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1. Assumptions for causal mediation analysis 

With notation from equations (1) and (2), in order to interpret 𝛽𝛽𝑎𝑎 as the direct effect, 𝜶𝜶𝒂𝒂𝑻𝑻𝜷𝜷𝒎𝒎 as the global mediation effect, 
and 𝛽𝛽𝑎𝑎 + 𝜶𝜶𝒂𝒂𝑻𝑻𝜷𝜷𝒎𝒎 as the total effect, we require that: 

1) there is no unmeasured confounding of the exposure-mediator association conditional on C; 

2) there is no unmeasured confounding of the exposure-outcome association conditional on C. 

3) there is no unmeasured confounding of the mediator-outcome association conditional on C; and 

4) the confounders of the mediator-outcome association are not affected by A, which would make those confounders 

mediators themselves (1,2).  

Our study also assumes there is no exposure-mediator interaction affecting the outcome, which methods for high-

dimensional mediation analysis are not generally able to accommodate.  
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2. Tuning of variance-covariance matrix in simulations 

 As described in the main text, the residuals of the mediator models are sampled from a multivariate normal 

distribution with mean 0p  and variance-covariance matrix S. To obtain S, we begin by computing the true variance-

covariance matrix from the real data analysis with DNAm. This matrix is singular due to the fact that there are more CpG 

sites (2,000) being analyzed than observations (963). To make the matrix non-singular, we first standardize it so that each 

mediator has variance 1, then add a small penalty, r, to every element of the diagonal. Then we standardize a second time. 

This procedure is necessary because if we do not add such a penalty, the variance-covariance matrix remains non-

invertible, so the residuals once sampled will be linearly dependent regardless of the chosen sample size. Moreover, since 

the size of r determines the degree of correlations between mediators—larger values resulting in weaker correlations—we 

can change the correlations between simulation settings by tweaking r. For the baseline correlation level, we set r to be 1, 

which causes the correlations to range from -0.37 to 0.49. For the high-correlation setting, we set r to be 0.1, letting the 

correlations range from -0.68 to 0.89.  

 

3. Method application details 

One-at-a-time 

We assess the mediators “one-at-a-time” using the standard mediation models proposed by Baron and Kenny (1986) (3). 

These are analogous to the models established in the main text (i.e., models 1 and 2) except that they treat each mediator 

separately. We assess the significance of each mediator using the max-P test (or joint significance test), in which the 

maximum of the exposure-mediator and mediator-outcome association p-values is tested against the significance level (4). 

In the simulated data analysis, we identify active mediators by thresholding these max p-values so that at most 10% of the 

“significant” mediators are not true mediators, ensuring that the false discovery proportion (FDP) on that dataset is below 

0.10 and the false discovery rate (FDR) across all datasets is also below 0.10. In the real data analysis, we use a linear 

mixed model instead of linear regression so that we can include the appropriate confounding variables as random effects; 

in particular, age, sex, race, and the estimated proportions of residual non-monocytes are adjusted for as fixed effects and 

methylation chip and position as random effects (to address potential batch effects). We fit this model with the “lmerTest” 

package in R. (The mediation model from this set up is the same model used to screen the CpG sites from 402,339 down 

to 2,000.) To identify CpG sites involved in mediation, we take the max-P values from these models and adjust them 
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using the “qvalue” function from the “qvalue” package, then compare them to a signficance level of 10% to control the 

FDR.   

 

HIMA 

We apply HIMA directly using the “hima” function from the “HIMA” package in R. On the simulated datasets, we apply 

sure independence screening (5) as recommended by the HIMA authors (6) to reduce the set of mediators to the 𝑛𝑛/log (𝑛𝑛) 

mediators mostly strong associated with Y, adjusting for A (screening based on the outcome model). The number 

𝑛𝑛/log (𝑛𝑛) is chosen to encourage dimension reduction while maintaining the accuracy of the screening procedure (5). For 

FDR correction, we choose a p-value threshold for each dataset to ensure that the false discovery proportion for that 

dataset is below 0.10.  

On the DNAm data from MESA, so that the sure indepdent screening matches the original screening used to 

arrive at 2,000 CpG sites, we screen on the association of each CpG site with the exposure, low education, using the same 

linear mixed model used in the mediator model of the one-at-a-time approach. (The HIMA and HDMA authors suggest 

screening based on either the outcome model or the mediator model is acceptable (6,7)). We identify CpGs as noteworthy 

based on whether their estimated mediation contribution is not zero. Although HIMA does produce p-values (which we 

use for thresholding in the simulated data analysis), the p-values are based on the subsequent fitting of an ordinary linear 

regression after the penalized model has performed feature selection; hence, they can be expected to be overconfident. It is 

for this reason that throughout our DNAm analysis, we avoid commenting on the “statistical significance” of the 

mediation contributions and focus only on identifying which ones are “noteworthy.” 

