

Supplementary Figure 1. Genetic aberrations and mRNA expression variabilities of *POLQ*, *PARP1* and *RAD52* do not coexist in 519 AML samples from the BEAT-AML cohort (<a href="https://www.vizome.org/aml/">https://www.vizome.org/aml/</a>). (A) Matrix showing mutations in *POLQ*, *RAD52*, and *PARP1* genes. (B) Genewise-scaled variance stabilizing transformation (VST) normalized gene expression of *POLQ*, *RAD52*, and *PARP1*.

| Α | Tissue           | Parameter                                            | Unit     | +/+ (n=6) |        | <b>Polq-/-</b> (n=6) |          | Parp1-/- (n=4) |         | Rad52-/- (n=3) |         | Polq-/-;Parp1-/- (n=4) |        | Polq-/-;Rad52-/- (n=4) |         |
|---|------------------|------------------------------------------------------|----------|-----------|--------|----------------------|----------|----------------|---------|----------------|---------|------------------------|--------|------------------------|---------|
|   |                  |                                                      |          | Average   | Stdev  | Average              | Stdev    | Average        | Stdev   | Average        | Stdev   | Average                | Stdev  | Average                | Stdev   |
|   | Peripheral blood | WBC                                                  | K/uL     | 11.773    | 3.256  | 13.433               | 4.403    | 14.747         | 3.279   | 13.047         | 2.885   | 14.140                 | 7.691  | 10.895                 | 3.647   |
|   |                  | NE#                                                  | K/uL     | 3.400     | 2.007  | 3.378                | 1.040    | 3.173          | 1.141   | 2.753          | 0.560   | 3.713                  | 3.679  | 3.903                  | 2.474   |
|   |                  | LY#                                                  | K/uL     | 7.513     | 1.211  | 9.268                | 3.024    | 9.693          | 1.259   | 8.727          | 1.867   | 9.355                  | 3.298  | 5.963                  | 1.727   |
|   |                  | MO#                                                  | K/uL     | 0.570     | 0.170  | 0.598                | 0.318    | 0.847          | 0.263   | 0.690          | 0.176   | 0.605                  | 0.308  | 0.490                  | 0.194   |
|   |                  | EO#                                                  | K/uL     | 0.253     | 0.153  | 0.145                | 0.110    | 0.833          | 0.498   | 0.680          | 0.208   | 0.363                  | 0.448  | 0.385                  | 0.348   |
|   |                  | BA#                                                  | K/uL     | 0.085     | 0.053  | 0.043                | 0.027    | 0.363          | 0.185   | 0.197          | 0.116   | 0.105                  | 0.157  | 0.155                  | 0.162   |
|   |                  | RBC                                                  | M/uL     | 10.253    | 0.478  | 9.723                | 0.433    | 8.947          | 0.690   | 9.547          | 0.241   | 9.553                  | 0.440  | 10.153                 | 0.683   |
|   |                  | НВ                                                   | g/dL     | 12.900    | 0.231  | 12.450               | 0.812    | 13.433         | 0.153   | 12.633         | 0.833   | 12.625                 | 1.162  | 13.975                 | 2.087   |
|   |                  | нст                                                  | %        | 45.917    | 2.250  | 46.950               | 3.256    | 47.533         | 2.065   | 49.033         | 5.258   | 47.825                 | 8.357  | 55.525                 | 8.446   |
|   |                  | MCV                                                  | fL       | 44.783    | 0.100  | 48.283               | 2.150    | 53.300         | 3.666   | 51.433         | 6.700   | 49.950                 | 6.575  | 54.550                 | 5.884   |
|   |                  | мсн                                                  | Pg       | 12.600    | 0.557  | 12.817               | 0.588    | 15.100         | 1.389   | 13.267         | 1.234   | 13.225                 | 0.750  | 13.725                 | 1.239   |
|   |                  | PLT                                                  | K/uL     | 701.667   | 54.580 | 896.333              | 142.813  | 645.333        | 111.159 | 690.667        | 234.180 | 785.500                | 75.677 | 752.750                | 136.133 |
|   |                  | Gr1+                                                 | % PBL    | 10.620    | 4.236  | 11.972               | 4.006    | 7.225          | 2.138   | 12.620         | 5.054   | 13.000                 | 5.650  | 7.825                  | 0.895   |
|   |                  | Mac1+                                                | % PBL    | 26.600    | 15.387 | 21.550               | 5.995    | 15.925         | 12.170  | 21.660         | 4.133   | 28.033                 | 5.416  | 26.375                 | 8.548   |
|   |                  | CD3+                                                 | % PBL    | 26.600    | 15.897 | 25.225               | 7.104    | 30.825         | 7.454   | 33.880         | 8.175   | 21.233                 | 5.772  | 24.125                 | 15.923  |
|   |                  | B220+                                                | % PBL    | 31.160    | 9.036  | 27.875               | 4.647    | 24.050         | 6.153   | 29.680         | 6.855   | 28.700                 | 3.905  | 24.075                 | 2.587   |
|   | rrow             | Lin <sup>-</sup> cKit <sup>+</sup>                   | % of Lin | 19.232    | 2.413  | 18.74833             | 4.117866 | 17.150         | 8.613   | 17.867         | 0.802   | 16.375                 | 1.410  | 16.875                 | 3.308   |
|   | Bone marrow      | Lin <sup>-</sup> Sca1 <sup>+</sup>                   | % of Lin | 17.065    | 1.443  | 14.36333             | 4.924882 | 16.225         | 9.896   | 14.433         | 6.512   | 16.725                 | 6.278  | 18.725                 | 8.732   |
|   | Bo               | Lin <sup>-</sup> cKit <sup>+</sup> Sca1 <sup>+</sup> | % of Lin | 4.200     | 1.378  | 2.906667             | 1.229661 | 5.400          | 5.095   | 3.467          | 1.250   | 3.825                  | 1.382  | 5.200                  | 3.342   |



