Additional file:

(*R/S*)-Lactate/2-hydroxybutyrate dehydrogenases in and biosynthesis of block copolyesters by *Ralstonia eutropha*

Shizuru Ishihara¹⁾, Izumi Orita¹⁾, Ken'ichiro Matsumoto²⁾, Toshiaki Fukui¹⁾

- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan

*Corresponding author

Toshiaki Fukui School of Life Science and Technology Tokyo Institute of Technology B-37 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan Tel/Fax: +81-45-924-5766 e-mail: <u>tfukui@bio.titech.ac.jp</u>

Supporting Information

Fig. S1

- Fig. S2
- Fig. S3
- Fig. S4
- Fig. S5
- Table S1
- Table S2
- Table S3
- Table S4
- Table S5
- Table S6

Fig. S1. The biosynthesis pathway of L-isoleucine and L-valine in R. eutropha.

TD, L-threonine dehydratase; Dld, cytochrome-dependent D-lactate dehydrogenase; LutACB, [Fe-S] cluster protein-dependent L-lactate utilization system; AHAS (IlvBH), acetolactate synthase III; AHAIR (IlvC), acetohydroxy acid isomeroreductase; DHAD, dihydroxy acid dehydratase; TA, branched-chain amino acid aminotransferase.

Fig. S2. Predicted reactions catalyzed by D/L-lactate dehydrogenase homologs in *R. eutropha* H16 (A), and their gene loci on the chromosomes (B). A0665, putative bifunctional transglycosylase and transpeptidase; A0666, NAD(P)H-dependent L-lactate dehydrogenase; A0667, sodium: sulfate symporter transmembrane region; A1680, predicted permease; A1681 and A1682, NAD(P)H-dependent D-lactate dehydrogenases; A1683, predicted acetyltransferase; A3090, cobalamin adenosyltransferase; A3091, cytochrome-dependent D-lactate dehydrogenase; A3092, transcriptional regulator, LysR family; B0090, lactate permease; B0091, L-lactate dehydrogenase complex, iron-sulfur cluster-binding protein (LldF/LutB)); B0092, L-lactate dehydrogenase complex, conserved hypothetical protein (LldG/LutC); B0093, L-lactate dehydrogenase complex, Fe-S oxidoreductae protein (LldE/LutA); B0094, transcriptional regulator, GntR-family; B0459, acetylornithine deacetylase; B0460, cytochrome-dependent L-lactate dehydrogenase; B0461, predicted flavoprotein involved in K⁺ transport; B1816, transcriptional regulator, LysR family; B1817, cytochrome-dependent L-lactate dehydrogenase; B1818, demethylmenaquinone methyltransferase.

Fig. S3. ¹H NMR analysis of the PHAs synthesized by *R. eutropha* IF017/pBPP-*phaC*_{AR} (A) and IF017/pBBR1MCS-2 (B).

Fig. S4. ¹³C NMR analysis of the PHA synthesized by *R. eutropha* IF017/pBPP-*phaC*_{AR}.

(A) THF-insoluble fraction

(B) THF-soluble fraction

Fig. S5. Verification of block-copolymerization property of PHAs synthesized by the engineered *R*. *eutropha* by solvent fractionation. Full spectra of ¹H NMR of the THF-insoluble fraction (A) and soluble fraction (B) of PHA extracted from IF017/pBPP-*phaC*_{AR}.

