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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The work of Zhang et al. aims to understand the evolutionary reasons connected with drug resistance of 

Direct-acting Antiviral Agents (DAA) in HPC, the virus responsible for Hepatitis C which leads to liver 

disease and cancer. The authors utilize a maximum-entropy model of sequence prevalence using 

sequences of the NS3 protein, which is a target of DAA, as a proxy for fitness and to evaluate the effect 

of mutations as well as to identify the strongest couplings that could be involved in Drug Resistance 

Mutations (DRMs). Sequences are obtained from the GLUE database where information about patients 

and in some cases sustained virological responses (SVR) are available. With this model Zheng et al. are 

able to correlate the probability of the global model to experimental fitness as well as associating top 

coupled residues with DRMs. Such pairs seem to have enrichment with several aspects of resistance, for 

example they involve residues that are known to be DRMs with higher significance than random pairs. 

Also, they notice some specific pairs and residues for which there exist experimental evidence of their 

involvement in resistance. Zhang et al. also compare SC-DRMs with residues that bind drugs in NS3 and 

conclude that again such residues tend to be enriched with SC-DRMs. In order to test if the model based 

on epistatic interactions helps to explain resistance, they include this fitness proxy into a Wright-Fisher 

like model, where they reveal “escape times” for mutations connected to DRM. They show that those 

residues that are involved in stronger epistatic interactions are able to escape faster given the selection 

pressure of the drugs. This provides further evidence that the role of epistasis is important in the 

development of DRMs, since in many cases looking directly at the mutations introduce deleterious 

effects to NS3. 

 

This interesting study, showcases how global sequence models, in the style of Direct Coupling Analysis, 

can be useful to understand viral fitness as it has been shown for other systems like HIV as well as for 

several other protein bacterial systems. Although intuitive, the introduction of epistatic effects in a 

quantitative way has been a powerful tool to understand the complexity of evolution. My assessment is 

that this study provides new support for the validity of such models, and specifically shows its potential 

for biomedical modeling. I find that the main contribution of this study is the potential to apply this 

quantitative approach to forecast potential DRMs, although this work is only a first step towards that. 

My assessment is that results and correlations are well supported but somehow lack specificity, they 

focus on statistical trends and do not show results that might help us identify more mechanistic aspects 

of these epistatic effects. I also felt that the methods lack details as most of the core developments were 

done in previous studies from other groups or the authors. This affects the conceptual innovation of the 

results by making it look like a derivative follow up study. Having said that, I feel that the authors could 

revise their manuscript to improve its specificity and to integrate more analysis and methodological 

details to make this study more self-contained. I have a series of questions of suggestions that if clarified 

could help improve in those aspects. 

 



General Comments and Questions 

 

1. The authors use the term validation and demonstration throughout the manuscript. I felt that in some 

cases by “validation” they actually mean “correlation” and by “demonstration” they actually mean 

“support”. For example, when the maximum entropy model is compared against 45 infectivity 

measurements, showing a negative correlation, this is presented as a validation when in fact is a 

correlation analysis. Or when the evolutionary model is created, the authors state that this 

demonstrates how the DRMs are involved in compensatory interactions, when in fact this is a modeling 

scheme that provides support for this notion rather than a demonstration. 

 

2. The authors propose an interesting case when they discuss mutations that are disruptive to NS3 but in 

fact lead to resistance and then propose that the fitness cost might be compensated by other mutations. 

I think the authors should improve specificity of this hypothesis and actually check all those mutations 

and search for direct evidence on those compensatory changes in the sequences they are analyzing. A 

few examples showing this could enhance the general nature of the results in this study, in favor of a 

more direct analysis on the actual changes that lead to resistance. 

 

3. There is a statement in the first line of page 3 that says that residues involving SC-DRMs are in contact 

in the NS3 protein structure. This result is a known result in the field shown in the development of Direct 

Coupling Analysis (DCA), where directly coupled residues tend to be in contact in 3D structure for many 

protein families. This should probably be mentioned and referenced in the paper. 

 

4. The authors discuss a coevolutionary approach that identifies “sectors”. Is this related to Statistical 

Coupling Analysis (SCA) developed in Ranganathan lab? Given that the authors don’t provide much 

detail in the methods section, they should clarify if these sectors are a different methodology that the 

highly cited work by Ranganathan otherwise also cite Ranganathan’s papers. 

 

5. Figure 4b-4c are hard to interpret, the difference between “DRMs” and “all-DRMs” is not clear, please 

re-state this to make it clearer to the readers. 

 

6. In my opinion, the most interesting contribution of this work, is the potential use of these models to 

predict mutations that might confer resistance. I think the authors should spend more time describing 

this possibility and provide more details on how this could be achieved. 

 

7. In sequence data processing, 2167 sequences were excluded because they were not associated to 

patients. Since this is a big fraction of the total number, I wonder if they could still be relevant for 

parameter inference even if the patient weight is set to 1 or any other fraction. An analysis on the effect 



on correlation to fitness by including these sequences would be interesting. Also, what do the authors 

mean by outlying sequences? 

 

8. In model construction, when mentioning that this model and its energy has been used in the past, I 

think that the work of the Onuchic group, Weigt group, Marks and Morcos groups should be 

acknowledged for the development of DCA and later the Weigt and Morcos groups for the development 

of evolutionary models that account for epistasis. 

 

9. Fig. S1 includes connected correlations and number of mutants per sequences. It was not clear to me 

how these two concepts are defined. Please clarify in the methods section. 

 

10. For the conservation model, why not use h_i(a) that is inferred from the model in Eq. 1? Is there any 

noticeable difference compared to the definition based on frequency counts? 

 

11. In the definition of the NS3 DRM, the authors mention GLUE, is the definition of the DRM the same 

as the one of GLUE? or did the authors define it themselves? If so, please provide more details. 

 

12. For the calculations of statistical significance, the authors use an N=631, but their global model uses 

only N = 515 after exclusion of conserved residues. Could the authors justify the use of N=631 instead of 

N=515? This difference could have an effect on the calculation of significance. 

 

13. In the evolutionary simulation, the authors mention a “consensus amino acid” but do not define it. 

Please provide a proper definition of this. Is it the more popular residue? 

 

14. In the evolutionary model, the algorithm provides a selective advantage to the sequences having a 

mutation at residue i, but does this mutation the actual known DRM or it could be any mutation? 

