c-di-GMP inhibits the DNA binding activity of H-NS in Salmonella

Shuyu Li¹, Qinmeng Liu¹, Chongyi Duan¹, Jialin Li¹, Hengxi Sun¹, Lei Xu¹, Qiao Yang^{2,3}, Yao Wang¹, Xihui Shen^{1*}, Lei Zhang^{1*}

¹State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.

²ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316021, China.

³Donghai Laboratory, Zhoushan 316021, China.

*For correspondence: Xihui Shen <u>(xihuishen@nwsuaf.edu.cn);</u> Lei Zhang (zhanglei0075@nwsuaf.edu.cn).

This PDF file includes:

Supplementary Figures 1-17 Supplementary Tables 1-2 Supplementary References

Supplementary Fig. 1 Intracellular c-di-GMP levels in S. Typhimurium are changed by stimulation with L-arginine and bile salts, or by overexpression of *adrA* and *STM3611*.

a An increase in intracellular c-di-GMP concentrations in response to bile salts requires YedQ. **b** L-Arginine stimulates an increase in intracellular c-di-GMP concentrations in the wild type (WT). **c** Intracellular c-di-GMP levels in the wild type were modulated by overexpression of *adrA* or *STM3611*. **d** L-Arginine and bile salts stimulate an increase in intracellular c-di-GMP concentrations in the Δhns mutant. **e** Intracellular c-di-GMP levels in the Δhns mutant were modulated by overexpression of *adrA* or *STM3611*. **d** L-Arginine and bile salts stimulate an increase in intracellular c-di-GMP concentrations in the Δhns mutant. **e** Intracellular c-di-GMP levels in the Δhns mutant were modulated by overexpression of *adrA* or *STM3611*. Data shown are mean ± SD of three biological replicates. Statistical significance was calculated using the two-tailed unpaired Student's *t*-test, and *p* < 0.05 was considered to be statistically significant. Source data are provided as a Source Data file.

Supplementary Fig. 2. L-Arginine and bile salts stimulate Hcp1 secretion in *S*. Typhimurium SL1344.

S. Typhimurium SL1344 carrying a plasmid expressing Hcp1-VSVG were induced by 0.6 μ M L-arginine, 0.05% bile salts or a buffer control, and then Hcp1-VSVG in cell pellet (Cell) and concentrated supernatant (Sup) was analyzed by western blot. ICDH was used as a loading control. Data shown were one representative from three independent experiments with similar results. Source data are provided as a Source Data file.

Supplementary Fig. 3. Elevated c-di-GMP levels induce the promoter activities of T6SS genes in S. Typhimurium SL1344.

a The promoter activities of *clpV*, *hcp1*, *tae4* and *vgrG* in the wild-type strain were induced by L-arginine or bile salts. **b** The promoter activities of the T6SS genes in the wild type (WT) were upregulated by overexpressing *adrA*, but downregulated by overexpressing *STM3611*. Data shown are mean \pm SD of three biological replicates. Statistical significance was calculated using the two-tailed unpaired Student's *t*-test. *P* values < 0.05 indicate significant differences. Source data are provided as a Source Data file.

Supplementary Fig. 4. T6SS gene expression in S. Typhimurium wild type, mutants, and the corresponding complemented strains.

a qRT-PCR analysis of T6SS gene expression in *S*. Typhimurium wild type (WT), the Δfur mutant and its complemented strain. **b** qRT-PCR analysis of T6SS gene expression in *S*. Typhimurium wild type, the Δhns mutant and its complemented strain. Gene expression levels were normalized to 16S rRNA and presented as values relative to that of the wild type. Data are mean ± SD of three biological replicates. *P* values < 0.05 indicate significant differences (two-tailed unpaired Student's *t* test). Source data are provided as a Source Data file.

Supplementary Fig. 5. Growth curves of S. Typhimurium strains.

S. Typhimurium strains were grown in LB medium with shaking at 37 °C. 0.5 mM IPTG was added as an inducer at the time of inoculation. At each time point during growth, cell density was recorded by measuring the optical density at 600 nm. Data are mean \pm SD of three biological replicates. WT, wild type. Source data are provided as a Source Data file.

Supplementary Fig. 6. Expression of *stpA*, but not *rpoS* or the *phoPQ* operon, was altered in Δhns compared to the wild type.

qRT-PCR analysis of gene expression in *S*. Typhimurium wild type (WT) and the Δhns mutant. Gene expression levels were normalized to 16S rRNA and presented as values relative to that of the wild type. Data are mean ± SD of three biological replicates. *P* < 0.05 indicates that the difference is statistically significant (two-tailed unpaired Student's *t*-test). Source data are provided as a Source Data file.

Supplementary Fig. 7. The production of H-NS in *S.* Typhimurium wild type is not affected by overexpression of *adrA* or *STM3611*.

The plasmid pBBR1MCS1 and its derivatives harboring *adrA* or *STM3611* were separately transformed into the wild-type (WT) strain expressing *in situ* tagged FLAG-H-NS, and the production of H-NS in cells were assessed by western blot analysis with anti-FLAG antibody. The blots shown are representative of three independent experiments with similar results. The band intensities were quantified by scanning densitometry using ImageJ (NIH, USA), normalized to intracellular ICDH, and presented as values relative to that of the wild type without gene overexpression (mean \pm SD; n = 3 independent experiments). Differences were considered to be statistically significant when p values were less than 0.05 (two-tailed unpaired Student's *t*-test). Source data are provided as a Source Data file.