Table S1. Primers	used	in	this	study.	
-------------------	------	----	------	--------	--

Name	Sequence (5' → 3')	Note	
phaCar_Fw	AATAGTGACGGCAGAGAGACAATCAAATCATGAGCC AACCATCTTATGGCCCGC	:	
phaCar_Rv	TGCAGGCCTGCCGGCGCCGTGCATATGCAAGCGTC ATGCCTTGGCTTTGACGTATCGC	For construction of pK18ms-C <i>ar</i> AB'	
pK18msCAB-invR	GCCAGGGCAATGCCCGGAGCCGGTTCG		
pK18msCAB-invF	CCCTCCCGTTTCCATTGAAAGGA		
pEE32R-CAcup-inv	GTGCTCTCCTTCACCCACACCCGA		
phaPRe-inv2	TAACTGCCTGCGTTGAAGATGGAC		
ldhA-hadA-inf_Fw	CTCGGGTGTGGGGTGAAGGAGAGCACATGAAAATCC TGGTGTTTGGAGCG	pK18ms-P1udP1- IdhACdhadACd	
ldhA-haA-inf_Rv	GGTCCATCTTCAACGCAGGCAGTTATTAATAGCGGA CCACTTTACTGTC		
H16_A0666_ud1000_Xbal_Fw H16_A0666_ud1000_Xbal_Rv A0666ud1000-inv1 A0666ud1000-inv2	GCTCTAGACGCAGTGCCTGCGTGGTGCCGA GCTCTAGACAGCGTTCGCTCAGGCGGCT GGTTCGTACCTCCTCAGAC AGGTTCCGCCTGCGGCGGGACTCG	For construction of pK18ms-A0666ud1000	
H16_B0460_ud980_Xbal_Fw H16_B0460_ud980_HindIII_Rv B0460ud980-inv1 B0460ud980-inv2	GCTCTAGATGGTTGCCGCAACCGGCCCGTTCC CCCAAGCTTGGTGGAAGGCCAGCCCTGGACTTCAC GGGAACTCCCTTGAAAAAAACAAAAAGCTGCCG TAGCGTCTATGAGGCGTCCGGGCCGAAGCTGGCC	For construction of pK18ms-B0460ud980	
H16_B1817_ud980_Xbal_Fw H16_B1817_ud980_HindIII_Rv B1817ud980-inv1 B1817ud980-inv3	GCTCTAGACCTTGGCATGAAGGCGAAACC CCCAAGCTTATCGATGTCGATGGTGTCGCAGC TTGGCGGCGCAAGGTACCTGCGCCGCTTGC GACATCGGCCCTGCCTGCATCC	For construction of pK18ms-B1817ud980	
H16_A3091_ud980_Xbal_Fw H16_A3091_ud980_HindIII_Rv A3091ud980-inv1 A3091ud980-inv2	GCTCTAGAGGCAAATCCGAGTAATTTTCTCG CCCAAGCTTGCCGTGCAGCCGCAGCGCCTGGAAGG GCGGGTCTCCGGCGGGTCGGCGCGACGGTG GGCGTGCCGAGCTGATGGCCTCCATGTTCAACC	For construction of pK18ms-A3091ud980	
H16_B0091-B0092- B0093 ud980 Xbal Fw	GCTCTAGATGTTCGGCATCCCGGGCGTGAT		
 H16_B0091-B0092- B0093 ud980 HindIII Rv	CCCAAGCTTAGCCGCCGCCGAAGCCAGCCAGCG	For construction of pK18ms-B0091-	
B0091-B0092-B0093ud980-inv1 B0091-B0092-B0093ud980-inv2	GTCTCGCTCCGGACGTGCTGGGGTCGCACG TCCGTCATCACGGGCGCGAGCGGTT	B0092-B0093ud980	
H16_A1681-A1682_up-inf_Fw	TCGAGCTCGGTACCCTGCTGCGTGAAGCCACCTCG CTGTGC		
H16_A1681-A1682_up-inf_Rv	GGCCAACAGCCGTGTGATGTGTCTCCGCGGCGAAT CGC	For construction of	
H16_A1681-A1682_down-inf_Fw	CCGCGGAGACACATCACACGGCTGTTGGCCTCAAA TCG	pK18ms-A1681- A1682ud900	
H16_A1681-A1682_down-inf_Rv	CTCTAGAGGATCCCCGCCACCGGCTGACGCAGGCA AGGGAC		
pBPP-phaCar-inf_Fw pBPP-phaCar-inf_Rv	GGAGGTATATACATATGAGCCAACCATCTTATGGCC CGACTCTAGAGGATCTCATGCCTTGGCTTTGACGTA TCGC	For construction of pBPP-phaCAR	