 

15. The simulations were run 100 times for the same initial sequence, and for multiple initial sequences 

(25). Just to clarify, for each of those 25 initial sequences there were a 100 steps of the evolutionary 

process? 

 

 

Minor details 



 

1. In section C (Enrichments of SC-DRMs in NS3 drugs) when stating that non-SC-DRMs are not 

significantly enriched in drugs, please add (3/9) to make it consistent with the previous statement 

 

2. Page 5, line 144. The statement is vague, please provide more details or rephrase. The same goes for 

the last sentence in line 159. 

 

3. Figure 5b is not readable in black and white, please make sure to modify it to correct this. 

 

4. Page 4, line 115. Replace “domians” with “domains” 

 

 

Reviewer #3 (Remarks to the Author): 

 

The manuscript by Zhang et al. reports on an interesting investigation on the role of epistasis in 

resistance against direct-acting antivirals targeting the HCV NS3 protein. The work is based on an 

pairwise model (Potts model) well known to reproduce accurately the prevalence landscape of protein 

sequences and on the use of a Wright-Fisher like evolutionary model. The insight provided by these 

calculations is highly significant, as it allows to give a dynamical characterization to drug resistant 

mutations in terms of escape time. Overall, the work sheds light on the relevance of epistasis in the 

emergence of drug resistant mutations and, to some extent, it clarifies the mechanism of escape from 

pressure. The manuscript is well written and describes the approach in sufficient details to ensure 

reproducibility of the results. Given the significance of the results, which are of potential interest to a 

large community of scientists, I recommend publication of this manuscript in the present form. 

 

 

Reviewer #4 (Remarks to the Author): 

 

This is a very interesting and well-written article using a previously developed computational approach 

to identify epistatic interactions between HCV drug resistance mutations (DRMs) and then to identify 

groups of Strongly coupled DRMs (SC-DRMs), and estimate their impact on the speed of drug resistance 

evolution. The work is conceptually interesting, original, potentially relevant, and well described. 

 

I have however some concerns that should be addressed: 



 

1) To assess the clinical relevance of this work it would be important if the authors could argue in more 

detail to what extent DRM to DAA represents a substantial problem from a clinical or public health 

perspective. 

 

2) If I understand correctly the in-silico model (lines 285) used to derive the epistatic interactions (J_ij), 

this is strongly based on the assumption that the population from which the sequences were sampled is 

well-mixed and in an equilibrium state. This is particularly problematic for DRMs for several reasons: 

a) The recent (positive) selective pressure for DRM, making the equilibrium assumption implausible. 

b) The fluctuating selection for DRM, with some patients (receiving a specific DAA) providing an 

environment selecting for DRMs and others (e.g. untreated patients) representing an environment 

selecting against those DRMs. This could also lead to artefactual estimates of epistatic effects if for 

example DRMs M_1, M_2, M_3 etc are selected for in treated patients, but are selected against in (the 

vast majority) of untreated patients, then this will lead to a statistical association (linkage disequilibrium) 

between these mutations even if they have no epistatic interaction (because treatment acts as a 

confounder, e.g. M_1<--T-->M_2, where T is presence of treatment, M_i the presence of mutation i). As 

the model does not take into account the effect of confounding by treatment it will misinterpret this 

association as the result of an epistatic interaction and hence estimate J_12>0 even if there is no 

real/biological interaction. 

c) In addition there might be a confounding by subpopulation/geography: Different subpopulations of 

patients will have different probabilities of receiving a given DAA, but will also differ in terms of the 

mutation frequencies (simply because of "phylogeographic" reasons): for example if population A is 

more likely to receive a given DAA (selecting for mutation M1) than population B, but also has a higher 

frequency of a mutation M2 (simply because of phylogeography), then M1 and M2 will again be 

correlated, which will be misinterpreted as an epistatic interaction. 

It would be important to provide a thorough justification (ideally with additional sensitivity analyses and 

adjustments) that the presented results are not merely an artefact of these types of confounding. 

 

3) Given the above concerns, it is somewhat reassuring that the authors could validate the in-silico 

derived fitness landscape see Figure 3 by comparing predicted with experimentally measured fitness. 

Here it was however not clear to me, to what extent these fitness effects were due to DRMs (where the 

assumptions underlining the in-silico approach seem particularly problematic, as outlined above) or 

whether these involve mostly other mutations (where these assumptions are less problematic). Ideally 

only the first type of data (i.e. sequences that differ only by presence/absence of DRM) would be used. It 

would also be good if the authors could specify whether the model with epistatic effects provides a 

significantly better correlation than the model ignoring epistatic effects (the authors mention that the 

correlation is stronger r=-0.79 vs r= -0.55; but it is unclear what the uncertainty/CI/variation of these 

estimates is and whether this difference is significant [I guess it is]; perhaps consider a bootstrapping 

approach?) 



 

4)The p-value computation (line 334-) was not fully clear to me. please clarify. 



RESPONSE TO REVIEWERS’ COMMENTS 

Epistatic interactions promote resistance against direct-acting 

antivirals targeting the HCV NS3 protein (NCOMMS-23-02381) 
 

Reviewer #1 (Remarks to the Author): 

The work of Zhang et al. aims to understand the evolutionary reasons connected with drug resistance of 

Direct-acting Antiviral Agents (DAA) in HPC, the virus responsible for Hepatitis C which leads to liver disease 

and cancer. The authors utilize a maximum-entropy model of sequence prevalence using sequences of the 

NS3 protein, which is a target of DAA, as a proxy for fitness and to evaluate the effect of mutations as well 

as to identify the strongest couplings that could be involved in Drug Resistance Mutations (DRMs). 

Sequences are obtained from the GLUE database where information about patients and in some cases 

sustained virological responses (SVR) are available. With this model Zheng et al. are able to correlate the 

probability of the global model to experimental fitness as well as associating top coupled residues with DRMs. 