 

HDMA 

We apply HDMA using the “hdma” function provided by Gao et al. at their repository 

(https://github.com/YuzhaoGao/High-dimensional-mediation-analysis-R/blob/master/HDMA.R). Application of the 

“hdma” function is similar to application of the “hima” function from the “HIMA” package, and we apply HDMA 

identically to how we apply HIMA as described above.  

 

MedFix 

https://github.com/YuzhaoGao/High-dimensional-mediation-analysis-R/blob/master/HDMA.R
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Although code for MedFix is provided in the GitHub repository located at https://github.com/QiZhangStat/highMed, it is 

designed for the setting where both A and M are high-dimensional (the primary setting for which MedFix is intended). We 

provide code for implementing MedFix for a single exposure in our package “hdmed” (https://cran.r-

project.org/package=hdmed). Although MedFix does not explicitly involve sure independence screening like HIMA or 

HDMA, we elect to use screening for MedFix as well so that the penalized regression methods (which are very similar) 

are all applied in the same systematic fashion. Other details on how MedFix was implemented are comparable to HIMA 

as described above. 

 

 

 

PCMA 

We apply PCMA using the “mcma_PCA” function in the “SPCMA” R package (https://github.com/zhaoyi1026/spcma). 

For both the simulated data analysis and DNAm data analysis, we set the number of principal components to be 100. 

Although it may be preferable in some cases to choose this number to be larger, capturing more of the variance of M, it is 

better for the sake of our comparison to use the same number of principal components in both PCMA and SPCMA, and 

applying SPCMA with more than 100 principal components would be extremely computationally costly. Further, in the 

simulated data analysis where SPCMA was not used at all, choosing the maximal number of principal components (the 

minimum of n and p) resulted in extreme variability in the estimated total indirect effect and did not cause the method to 

perform better than it did with 100.  

 

SPCMA 

We apply SPCMA using the “spcma” function from the “spcma” package (https://github.com/zhaoyi1026/spcma). 

Analogously to PCMA, we set the number of sparse principal components to be 100. To create sparsity in the principal 

component loading vectors, SPCMA uses the fused LASSO penalty (8), which in addition to the L1 penalty used by the 

regular LASSO, penalizes the difference in coefficient effects between adjacent variables, inducing smoothness. The 

parameter γ represents the ratio of the L1 penalty to the fusion penalty, and can be chosen in advance. We set γ to be 2 so 

that the L1 penalty is emphasized, as “adjacent” CpG sites could still be far apart in the genome and should not be 

https://github.com/QiZhangStat/highMed
https://cran.r-project.org/package=hdmed
https://cran.r-project.org/package=hdmed
https://github.com/zhaoyi1026/spcma
https://github.com/zhaoyi1026/spcma
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expected to have similar effects, making the fusion penalty unimportant. However, different choices of γ did not appear to 

dramatically change our results. We test for the significance of the 100 transformed mediators using the bootstrapping 

method proposed by the SPCMA authors, with 100 bootstrap samples and bias-corrected confidence intervals (9). 

 

Pathway LASSO 

Code for implementing pathway LASSO is provided by the authors in the GitHub repository located at 

https://github.com/zhaoyi1026/PathwayLasso. Like MedFix, pathway LASSO does not explicitly involve pre-screening 

the mediators, but we still conduct the pre-screening procedure from HIMA and HDMA so that the penalized regression 

methods HIMA, HDMA, MedFix, and pathway LASSO are more comparable. This is also beneficial computationally, as 

it is slow to apply pathway LASSO directly to data with 2,000 mediators and 2,500 or 1,000 observations. Another aspect 

of pathway LASSO implementation is selecting the tuning parameters. These include ω, which controls a LASSO-like 

penalty on each (αa)j and (βm)j, φ, a convexity parameter, and λ, which controls a complex penalty function including the 

product terms (αa)j(βm)j. For our analysis, φ is fixed at 2, as it is in fMRI study presented by Zhao and Luo (2022), who 

show that pathway LASSO is not sensitive to the choice of this parameter (10). For the other parameters, we fix the ratio 

of ω to λ to be 1 (i.e., forcing the parameters to be equal), as this ratio performed best in the Zhao and Luo’s simulation 

study. We then attempt pathway LASSO using 45 different values of λ. In the simulated data analysis, we choose the 

optimal value of λ based on the observed false discovery proportion, selecting the smallest λ for which fewer than 10% of 

the selected mediators are true mediators in that simulated dataset. This is necessary because pathway LASSO does not 

provide a method to test the statistical significance of the effects using p-values, like in HDMA, HIMA, and MedFix, 

preventing us from using p-values for thresholding. In the DNAm analysis, we use the variable selection stability criterion 

suggested by the authors (11) with the code provided in the GitHub package. Like in the other penalized regression 

methods, CpG sites are considered noteworthy if their estimated mediation contribution is not zero.   