E a tar	Entry Strain	rain Dry cell weight [g/L]	Residual cell weight [g/L]	PHA [g/L]	PHA content	Composition [mol%]			
Entry					[wt%]	3HB	3HV	2HB	
1	IF001	2.86 ±0.14	1.73 ±0.05	1.13 ±0.19	39.35 ± 4.71	99.89 ± 0.02	0.11 ±0.02	Not detected	
2	IF002	2.90 ± 0.05	1.59 ± 0.05	1.31 ± 0.04	45.24 ±1.21	99.86 ± 0.01	0.07 ± 0.00	0.07 ± 0.00	
3	IF017	2.71 ± 0.06	1.37 ± 0.06	1.34 ± 0.04	49.46 ±1.39	99.88 ± 0.00	0.05 ± 0.01	0.07 ± 0.00	
4	IF018	$2.92\ \pm 0.01$	1.47 ±0.10	1.45 ± 0.11	49.55 ± 3.66	99.92 ± 0.00	0.05 ± 0.00	0.03 ± 0.00	
5	IF019	2.65 ± 0.03	1.36 ± 0.03	1.29 ± 0.04	48.58 ±1.10	99.86 ± 0.01	0.05 ± 0.01	$0.09\ \pm 0.01$	

Table S2. PHA production by engineered *R. eutropha* strains on glucose as sole carbon source.

The cells were cultivated in a 100 mL phosphate-limited mineral salt medium containing 2% (w/v) glucose for 72 h at 30°C. All cultivations were performed in triplicate, and the data are expressed as the mean \pm standard deviation.

Queries	Hits	KEGG annotation	Identity / overlap
D-LDHs			
H16_A1681	b1380 ^{a)}	D-Lactate dehydrogenase (LdhA)	50.3% / 328 a.a.
H16_A1682	b1380 ^{a)}	D-Lactate dehydrogenase (LdhA)	50.3% / 328 a.a.
H16_A3091	197257 ^{b)}	Lactate dehydrogenase D (LDHD)	49.7% / 477 a.a.
∟ -LDHs			
H16_A0666	b0801 ^{a)}	Hydroxycarboxylate dehydrogenase B (HcxB)	37.5% / 323 a.a.
H16_B0460	b3605 ^{a)}	L-Lactate dehydrogenase (LldD)	44.1% / 381 a.a.
H16_B1817	b3605 ^{a)}	L-Lactate dehydrogenase (LldD)	37.2% / 371 a.a.
H16_B0091	BSU34040 ^{c)}	Lactate utilization protein B (LutB, YvfW)	40.4% / 474 a.a.
H16_B0092	BSU34030 ^{c)}	Lactate utilization protein C (LutC, YvbY)	26.0% / 123 a.a.
H16_B0093	BSU34050 ^{c)}	Lactate utilization protein A (LutA, YvfV)	44.2% / 240 a.a.

Table S3. Similarities of lactate dehydrogenase (LDH) homologs in R. eutropha.

a) from Escherichia coli K12 MG1655, b) from Homo sapiens (human), c) from Bacillus subtilis subsp. subtilis 168

Entry Stra	Ohaia	Dry cell weight [g/L]	Residual cell weight	PHA	PHA content	Composition [mol%]			
	Strain		[g/L]	[g/L]	[wt%]	3HB	3HV	2HB	
6	IF001	3.83 ± 0.05	2.19 ±0.31	1.64 ± 0.34	42.73 ±8.53	99.87 ±0.01	0.13 ±0.01	Not detected	
7	IF002	$3.30\ \pm 0.18$	1.59 ± 0.05	1.71 ±0.22	51.65 ± 3.82	99.78 ± 0.01	0.12 ± 0.01	0.11 ± 0.01	
8	IF017	$2.88\ \pm0.07$	1.57 ± 0.05	1.31 ± 0.02	45.62 ± 0.54	99.64 ± 0.02	0.13 ± 0.01	0.23 ± 0.02	
9	IF018	$3.30\ \pm 0.07$	1.66 ±0.04	1.64 ± 0.07	49.63 ±1.39	99.79 ± 0.01	0.10 ± 0.01	0.11 ± 0.01	
10	IF019	2.70 ± 0.07	1.57 ± 0.06	1.13 ± 0.04	41.96 ±1.26	99.65 ± 0.03	0.12 ± 0.01	0.23 ± 0.03	