Such pairs seem to have enrichment with several aspects of resistance, for example they involve residues 

that are known to be DRMs with higher significance than random pairs. Also, they notice some specific pairs 

and residues for which there exist experimental evidence of their involvement in resistance. Zhang et al. also 

compare SC-DRMs with residues that bind drugs in NS3 and conclude that again such residues tend to be 

enriched with SC-DRMs. In order to test if the model based on epistatic interactions helps to explain 

resistance, they include this fitness proxy into a Wright-Fisher like model, where they reveal “escape times” 

for mutations connected to DRM. They show that those residues that are involved in stronger epistatic 

interactions are able to escape faster given the selection pressure of the drugs. This provides further 

evidence that the role of epistasis is important in the development of DRMs, since in many cases looking 

directly at the mutations introduce deleterious effects to NS3.  

This interesting study, showcases how global sequence models, in the style of Direct Coupling Analysis, can 

be useful to understand viral fitness as it has been shown for other systems like HIV as well as for several 

other protein bacterial systems. Although intuitive, the introduction of epistatic effects in a quantitative way 

has been a powerful tool to understand the complexity of evolution. My assessment is that this study provides 

new support for the validity of such models, and specifically shows its potential for biomedical modeling. I 

find that the main contribution of this study is the potential to apply this quantitative approach to forecast 

potential DRMs, although this work is only a first step towards that. My assessment is that results and 

correlations are well supported but somehow lack specificity, they focus on statistical trends and do not show 

results that might help us identify more mechanistic aspects of these epistatic effects. I also felt that the 

methods lack details as most of the core developments were done in previous studies from other groups or 

the authors. This affects the conceptual innovation of the results by making it look like a derivative follow up 

study. Having said that, I feel that the authors could revise their manuscript to improve its specificity and to 

integrate more analysis and methodological details to make this study more self-contained. I have a series 

of questions of suggestions that if clarified could help improve in those aspects.  

Response: 

Thank you for the thorough and positive assessment of our work. In light of the constructive feedback, we 

have revised the manuscript to address the concerns raised. 

First, we now delve deeper into specific cases of epistatic interactions, highlight their importance, and draw 

connections with existing knowledge. This additional analysis should aid the reader in better understanding 

the implications and potential applications of our work. We have now also provided a more detailed 

explanation of our methodology in the revised manuscript (highlighted in blue). While we acknowledge that 

much of the core method development has been established in previous studies, we have made an effort to 

ensure that our study is self-contained and accessible to readers who may not be familiar with the prior work.  

Overall, we believe that the revisions we have made to the manuscript have significantly improved the 

specificity, methodological details, and overall quality of our study.  

Our point-by-point responses are detailed below. 



General Comments and Questions 

1. The authors use the term validation and demonstration throughout the manuscript. I felt that in some 
cases by “validation” they actually mean “correlation” and by “demonstration” they actually mean 
“support”. For example, when the maximum entropy model is compared against 45 infectivity 
measurements, showing a negative correlation, this is presented as a validation when in fact is a 
correlation analysis. Or when the evolutionary model is created, the authors state that this demonstrates 
how the DRMs are involved in compensatory interactions, when in fact this is a modeling scheme that 
provides support for this notion rather than a demonstration.  
 
Response: 
 
We have now replaced the terms “validation” and “demonstration” with “correlation” and “support”, 
respectively.  

 
The text updated in response to this comment is highlighted in blue in the revised manuscript at Lines 
20-23, 81, 238-239, 305, and 334-335, and in the Fig 1. caption.   
 
 

2. The authors propose an interesting case when they discuss mutations that are disruptive to NS3 but in 
fact lead to resistance and then propose that the fitness cost might be compensated by other mutations. 
I think the authors should improve specificity of this hypothesis and actually check all those mutations 
and search for direct evidence on those compensatory changes in the sequences they are analyzing. A 
few examples showing this could enhance the general nature of the results in this study, in favor of a 
more direct analysis on the actual changes that lead to resistance. 
 
Thank you for the comment. We have performed further analysis to test whether our landscape can 

capture specific compensatory effects associated with strongly coupled drug resistant mutations (SC-

DRMs) that we selected based on our model.  

Experimental data derived from in vivo or in vitro studies offers the most direct evidence for compensatory 

mutations associated with NS3 DRMs. However, such data is currently limited. In vivo evidence is 

available for the SC-DRM Q80K which has been reported to co-occur with the A91S mutation among 

individuals who experience HCV treatment failure 2. This compensatory interaction has also been 

observed in vitro in the H77 strain 2. Experimental evidence of SC-DRM D168E being compensated by 

Q41R 1 has also been reported for the H77 strain. These two pairs of compensatory mutations were both 

associated with large values of -Jij; Q80K and A91S was ranked 60th, and D168E and Q41R was ranked 

1st (Fig. 3a).  

We further investigated the mutational interactions predicted by our model for these two SC-DRMs, Q80K 

and D168E. We specifically examined the energy changes in the H77 strain bearing the D168E or Q80K 

mutants (denoted H77D168E and H77Q80K respectively) upon introducing all possible mutations. A negative 

energy change indicates increased fitness, whereas positive change suggests a fitness reduction. 

Strikingly, our model predicted that the Q41R and A91S mutations yielded the second-most negative 

energy change compared to all other mutations in the H77D168E and H77Q80K strains, respectively (Fig. 

R1). This outcome is consistent with the documented compensatory roles of these mutations for DRMs 

D168E and Q80K, and points to the specificity of our model in describing epistatic compensatory 

pathways. 

Encouraged by these findings, we extended our analysis to predict specific compensatory mutations 

associated with other SC-DRMs.  We explored compensatory mutations connected to SC-DRMs in 

various sequence backgrounds (as opposed to only H77; the sequence background considered in the 

analysis above). We introduced each SC-DRM into all MSA sequences lacking that mutation and 

computed the inferred energy change upon introducing all associated strongly coupled mutations in each 

selected sequence. We repeated this process for all SC-DRMs. In Table R1, we present mutations that 

compensated for an SC-DRM in at least 10% of the selected sequences. Interestingly, 168E and 41R 

were found to be compensatory (for each other) for all selected sequence backgrounds, while 91S 

compensated for 80K in approximately 23% of sequence backgrounds. Furthermore, we identified 

potential compensatory mutations for SC-DRMs 36L, 55A, 122C/G, and 177V. These identify specific 



targets for future experimental studies. 