 

BSLMM 

We apply BSLMM using the “bama” function from the “bama” package in R. Application of BSLMM depends on several 

parameters: lm0, lm1, lma1, l, and k. These are, respectively, the scale parameter for the inverse-gamma prior for the 

small-variance (αa)j and (βm)j, the scale parameter for the inverse-gamma prior for the large-variance (βm)j, the scale 

https://github.com/zhaoyi1026/PathwayLasso
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parameter for the inverse-gamma prior for the large-variance (αa)j, the scale parameter for the inverse-gamma prior on the 

other coefficient variances, and the shape parameter for the inverse-gamma priors. In applying BSLMM, we fix k at 1 (the 

default setting) so that the prior mean of each variance is equal to the scale parameter. We also fix l at 1 (the default 

setting). In both the DNAm data analysis and simulated data analysis, we choose lm1 by taking the variance of the 

absolute largest 10% of the marginal (βm)j coefficients (i.e., the coefficient from the one-at-a-time method), and choose 

lma1 similarly except with the marginal (αa)j coefficients. (When working on simulated data, we know the true variance 

of the coefficients exactly, but choosing these parameters based on the known truth is not possible in practice and 

therefore should be avoided in simulations to keep them fair. Part of the difficulty in applying BSLMM on real data is 

choosing these parameters appropriately, and the results of BSLMM tend to be sensitive to this choice).   

 

HDMM 

We apply HDMM using the “PDM_1” function from the “PDM” R package (https://github.com/oliverychen/PDM). The 

“PDM_1” function computes weights for the first principal direction of mediation (PDM), which are then used to linearly 

combine the set of mediators into a single, transformed latent mediator. We analyze the transformed mediator using the 

“mediation” R package, with 2,000 Monte Carlo draws used for the quasi-Bayesian confidence intervals. HDMM cannot 

directly incorporate settings where p is greater than n when computing its PDMs, so we repeat our sure independence 

screening procedure from HIMA, HDMA, MedFix, and pathway LASSO prior to the analysis. (Note that HDMM can be 

applied when p is greater than n by using population value decomposition (12). However, population value decomposition 

is designed for longitudinal settings where each observation contains multiple measurements representing different time 

points. Our attempts to apply population value decomposition to our data were unsuccessful for this reason.) 

 

HILMA 

We apply HILMA using the “hilma” function from the “freebird” R package. We set the tuning method to “uniform” 

rather than “AIC” as recommended by the HILMA authors, and we standardize the data prior to analysis. (For the 

simulated data analysis, we multiply the resulting total indirect effect by the standard deviation of Y, and divide by the 

standard deviation of A, to project the estimate back to the scale of the original data). 

 

https://github.com/oliverychen/PDM
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PMED 

We apply PMED with code from the paper’s supplement, which can be found at 

https://doi.org/10.1080/01621459.2022.2053136. The authors provide a suite of functions that can be used to implement 

the results from their study, as well as a wrapper function called “hdMediation” that consolidates their statistical procedure 

into a single routine. The penalized regression used by PMED depends on a tuning parameter 𝜆𝜆, and sequence of 

candidate parameters must be supplied to the “hdMediation” function. For a sequence, we choose 50 numbers ranging 

from 0.000001 to 30 that are equally spaced on a logarithmic scale. The function also accepts a matrix of confounding 

variables: For the simulated data analysis, we supply an n by 1 matrix of 1’s to this input (i.e., an intercept term), and for 

the DNAm analysis, we supply covariates in the same fashion as with BSLMM.  

