlation matrix as estimated using either genome-wide P-values, chi squared statistics, or genomic 
Pearson correlations, yielding 10 additional estimates in the range of 8.52 – 11.28. We then opted for 
the former, most conservative estimate, and obtained a subsequent ‘study-wide’ significance 
threshold of P < 4.37e-9 (i.e., 5e-8 / 11.44).” 
 
The methodology used to address point b) is now described in detail in Supplementary Methods 1. 
 
Author response to the reviewer: 
Many GWAS meta-analyses assume that there is no sample overlap between GWASs, such as 
Fisher’s P, Stouffers Z, and inverse-variance weighted (IVW) meta-analysis (which additionally 
assumes the same effect size across traits). This assumption is  violated in our study, as samples fully 
overlap between each of the 15 GWASs. Furthermore, most other approaches require (signed) effect 
size estimated and their standard errors (e.g., METAL, MTAG, metaCCA, C-GWAS) which are not 
yielded by our multivariate regression using CCA. Hence, while meta-analysis of GWAS is common 
practice, most of the current implementations are simply not compatible with studies like ours 
where there is complete sample overlap and no signed effect size estimates (and their standard 
errors) are available. We therefore went with an approach that makes no assumptions on sample 
overlap, requires only P-values, and has been applied before in similar studies (Naqvi et al., White et 
al.). An overview of meta-analysis methods is given in the table below. 
 

Mehtod Citation Assumptions Input Why this method is not 
applicable to our cranial vault 
GWAS 

Fisher’s P / 
Stouffers Z 

 No sample 
overlap 

P-values Samples overlap fully between 
segments. 



Inverse 
variance 
weighted / 
Fixed effect 
meta-
analysis 

 No sample 
overlap, beta 
constant across 
traits 

Signed Z-scores (or signed betas), standard 
errors on beta 

Samples overlap fully between 
segments. 
CCA does not yield z-scores, 
nor betas. 
Effects likely differ across 
segments. 

minP Tippett 
(1931) 

Samples can 
overlap 

P-values, individual level data (to 
calculate Neff) 

Applicable! 

METAL Willer 
(2010)4 

Samples can 
overlap 

Signed Z-scores or beta + SE (based on 
IVW) 

CCA does not yield signed 
betas 

Empirical 
Brown’s 
Method / 
Kost’s 
Mehtod 

Poole 
(2016)5 

Samples can 
overlap 

P-values, individual level univariate traits 
(can be adapted) 

Applicable! 

metaCCA Cichonska 
(2016)6 

Samples can 
overlap 

Beta + SE CCA does not yield betas 

MTAG Turley 
(2018)7 

Samples can 
overlap (Relies 
on bivariate LD-
score regression 
to estimate 
sample overlap) 

Signed Z-scores or beta + SE (based on 
IVW) 

Relies on LD-score regression: 
- No stadardized 
implementation for 
multivariate test statistics 
- Does not work in multi-
ancestry cohort. 

Cauchy test Liu (2020)8 Samples can 
overlap 

Pvalues Applicable! 

C-GWAS Xiong 
(2022)9 

Samples can 
overlap 

P-values, signed betas (based on IVW) CCA does not yield signed 
betas 

 
 
To combine our GWAS results across multiple segments, we take for each SNP the minimal P-value 
across the 15 segments (minP). Since correlation between the segments is expected (due to e.g., the 
hierarchical nature of segments), a Bonferroni correction based on 15 independent tests would be 
overly stringent. For a more accurate adjustment, we estimated the number of effective 
independent tests per SNP following Kanai (2016) and ran 10,000 genotype-phenotype associations 
under the null by permutation testing in a way that preserved the correlational structure of our 
phenotypes. This was repeated for 500 random SNPs and yielding an estimate of 11.44 (±0.55) 
independent traits. 
 
To illustrate the robustness of this estimate, we have additionally estimated the number of effective 
traits using several other approaches:  
 
First, we repeated the permutation testing for our 30 lead SNPs, yielding an estimate for the number 
of effective traits of 11.28 (±0.50). 
 
Second, we applied several methods to estimate the number of effective traits from a trait-
correlation matrix. We used three methods: 1) Li & Ji (2005)10, 2) Galwey (2009)11, and 3) Li (2011)12 
on three different correlation matrices: 1) based on the P-values from the GWAS, 2) based on the 
Chi-squared statistics from the GWAS, and 3) based on the Spearman genetic correlation matrix 
(methods). All three correlation matrices yielded highly concordant results across methods. 
 
Method P-values Chi-squares Genetic correlation 



Li & Ji (2005) 11.00 10.00 10.00 
Galwey (2009) 11.27 10.84 10.98 
Li (2011) 8.87 8.52 8.57 
 
While these estimates mostly agree on a number of effective traits, the most conservative estimate 
of 11.44 was obtained based on 10,000 permutations of 500 random SNPs. We therefore adjusted 
the genome-wide significance threshold (instead of the P-values themselves) using Bonferroni 
correction based on 11.44 effective traits, resulting in a study-wide threshold of 4.37e-9 (i.e., 5e-8 / 
11.44). 
 
In short, we tried several approaches to estimate the number of effective traits, thereby taking into 
account the correlational structure between the phenotypes. We showed robustness of our 
estimates and used the most conservative estimate to adjust the significance threshold. 
 
 
  



5) As far as this reviewer can see, the authors left out describing which of the genetic loci they 
identified were discovered for the first time for their phenotype(s), therefore representing new 
knowledge, and which were already identified in previous studies and represent confirmation of 
previously established knowledge. It is unexpected that the authors did not look into this given the 
novelty focus of scientific journals. Why did they not describe this? Given that this is not the first 
genetic study on head shape, it should be clearly described how many and which loci represent 
novel knowledge and how many and which confirm previous knowledge. 
 
Author interpretation of the reviewer’s comment: 

a) Novel and known loci should be announced as such. 
 

Summary of revisions to the manuscript: 
To address a), the following sentence was added to the results section: 
“Among these signals, only the locus near HMGA2 has been previously identified in GWAS on cranial 
vault dimensions.” 
and Figure 5 was updated to show overlapping signals with forehead morphology in White et al. 
(2021). 
 
Author response to the reviewer: 
Only HMGA2 was previously identified in two separate GWASs on head circumference. None of the 
other loci were previously identified in GWAS on cranial vault dimensions (head circumference, 
maximum cranial length, maximum cranial length, and cephalic index). This has now been indicated 
in the text: 
Among these signals, only the locus near HMGA2 has been previously identified in GWAS on cranial 
vault dimensions. 
 
As already mentioned in the text, several loci overlap with the facial GWAS of White et al. 2021. 
These loci and their associated segments are shown in the updated Figure 5. 
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