 

Fig. R1: Histogram of the change in energy observed by all single mutations X in the H77 strain carrying 

the (a) D168E mutant and (b) Q80K mutant. Energy(H77D168E) and Energy(H77Q80K) are the predicted 

energy for the H77 strain carrying the D168E and Q80K mutant. The predicted energy for the H77 strain 

carrying the D168E mutant and an additional single mutation X, as well as for the H77 strain carrying the 

Q80K mutant and an additional single mutation X, are given by Energy(H77D168E+X) and 

Energy(H77Q80K+X), respectively. 

Table R1: List of top-coupled mutations that are predicted to be compensatory for SC-DRMs. Each 

row shows the SC-DRM, the number of MSA sequences lacking the SC-DRM, the associated 

compensatory mutation (among top 300 pairs of mutations with large values of -Jij), and the percentage 

of sequences where the associated mutation was found to compensate for the SC-DRM.  

 

 

 

 

 

 

 

 

 

 

 

We have included a new section in Results entitled, “Model predictions correlate with known NS3 DRM 

compensation data,” and a new section in Methods entitled, “Prediction of compensatory mutations 

associated with SC-DRMs in different sequence backgrounds,” which incorporate the results and 

methodology described above. 

 
  

SC-DRM 
Total number of 
selected sequence 
backgrounds 

Associated 
compensatory 
mutation 

Percentage of sequence 
backgrounds where mutation 
has a compensatory effect 

 

41R 7362 168E 100%  

168E 7318 41R 100%  

170V 7011 174S 73.2%  

80K 4553 615V 61.1%  

122G 6953 174S 60.2%  

122C 7207 174S 51.8%  

55A 7250 40T 29.6%  

80K 4553 91S 22.7%  

36L 7292 197Y 11.5%  

122C 7207 197Y 10.3%  

122C 6953 318T 10%  



3. There is a statement in the first line of page 3 that says that residues involving SC-DRMs are in contact 
in the NS3 protein structure. This result is a known result in the field shown in the development of Direct 
Coupling Analysis (DCA), where directly coupled residues tend to be in contact in 3D structure for many 
protein families. This should probably be mentioned and referenced in the paper.  

 
Response: 

DCA (ref. 3) is indeed a powerful method that has been extensively used to predict residue-residue 

contacts in proteins. We now refer to it appropriately in the revised manuscript.  

The modified text is in Lines 106-107 in the revised manuscript.  
 

4. The authors discuss a coevolutionary approach that identifies “sectors”. Is this related to Statistical 
Coupling Analysis (SCA) developed in Ranganathan lab? Given that the authors don’t provide much 
detail in the methods section, they should clarify if these sectors are a different methodology that the 
highly cited work by Ranganathan otherwise also cite Ranganathan’s papers.  
 
Response: 

Our approach, named "robust co-evolutionary analysis (RoCA)3”, is related to – but distinct from – the 

Statistical Coupling Analysis (SCA) method developed by the Ranganathan lab4. Both RoCA and SCA 

are based on the notion of eigenvector-based spectral analysis, however they operate on different 

correlation matrices, while RoCA additionally applies a data-driven random-matrix-based clustering 

procedure.  In our previous work 3, we gave a direct comparison of RoCA and SCA, and found that while 

SCA is successful in identifying co-evolutionary structure for certain protein families, it does not resolve 

the co-evolutionary structure in HIV and HCV proteins. In contrast, the RoCA method, which applies a 

highly robust random-matrix based algorithm to learn co-evolutionary structure, can identify sectors that 

are shown to distinctly associate with often unique functional or structural domains for HIV and HCV viral 

proteins 3,5,6. Based on these prior results, we had only referred to the RoCA method in the manuscript. 

We now clarify differences between the RoCA method and SCA in the Methods section of the revised 

manuscript (Lines 461-468), and also appropriately cite the work of Ranganathan and co-authors. 

 

5. Figure 4b-4c are hard to interpret, the difference between “DRMs” and “all-DRMs” is not clear, please re-
state this to make it clearer to the readers. 
 
Response:  

We have now changed the color scheme to make the difference between “DRMs” and “all-DRMs” (Fig. 

5; reproduced below as Fig. R3 for convenience) more obvious and we reiterate the difference in the Fig. 

5 caption to make it clearer to readers. 

 

Fig R3: Statistical significance of the number of (a) drug-specific DRMs/SC-DRMs and (b) all DRMs/SC-



DRMs in binding residues of each of the four considered drugs. Here, drug-specific DRMs/SC-DRMs are 

listed in Fig. 2a for each of the four drugs while all DRMs/SC-DRMs refer to the DRMs/SC-DRMs known 

for all drugs. The p-value measures the probability of observing by a random chance at least the observed 

number of DRMs or SC-DRMs among all binding residues for each drug. Results with p-value < 0.05 are 

marked with a star on the top of each bar. 

 

6. In my opinion, the most interesting contribution of this work, is the potential use of these models to predict 
mutations that might confer resistance. I think the authors should spend more time describing this 
possibility and provide more details on how this could be achieved.  
 
Response: 

The use of the proposed model to predict drug resistant mutations is indeed interesting. To investigate 

this aspect, we first considered the binding residues of drugs with structures available (listed in Table 

R1). Of these residues (25 in total), 14 were not associated with any known DRMs. We found that 

mutations at four of these 14 residues (residues 78, 79, 123 and 159) were associated with strong 

compensatory interactions based on our model (top 300 pairs of mutations with large negative values of 

Jij), and that at least two of these four residues were present in the binding residues of each of the four 

drugs, suggesting that mutations at these residues may potentially confer resistance to the respective 

drugs. 

Table R2: List of binding residues of drugs with known structures. Residues that are not associated 

with any DRMs are shown in bold. Of these, residues that are associated with strong compensatory 

interactions based on our model (top 300 pairs of mutations with large values of Jij) are also underlined. 

Drug Binding residues  

Danoprevir 
41, 42, 43, 55, 57, 58, 78, 79, 80, 81, 123, 132, 135, 136, 137, 138, 139, 
154, 155, 156, 157, 158, 159, 168 

Vaniprevir 
41, 42, 43, 55, 57, 58, 78, 79, 80, 81, 123, 132, 135, 136, 137, 138, 139, 
154, 155, 156, 157, 158, 159, 168 

Telaprevir 
41, 42, 43, 55, 57, 81, 123, 132, 135, 136, 137, 138, 139, 154, 155, 156, 
157, 158, 159, 168 

Grazoprevir 
41, 42, 43, 55, 56, 57, 58, 78, 81, 123, 132, 135, 136, 137, 138, 139, 154, 
155, 156, 157, 158, 159, 168 

 
We have added a paragraph related to this point in the Results section (Lines 188-195) and Table R2 

has been added as Supplementary Table S5. 