**Supplementary Figure 2. Phenotype of** *Polq-/-;Parp1-/-* and *Polq-/-;Rad52-/-* mice. (A) Peripheral blood and bone marrow parameters in 3-4 months old male and female mice (n = number of mice/genotype). (B) H&E-stained tissue sections (bone marrow, spleen, liver, kidney, brain, lung, heart, and bowel) with no specific pathologic changes (40x).



Supplementary Figure 3. Simultaneous inhibition of Pol $\theta$  helicase and DNA polymerase activity exerted synergistic effect against *RAD54-/-* leukemia cells. (A) A scheme illustrating how novobiocin (NVB) and ART558 inhibit Pol $\theta$ . (B-D) Nalm6 (54wt) and Nalm6-*RAD54-/-* (54ko) cells were treated for 72 hrs with the indicated concentrations of: (B) novobiocin (NVB) and ART558. (C) ART558, 6-hydroxy-DL-dopa (Dopa), talazoparib, and (D) ART558 + Dopa and ART558 + talazoparib. Results show mean  $\theta$  ± SD of living cells ± SD when compared to untreated cells (B, C) and cells treated with the indicated concentrations of Dopa or talazoparib (D). IC50 were calculated using Excel. \*, \*\*, \*\*\* in comparison to 54wt.



Supplementary Figure 4. Targeting Pol $\theta$  + PARP and Pol $\theta$  + RAD52 induced dual synthetic lethality against HR -deficient MPN cells. (A) HR activity in in 32Dcl3 parental cells and isogenic MPL(W515L) cells. Results represent mean %  $\pm$  SD of GFP+ cells in RFP+ cells. (B) Lin-CD34+ HR-deficient MPL(W515L)-positive primary MPN cells (n=1) were treated with IC50 of Pol $\theta$ i ART558, PARPi olaparib, and RAD52i 6-hydroxy-DL-dopa and with the indicated combinations. Mean  $\pm$  SD colony numbers from triplicate experiment. Statistical significance when compared to: # another group, \* control, and \* corresponding individual treatments.



Supplementary Figure 5. Targeting Pol $\theta$  + PARP1 and Pol $\theta$  + RAD52 induced dual synthetic lethality against HR-deficient leukemia cells. A diagram illustrating the model of dual synthetic lethal interactions after targeting Pol $\theta$  and PARP1 or Pol $\theta$  and RAD52 in HR-deficient cells (orange) versus HR-proficient cells (blue).