Table S4. PHA production by engineered *R. eutropha* strains on glucose supplemented with L-valine.

The cells were cultivated in a 100 mL phosphate-limited mineral salt medium containing 2% (w/v) glucose supplemented with 0.05% (w/v) L-valine for 96 h at 30°C.

All cultivations were performed in triplicate, and the data are expressed as the mean \pm standard deviation.

F ata i	Otrain	Dry cell weight	Residual cell weight	PHA [g/L]	PHA content	Composition [mol%]			
Entry	Strain	[g/L]	[g/L]		[wt%]	3HB	3HV	2HB	
11	IF001	1.91 ±0.04	1.59 ±0.03	0.32 ± 0.01	16.64 ±0.37	97.60 ±0.10	2.40 ± 0.10	Not detected	
12	IF002	1.54 ± 0.05	1.30 ± 0.04	0.24 ± 0.02	15.84 ± 0.55	89.23 ± 0.54	2.30 ± 0.02	8.47 ± 0.53	
13	IF017	1.57 ± 0.03	1.36 ±0.04	0.21 ± 0.01	13.36 ± 0.71	$88.19 \ \pm 0.26$	1.12 ± 0.13	10.68 ± 0.17	
14	IF018	1.18 ± 0.02	1.03 ± 0.01	0.15 ± 0.01	12.63 ± 1.00	85.14 ± 0.16	6.01 ± 0.27	8.85 ± 0.23	
15	IF019	1.23 ± 0.01	1.11 ± 0.00	0.13 ± 0.00	10.45 ± 0.16	86.10 ± 0.29	3.17 ± 0.20	10.73 ± 0.44	

Table S5. PHA production by engineered *R. eutropha* strains on glucose supplemented with sodium (*RS*)-2HB and L-valine.

The cells were cultivated in a 100 mL phosphate-limited mineral salt medium containing 2% (w/v) glucose supplemented with 0.25% (w/v) sodium (*RS*)-2HB and 0.05% (w/v) \perp -valine for 120 h at 30°C.

All cultivations were performed in triplicate, and the data are expressed as the mean \pm standard deviation.

Entry Host	11	Discolution	Time Drv cel	Dry cell weight	Residual cell weight	PHA	PHA content	Composition [mol%]			
	Plasmid	[h]	[g/L]	[g/L]	[g/L]	[wt%]	3HB	3HV	2HB		
16		pBBR1MCS-2	120	1.68 ±0.02	1.46 ±0.02	0.22 ±0.00	13.11 ±0.30	89.29 ±0.18	1.23 ±0.05	9.48 ±0.17	
17	11 017	pBPP- <i>phaC</i> ar	144	2.05 ± 0.03	1.63 ±0.02	0.42 ± 0.02	20.64 ± 0.71	63.18 ± 0.82	1.83 ±0.16	34.99 ± 0.78	

Table S6. PHA production by PhaC_{AR}-overexpressed R. eutropha strain on glucose supplemented with sodium (RS)-2HB and L-valine.

The cells were cultivated in a 100 mL phosphate-limited mineral salt medium containing 2% (w/v) glucose with 0.25% (w/v) sodium (*RS*)-2HB and 0.05% (w/v) ∟-valine at 30°C.

All cultivations were performed in triplicate, and the data are expressed as the mean \pm standard deviation.