 
7. In sequence data processing, 2167 sequences were excluded because they were not associated to 

patients. Since this is a big fraction of the total number, I wonder if they could still be relevant for 
parameter inference even if the patient weight is set to 1 or any other fraction. An analysis on the effect 
on correlation to fitness by including these sequences would be interesting. Also, what do the authors 
mean by outlying sequences? 
 
Response: 

This is a valid query. We removed sequences with no patient information to reduce patient bias in the 

model. Including these sequences with a patient weight of 1 reduces the correlation between sequence 

energies of the inferred model and in-vitro fitness measurements from r = -0.79 for the original model 

(Fig. 1) to r = -0.56 (Fig. R4), highlighting the significance of sequence reweighting using patient 

information. This suggests that it is better to discard sequences with no patient information. Additionally, 

we observed that a model (based on the 7370 sequences considered in our original manuscript) that 

ignores sequence reweighting completely (i.e., assumes each sequence is sampled from a different 

patient) also provides a weaker correlation with in-vitro fitness measurements (r = -0.41, Fig. R5). This 

further emphasizes the importance of the sequence reweighting step in eliminating patient bias. 



 

Fig. R4: Correlation between the sequence energy obtained from newly inferred model and in-vitro 

infectivity measurements. 

Fig. R5: Correlation between the sequence energy obtained from inferred model using sequences with 

weight of each sequence set to 1 and in-vitro infectivity measurements. 

We appreciate the confusion related to outlying sequences. In brief, we first constructed a pair-wise 

similarity matrix of the sequences, where the (i,j)th entry of the matrix represents the fraction of amino 

acids that are the same across sequence i and j. Next, we conducted principal component analysis (PCA) 

based on the similarity matrix and investigated the first and second principal components (PCs). We 

considered all those sequences as outliers which appeared at more than 3 scaled median absolute 

deviations away from the median of either the first or second PC 7. The scaled median absolute deviation 

is given by: 

𝑐 *median (abs (𝐴𝑖-median (𝐴))), 

where A is the first/second PC, and 𝐴𝑖 is the i-th element in the first/second PC,  

𝑐 = −1/(√2 × erfcinv (3/2)) ≈ 1.482, and erfcinv() is the inverse complementary error function.  

We now clarify this point in Methods (Lines 360-365). 

 

  



8. In model construction, when mentioning that this model and its energy has been used in the past, I think 
that the work of the Onuchic group, Weigt group, Marks and Morcos groups should be acknowledged for 
the development of DCA and later the Weigt and Morcos groups for the development of evolutionary 
models that account for epistasis.  
 
Response: 

Thank you for this feedback regarding acknowledgment of previous works in this field 9–12. As suggested, 

we now acknowledge contributions of groups that developed the DCA method, as well as those that 

developed residue-residue interaction based evolutionary models. We cite the relevant publications 8–11 

in the revised manuscript (Lines 106-107). 

 

9. Fig. S1 includes connected correlations and number of mutants per sequences. It was not clear to me 
how these two concepts are defined. Please clarify in the methods section. 
 
Response: 

Connected correlations represent correlations which cannot be explained by lower order mutant 

probabilities. It is given by 𝑓𝑖𝑗(𝑎, 𝑏) – 𝑓𝑖(𝑎)𝑓𝑗(𝑏), where 𝑓𝑖(𝑎) is the probability of observing mutant 𝑎 at 

residue 𝑖  while 𝑓𝑖𝑗  is the probability of simultaneously observing mutants 𝑎  and 𝑏  at residues 𝑖  and 𝑗 

respectively. The number of mutants per sequence is the number of amino acids that are different in that 

sequence from those of the consensus sequence (sequence constructed with the most-frequent amino 

acid at each residue). 

We now clarify these two terms in the caption of Supplementary Fig. S8. 

 

10. For the conservation model, why not use h_i(a) that is inferred from the model in Eq. 1? Is there any 
noticeable difference compared to the definition based on frequency counts? 
 
Response: 

The fields (hs) and couplings (Js) are inferred jointly in our maximum entropy model (see Eq. (2) in the 

paper). Thus, the inferred fields cannot be used to directly construct a conservation-only model.  

To determine the effect of incorporating interactions in the model, it is essential to compare a maximum 

entropy model that ignores pairwise interactions with one that considers them. When pairwise 

interactions are ignored, the maximum entropy model solution only requires inferring fields and can be 

obtained using a closed-form solution (Eq. 9 in the manuscript; reproduced here for easy reference): 

ℎ𝑖(𝑎) = ln
1 − 𝑓𝑖(𝑎)

𝑓𝑖(𝑎)
,   𝑖 = 1,2, … , 𝑁. 

We refer to this model as the conservation-only model. These details are included in Methods. 

 

11. In the definition of the NS3 DRM, the authors mention GLUE, is the definition of the DRM the same as 
the one of GLUE? or did the authors define it themselves? If so, please provide more details.  
 
Response: 

We have adopted the same definition of DRM as used by GLUE and other papers from which we curated 

DRMs 12–15. Specifically, we define a DRM as an amino acid substitution that is capable of negatively 

affecting the activity of DAAs either in vitro or in vivo in treated patients.  

We now clarify this in the Introduction section (Lines 31-33). 

 



12. For the calculations of statistical significance, the authors use an N=631, but their global model uses only 
N = 515 after exclusion of conserved residues. Could the authors justify the use of N=631 instead of 
N=515? This difference could have an effect on the calculation of significance.  
 
Response: 

Thanks for raising this point. We used N=631 instead of N=515 because we wished to include the residue 

156 in our analysis. Residue 156 is associated with every drug that we considered in this study, but it 

was fully conserved based on the available sequence data. Nevertheless, if we exclude conserved 

residues from our analysis and use N=515 to compute statistical significance, all results remain largely 

consistent. For the SC-DRMs (Fig. 2b), the association reaches statistical significance for 5/9 drugs 

(p<0.05) and for one additional drug with marginal statistical significance (p = 0.05), as compared to 

previous results in which 6/9 drugs were associated with p<0.05. As for the non-SC-DRMs, the 

association reaches statistical significance for 2/9 drugs in comparison to 3/9 drugs previously. Taken 

together, these results are consistent with our observation that SC-DRMs are statistically significantly 

enriched in most drugs, while non-SC-DRMs are generally not. Moreover, six binding residues of drugs 

with known structures (residues 57, 137, 139, 156, 157 and 158; Table R1) were fully conserved. 