  

https://doi.org/10.1080/01621459.2022.2053136
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4. MESA study and data processing 

Our data were provided by the Multi-Ethnic Study of Atherosclerosis (MESA), a United States population-based 

longitudinal study on the risk factors and progression of subclinical cardiovascular disease (13). MESA recruitment began 

in July 2000 and lasted until August 2002, during which period 6,814 participants were recruited from study sites in 

Forsyth County, North Carolina; New York, New York; Baltimore County, Maryland; St. Paul, Minnesota; and Chicago, 

Illinois. Ages at recruitment ranged from 45 to 84 years. Multiple examinations since the beginning of the study captured 

data on clinical information, socio-demographic traits, lifestyle and behavioral characteristics, and other factors. A 

random subsample of 1,264 MESA participants were selected between April 2010 and February 2012 to have their 

DNAm measured using the Illumina Infinium HumanMethylation450 Beadchip on purified monocytes. Quality control 

filters reduced the number of CpG sites from 484,882 to 402,339; in particular, sites were removed if they had “detected” 

methylation levels in less than 90% of MESA samples at a p-value cutoff of 0.05, were within 10 base pairs of a single 

nucleotide polymorphism (SNP) based on Illumina annotation, had unreliable probes (i.e., had SNPs with minor allele 

frequency greater than 0.05 within 2 base pairs or cross reactive probes, recommended by DMRcate (14)), or overlapped 

with a repetitive element or region; while probes on sex chromosomes, SNPs, and other non-CpG targeting probes were 

not considered. The raw methylation measurements were transformed into M-values by taking the log-2 ratio of the 

methylated to unmethylated probe intensities. Further details are provided by Liu et al. (2013) (15).  

Our outcome variable was HbA1c measured at Exam 5, which was standardized prior to the analysis. This 

provides a measure of the average three-month blood sugar level. For our exposure variable, low adult socioeconomic 

status, we use a binary indicator variable representing the lack of a 4-year college degree (1: less than a 4-year college 

degree, 0: otherwise). Since 402,339 CpG sites is too many to include in an analysis with only 963 samples, we screened 

CpG sites in advance to reduce that number further, including only, at most, the 2,000 CpG sites most strongly associated 

with the exposure. This association was measured for each site by the p-value of the education coefficient from a linear 

mixed model in which methylation was regressed onto education level (the binary indicator), age, sex, race, and the 

estimated proportions of residual non-monocytes as fixed effects, and methylation chip and position as random effects. 

This model is equivalent to the one-at-a-time mediation mediator model described above. For the methods which require 

or recommend additional screening, we do so with the same model, described in the main text and in the section above. 
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5. Scalability comparison 

We compared the scalability of the methods by assessing their runtime on simulated datasets of two sizes: either 100 

observations and 200 mediators or 1,000 observations 2,000 mediators. This was done on a single core of an Intel(R) 

Xeon(R) Gold 6242R CPU @ 3.10GHz processor. We attempted each method 30 times and report the mean and 

interquartile range of the runtimes (Table A). Since SCPMA and BSLMM tend to be time-consuming, we approximated 

their run times by downscaling the appropriate parameters: In particular, since the desired number of principal 

components in SPCMA is 100, we use only 2 principal components and scale the computing time by 50; and since the 

desired number of posterior samples in BSLMM is 30,000, we draw only 750 samples and scale the result by 40. Ad hoc 

experimentation confirmed the run time of these methods were approximately linear with respect to these inputs. We also 

report the RAM used in a single run (Table B).  

 

Table A. Computation time comparison for high-dimensional mediation analysis methods. 

Method 
n = 100, p = 200 n = 1,000, p = 2,000 

Mean Interquartile Range Mean Interquartile Range 
BSLMM 39.17s  (38.84s - 39.54s) 40.14m  (39.74m - 40.34m) 
HDMA 1.40s  (1.37s - 1.40s) 29.76s  (29.55s - 29.92s) 
HDMM 24.85s  (24.80s - 24.89s) 12.36m  (12.33m - 12.37m) 
HILMA 24.42s  (24.13s - 24.63s) 40.85m  (38.22m - 40.65m) 
HIMA 0.25s  (0.25s - 0.25s) 3.55s  (3.47s - 3.62s) 

MEDFIX 0.61s  (0.60s - 0.61s) 7.33s  (7.22s - 7.42s) 
PCMA 2.77s  (2.74s - 2.79s) 58.97s  (58.08s - 59.35s) 

PLASSO 18.71m  (18.19m - 19.23m) 192.62m  (188.10m - 195.83m) 
SPCMA 16.05m  (15.94m - 16.04m) 842.54m  (827.26m - 855.21m) 
PMED 0.57s (0.55s - 0.65s) 14.84s (14.54s - 15.01s) 

Methods were run 30 times each on a single core of an Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz processor.  
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Table B. Memory usage of mediation methods by dataset dimensions. 

Method 
RAM Usage (Megabytes) 

n = 100, p = 200 n = 1,000, p = 2,000 
BSLMM 114 484 
HDMA 238 342 
HIMA 233 306 

MEDFIX 192 286 
PCMA 315 638 

PLASSO 72 115 
SPCMA 378 1,222 
HDMM 359 687 
HILMA 106 603 
PMED 206 281 
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