Excluding these residues from statistical significance calculation (Fig. 2) also did not alter the qualitative 

results. 

We now exclude fully conserved residues from all analysis and have used N=515 in calculating statistical 

significance of all results. All figures (Figs. 2, 5, 6, S3 and S4) have been revised in the manuscript 

accordingly.  

 

13. In the evolutionary simulation, the authors mention a “consensus amino acid” but do not define it. Please 
provide a proper definition of this. Is it the more popular residue? 
 
Response: 
 
Thanks for pointing this out. A consensus amino acid refers to the most prevalent amino acid at a residue, 

i.e., the one with the highest frequency. 

The modified part is in Lines 511-512 and is shown in blue. 
 
 

14. In the evolutionary model, the algorithm provides a selective advantage to the sequences having a 
mutation at residue i, but does this mutation the actual known DRM or it could be any mutation?  
 
Response: 

In our simulations, we gave a selective advantage to sequences that had any mutation at a residue 

associated with a DRM. This was done because multiple drug-resistant mutations are often associated 

with a single residue, such as 80K/G/H/L/R, 122C/G/N, and 155D/G/I. This suggests that mutations that 

are different from the known DRMs at a residue may also potentially lead to the development of drug 

resistance. 

Importantly, we used the same simulation setting for computing the time required to escape the drug-

induced selective pressure by SC-DRMs and other DRMs (Fig. 6). By keeping the conditions for 

simulating the escape dynamics of these two sets of DRMs the same, we were able to compare them 

fairly without exhaustively simulating the time required for specific mutations to occur. This is because 

observing such mutations in our simulations could take a very long time. 

  



15. The simulations were run 100 times for the same initial sequence, and for multiple initial sequences (25). 
Just to clarify, for each of those 25 initial sequences there were a 100 steps of the evolutionary process? 
 

Response: 

To clarify, we conducted 100 Monte Carlo runs for each of the 25 initial sequences. In each run, the 

sequence population underwent several rounds of mutation, selection, and random sampling steps until 

the mutations at the considered residue 𝑖 became dominant (frequency > 0.5) in the population.  

We have now clarified this in Line 529. 
 

Minor details  

 

1. In section C (Enrichments of SC-DRMs in NS3 drugs) when stating that non-SC-DRMs are not 
significantly enriched in drugs, please add (3/9) to make it consistent with the previous statement 

 

Response: 

 

As suggested, we have now added 1/9 (after excluding all conserved residues) to make it consistent. 

 

2. Page 5, line 144. The statement is vague, please provide more details or rephrase. The same goes for 
the last sentence in line 159. 

 

Response: 

 

We have now revised the text (Lines 157-160, 186-187) to make it clearer to readers.  

   

3. Figure 5b is not readable in black and white, please make sure to modify it to correct this. 
 
Response: As suggested, we have now changed the color scheme to make it easier to read in black 
and white, reproduced below for convenience. 
 

 
Fig. R6: Escape time of residues involved in NS3 DRMs. (a) Comparison between escape time of 

residues involved in SC-DRMs and the remaining residues involved in DRMs. In each box plot, the middle 

line indicates the median, the edges of the box represent the first and third quartiles, and whiskers extend 

to span a 1.5 interquartile range from the edges. The reported p-value was calculated using the two-

sided Mann-Whitney test. (b) Individual escape time of residues involved in DRMs of the NS3 protein. 

SC-DRMs are shown in blue and the remaining DRMs in orange. 



 

 

4. Page 4, line 115. Replace “domians” with “domains” 
 
Response: 
 
This typo has been corrected. We have conducted a thorough review of the paper to ensure that there 
are no other such errors. 

  

  



Reviewer #3 (Remarks to the Author): 

 

The manuscript by Zhang et al. reports on an interesting investigation on the role of epistasis in resistance 

against direct-acting antivirals targeting the HCV NS3 protein. The work is based on an pairwise model (Potts 

model) well known to reproduce accurately the prevalence landscape of protein sequences and on the use 

of a Wright-Fisher like evolutionary model. The insight provided by these calculations is highly significant, as 

it allows to give a dynamical characterization to drug resistant mutations in terms of escape time. Overall, 

the work sheds light on the relevance of epistasis in the emergence of drug resistant mutations and, to some 

extent, it clarifies the mechanism of escape from pressure. The manuscript is well written and describes the 

approach in sufficient details to ensure reproducibility of the results. Given the significance of the results, 

which are of potential interest to a large community of scientists, I recommend publication of this manuscript 

in the present form. 

Response: 

Thank you for your positive and encouraging feedback on our manuscript. We appreciate your 

recommendation. 

 

  



Reviewer #4 (Remarks to the Author): 

This is a very interesting and well-written article using a previously developed computational approach to 

identify epistatic interactions between HCV drug resistance mutations (DRMs) and then to identify groups of 

Strongly coupled DRMs (SC-DRMs) and estimate their impact on the speed of drug resistance evolution. 

The work is conceptually interesting, original, potentially relevant, and well described.  

I have however some concerns that should be addressed: 

1. To assess the clinical relevance of this work it would be important if the authors could argue in more 

detail to what extent DRM to DAA represents a substantial problem from a clinical or public health 

perspective.  

Response: 

Thank you for the comment.  

DRMs are important in the treatment of chronic HCV patients with DAAs for both clinical and public health 

reasons. Firstly, DAAs are highly effective against HCV, but DRMs can cause treatment failure as the 

virus can become resistant to the drugs being used. Patients who have been previously treated with 

DAAs and have not achieved sustained virologic response (SVR) are at increased risk of developing 

DRMs, which can limit the effectiveness of subsequent treatment 16. Secondly, studies show that a 

significant percentage of patients with chronic HCV infection who have failed previous DAA treatment 

have DRMs, with prevalence rates ranging from 20–90% depending on the specific DAA used and the 

type of DRMs 17–19. This further supports the notion that DRMs may accumulate in the viral population 

and further impede virological cure. Thirdly, the accumulation of DRMs in drug-experienced patients with 

chronic HCV infection can be problematic from a clinical and public health perspective. This is because 

these patients may have limited treatment options available to them, as the development of DRMs can 

render some DAAs ineffective 20. This can lead to prolonged infection, an increased risk of liver cirrhosis, 

and ultimately liver failure. In addition, DRMs can be transmitted to other individuals, potentially leading 

to the spread of drug-resistant strains of HCV 21. 

Additionally, HIV, like HCV, can develop DRMs that reduce the effectiveness of antiretroviral therapy 

(ART) which is used to manage HIV infection. According to the WHO, 75% of HIV-infected patients were 

receiving ART at the end of 2021 22, compared to less than 20% of HCV-infected patients receiving DAAs 
23. A study found that the proportion of people with HIV DRMs increased from 11% in 2001 to 29% in 

2016, with those who had previously taken ART being more likely to have DRMs 24. With more 

widespread usage of DAAs for HCV, HCV DRMs may become similarly clinically relevant as HIV DRMs 

in the future. 

We have emphasized these key points in the Discussion (Lines 226-236) to provide more clarity on the 

clinical relevance of DRMs to DAAs in the context of HCV treatment. 

 

2. If I understand correctly the in-silico model (lines 285) used to derive the epistatic interactions (J_ij), this 

is strongly based on the assumption that the population from which the sequences were sampled is well-

mixed and in an equilibrium state. This is particularly problematic for DRMs for several reasons: 

a) The recent (positive) selective pressure for DRM, making the equilibrium assumption implausible.  

b) The fluctuating selection for DRM, with some patients (receiving a specific DAA) providing an 

environment selecting for DRMs and others (e.g. untreated patients) representing an environment 

selecting against those DRMs. This could also lead to artefactual estimates of epistatic effects if for 

example DRMs M_1, M_2, M_3 etc are selected for in treated patients, but are selected against in (the 

vast majority) of untreated patients, then this will lead to a statistical association (linkage disequilibrium) 

between these mutations even if they have no epistatic interaction (because treatment acts as a 

confounder, e.g. M_1<--T-->M_2, where T is presence of treatment, M_i the presence of mutation i). As 

the model does not take into account the effect of confounding by treatment it will misinterpret this 

association as the result of an epistatic interaction and hence estimate J_12>0 even if there is no 



real/biological interaction.  

c) In addition there might be a confounding by subpopulation/geography: Different subpopulations of 

patients will have different probabilities of receiving a given DAA, but will also differ in terms of the 

mutation frequencies (simply because of "phylogeographic" reasons): for example if population A is more 

likely to receive a given DAA (selecting for mutation M1) than population B, but also has a higher 

frequency of a mutation M2 (simply because of phylogeography), then M1 and M2 will again be correlated, 

which will be misinterpreted as an epistatic interaction.  

It would be important to provide a thorough justification (ideally with additional sensitivity analyses and 

adjustments) that the presented results are not merely an artefact of these types of confounding.  

Response: 

Thanks for the insightful comments. We agree that various factors, such as the selective pressure from 

host immune responses and the recent use of direct-acting antivirals (DAAs), could potentially confound 

the inference of a reliable fitness landscape model from population-level sequence data. Nevertheless, 

these factors appear to minimally impact our model inference. 

A main reason why potential DAA-induced selective pressures are not anticipated to strongly bias our 

results is that DAAs are currently only available to a limited fraction of HCV-infected individuals (less than 

20%; ref.36). To examine this more explicitly for the specific NS3 data set that we used (comprising 7370 

sequences), we investigated the 58 papers from which these sequences were reported. This analysis 

revealed that the large majority of the sequences (5877 sequences) were indeed from drug-naïve 

patients. We quantified the potential bias of drug-induced pressure by comparing statistical properties of 

the complete dataset (7370 sequences) used to infer our model with those of the drug-naïve subset 

(5877 sequences). This analysis revealed a strong correlation (r > 0.9, Fig. R1) between the mutation 

frequencies and pairwise mutation frequencies, used to infer models, in both datasets. We also 

constructed a maximum entropy model using only the drug-naïve sequences and found that the predicted 

sequence energies from the drug-naïve model exhibited a correlation (r = -0.70, Fig. R2) with the in-vitro 

fitness measurements which was comparable to the correlation observed with the complete dataset.  

This analysis, overall, suggests potential data biases due to drug-induced selection pressures to be weak. 

We agree with the reviewer that, with prevalent DAA administration, phylogeographic effects and 

differences in drug distribution patterns could potentially present confounders that may be misinterpreted 

as epistasis.  This is not a significant factor in our analysis, however. Most importantly, the large majority 

of the data is drug-naïve, as indicated above. Moreover, specific epistatic interactions predicted by our 

model (associated with large values of -Jij) have been observed in vivo as well as in vitro 1 2, which 

provides supports to the ability of our model to predict epistasis (please refer to Section II C of the revised 

manuscript for further details. This section has been added in response to Comment 2 from Reviewer 1). 

Furthermore, since we focus on subtype 1a, most of our data (6802 out of 7370 sequences) was 

sequenced from the US, where DAA distribution patterns are anticipated to be similar across regions, 

and therefore, to not present strong geographical biases affecting our data set.  

The strong correlation observed between the inferred prevalence landscape and in vitro fitness 

measurements of HCV NS3 (Fig. 1) substantiates that our inferred landscape is not strongly influenced 

of confounding factors and serves as a reasonably accurate representation of the underlying intrinsic 

fitness landscape of NS3. While such a simple relationship between prevalence and fitness has been 

reported for HCV proteins E2 and NS5B25–27, as well as several HIV proteins28–30, it has not been 

observed for the surface proteins of the influenza A virus31 or the polio virus32. A mechanistic rationale 

for this relationship has been previously proposed for HIV proteins, with three key factors identified33: (i) 

a diverse and largely ineffective immune response due to host genetic diversity, (ii) reversion to the 

ancestral (fitter) sequence upon transmission to a new host, and (iii) the absence of robust and effective 

natural or vaccine-induced herd memory responses, which would shift the virus away from the steady 

state. Although HCV differs from HIV, it shares several similarities and may also involve these factors. 

Particularly, most sequences are sampled from chronic patients (with acute HCV infections being 

predominantly asymptomatic) and with NS3 being a target of T cells 34, it is likely that NS3 experiences 

diverse and ineffective immune responses in such patients. Reversion to the consensus amino acid upon 



HCV transmission to a new host has also been documented35.  

Fig. R1: Correlation of single mutant probabilities (left panel) and double mutant probabilities (right panel) 

between sequences from all patients (7370 sequences) and the subset of drug-naïve patients (5877 

sequences). 

 

Fig. R2: Correlation between model predicted energies and experimental fitness measurements 

compiled from different studies (mentioned in the legend). The model was inferred using sequences from 

the subset of drug-naïve patients (5877 sequences). Normalization of both fitness measurements and 

predicted model energies was performed by subtracting the mean from each data set and dividing by its 

standard deviation. 

In the revised manuscript, we have added two paragraphs in Discussion (Lines 247-271) explaining the 

rationale behind obtaining a meaningful fitness landscape of HCV NS3 from population-level sequence 

data despite the presence of potentially confounding selective factors.  

 

3. Given the above concerns, it is somewhat reassuring that the authors could validate the in-silico derived 

fitness landscape see Figure 3 by comparing predicted with experimentally measured fitness. Here it 

was however not clear to me, to what extent these fitness effects were due to DRMs (where the 

assumptions underlining the in-silico approach seem particularly problematic, as outlined above) or 

whether these involve mostly other mutations (where these assumptions are less problematic). Ideally 

only the first type of data (i.e. sequences that differ only by presence/absence of DRM) would be used. 

It would also be good if the authors could specify whether the model with epistatic effects provides a 

significantly better correlation than the model ignoring epistatic effects (the authors mention that the 

correlation is stronger r=-0.79 vs r= -0.55; but it is unclear what the uncertainty/CI/variation of these 



estimates is and whether this difference is significant [I guess it is]; perhaps consider a bootstrapping 

approach?)  

Response: 

Of the 45 fitness measurements we compiled from different experimental studies, 36 were associated 

with DRMs. The strong correlation between our model's predictions and experimental fitness 

measurements indeed is reassuring that even though our model is trained largely on drug-naïve 

sequences (as indicated in the response above), it can still accurately capture the intrinsic effect of DRMs. 

This is because while DRMs are enriched in patients that fail DAA treatment 37,38, they are not exclusively 

observed in such individuals and have been observed in drug-naïve patients also. We additionally 

checked the correlation between our model predictions and these 36 fitness measurements that are 

exclusively associated with DRMs. We found this correlation to be strong as well (r = -0.72, Fig. R3), 

further corroborating the capability of our inferred model to capture the fitness of the virus. 

Fig. R3: Correlation between the model predicted energies and 36 experimental fitness measurements 

that are associated with DRMs. These fitness measurements were compiled from different studies that 

are mentioned in the legend. Normalization of both fitness measurements and predicted model energies 

was performed by subtracting the mean from each data set and dividing by its standard deviation. 

In the revised manuscript, we have added a paragraph in Discussion (mentioned in blue at Lines 272-

279) explaining the above result. 

In regard to the statistical variation of the correlation estimates, we have now applied a bootstrapping 

approach, as suggested, to investigate if our inferred maximum entropy model that considers epistatic 

effects provides a statistically significantly stronger correlation than a model that does not consider these 

effects (conservation-only model). Specifically, we inferred maximum-entropy and conservation-only 

models by randomly drawing sequences with replacement from the original data. As shown in Fig. R4, 

maximum entropy models provided statistically significantly stronger correlation between the model 

predicted energies and experimental fitness values than conservation-only models (p = 1.70× 10-4, two-

sided Mann-Whitney test; number of bootstrapping samples = 10). 

We have added Fig. R4 in the revised manuscript as Supplementary Fig. 1 and the related text is 

mentioned in Results at Lines 79-82. 



 

Fig. R4: Robustness of the correlation observed between model energies and experimental fitness 

values. Results are show for the maximum-entropy model that considers epistatic interaction and for the 

conservation-only model that ignores epistasis. The sequence data used for inferring each model was 

generated by a standard bootstrap approach for ten samples. 

 

4. The p-value computation (line 334-) was not fully clear to me. please clarify. 

Response: 

The 𝑝-value represents the probability that, given 𝑗 total DRMs associated with a specific drug, we would 

identify at least 𝑖 of them as SC-DRMs purely by chance. SC-DRMs are found in the top-coupled pairs 

of mutations (e.g., top 300) in our model. Here, 𝑛 represents the total number of residues involved in the 

top-coupled pairs, which is a subset of the 𝑁 total residues in the NS3 protein. In our case, 𝑁 = 515, with 

116 fully conserved residues removed. Note that in this calculation same residues involved in multiple 

pairs of mutations were only counted once. This p-value is computed as: 

𝑝 = ∑  

𝑚𝑖𝑛(𝑗,𝑛)

𝑞=𝑖

(
𝑗
𝑞) (

𝑁 − 𝑗
𝑛 − 𝑞)

(
𝑁
𝑛

)
. 

The above equation sums up the probabilities of observing 𝑖 or more SC-DRMs associated with a drug 

using our model. If 𝑝 < 0.05, we rejected the null hypothesis that the SC-DRMs associated with a drug 

were observed by a random chance. 

We would like to note that in response to reviewer 1’s comment we have changed 𝑁 = 631 to 𝑁 = 515 

to include only the non-conserved residues in all analyses. 

We now explain this point further in the revised manuscript. The related text has been added in Methods 

at Lines 491-499.   
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REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

 

After reviewing the rebuttal letter and the new version of the manuscript I was quite satisfied with the 

clear and detailed responses from the authors. I was able to clarify all my questions and I feel the 

paper now benefits from a set of explanations and new details that will make their work much more 

self-contained. The changes were extensive and I was glad to see very clear and quantitative 

responses to my queries. I also had the chance to see the responses to other reviewers and in my 

opinion the responses are as clear and thorough as for my questions. Given the improved nature of 

the manuscript and my initial positive assessment of this work, I support the publication of this work 

that I believe will be of interest to several scientific communities and in general for its biomedical 

implications. 

 

 

Reviewer #4 (Remarks to the Author): 

 

I would like to thank the authors for thoroughly addressing my comments. I have no further concerns 

and think that this work will make a valuable contribution to Nature Communications 
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