Supplementary Fig. 8. Isotherms representing binding of the H-NS protein of *S.* Typhimurium with c-di-AMP or cGMP, as measured by ITC.

a, **b** ITC data and plots of injected heat for injections of 100 μ M c-di-AMP (**a**) or cGMP (**b**) into the sample cell containing 10 μ M H-NS are shown in the upper and lower plots, respectively. The heats of ligand dilution were subtracted and the corrected data were fit to a one-site binding model by using the NanoAnalyze software. Isotherms shown are one representative of three independent experiments with similar results.

Supplementary Fig. 9. SDS-PAGE and SEC elution profiles of H-NS and its variants. a An SDS-PAGE gel displaying purified H-NS and its variants. H-NS and its variants with an N-terminal His₆ tag were purified by Ni²⁺-NTA affinity chromatography and then subjected to SDS-PAGE analysis. Similar results were obtained in three independent experiments. **b** SEC elution profiles of H-NS and its variants. After being concentrated, the purified H-NS and its variants were subjected to SEC using an ÄKTA Purifier FPLC system. The GST-SUMO fusion protein was used as the molecular weight standards. SEC analysis showed that purified recombinant H-NS and its variants had formed homodimers in solution. Data reproduced in three independent experiments. Source data are provided as a Source Data file. A H-NS 91 AARPAKYSYVDENGETKTWTGQGRTPAVIKKAMEE 125 StpA 90 QPRPAKYRFTDFNGEEKTWTGQGRTPKPIAQALAA 124

nding affinity for c-di-GI		
StpA		
WT		
F98Y		

b

Supplementary Fig. 10. StpA is a closely-related paralogue of H-NS but shows very low binding affinity for c-di-GMP.

a Sequence alignment of H-NS and its paralogue StpA in *S*. Typhimurium. Four key residues of H-NS involved in interactions with c-di-GMP are highlighted in yellow. The three conserved residues of StpA corresponding to D101, K107 and T115 of H-NS are highlighted in yellow, and the non-conserved residue corresponding to Y99 is highlighted in purple. **b** Binding of c-di-GMP to wild-type (WT) StpA and the F98Y variant. The binding affinity was evaluated by ITC analysis. The K_d values are presented as mean ± SD of three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 11. EMSAs demonstrating specificity of H-NS binding to promoters of *clpV*, *vgrG*, *fimA* and *yaiU*.

a-d 50 ng of DNA of P_{clpV} (**a**), P_{vgrG} (**b**), P_{fimA} (**c**) or P_{yaiU} (**d**) (the average AT content of each promoter sequence is above 57.9%) was incubated with H-NS (the concentrations are noted in the panel) in a 20-µl reaction system. DNA fragments amplified from the coding regions of the corresponding genes were used as DNA negative controls (the average AT content of each control sequence is below 43.6%) and BSA was used as the protein control. Gels shown are one representative of three independent experiments with similar results. Source data are provided as a Source Data file.

Supplementary Fig. 12. c-di-GMP has no ability to displace H-NS from DNA.

a-d DNA of $P_{clpV}(\mathbf{a})$, $P_{vgrG}(\mathbf{b})$, $P_{fimA}(\mathbf{c})$ or $P_{yaiU}(\mathbf{d})$ was first incubated with H-NS for 20 min, followed by the subsequent addition of c-di-GMP at the indicated concentrations and incubation for another 20 min. Gels shown are one representative of three independent experiments with similar results. Source data are provided as a Source Data file.

a

Binding affinity for FLAG–H-NS

Binding affinity for H-NST115A

Nucleotides/ DNA probes	<i>K</i> _d (μM)
c-di-GMP	0.29 ± 0.06
P _{clpV}	0.36 ± 0.04
P_{vgrG}	0.48 ± 0.08
P <i>fimA</i> −	0.32 ± 0.06
${\sf P}_{yaiU}$	0.31 ± 0.09

DNA probes	<i>K</i> _d (μΜ)
P _{clpV}	27 ± 8
PvgrG	18 ± 5

Supplementary Fig. 13. FLAG-H-NS maintains unaffected c-di-GMP- and DNA-binding activity while H-NS_{T115A} showed dramatically reduced DNA-binding activity.

a Binding of FLAG-H-NS for c-di-GMP or its target gene promoters. **b** Binding of H-NS_{T115A} for the promoter sequences of *clpV* and *vgrG*. The binding affinity was measured by ITC, and the K_d values were presented as mean ± SD of three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 14. The mRNA levels of the four H-NS-repressed genes are not altered by the presence of the FLAG tag.

qRT-PCR analysis of the expression of the four H-NS-repressed genes in FLAG-tagged and untagged wild-type (WT) *S*. Typhimurium. Gene expression levels were normalized to 16S rRNA and presented as values relative to that of the untagged wild type. Data are mean \pm SD of three biological replicates. Statistical significance was calculated using the two-tailed unpaired Student's *t*-test, and differences were considered to be statistically significant when *p* values were less than 0.05. Source data are provided as a Source Data file.

Supplementary Fig. 15. EMSAs demonstrating specificity of H-NS_{K107A} binding to promoters of *clpV*, *vgrG*, *fimA* and *yaiU*.

a-d 50 ng of DNA of P_{clpV} (**a**), P_{vgrG} (**b**), P_{fimA} (**c**) or P_{yaiU} (**d**) was incubated with H-NS_{K107A} (the concentrations are noted in the panel) in a 20-µl reaction system. DNA fragments amplified from the coding regions of the corresponding genes were used as DNA negative controls and BSA was used as the protein control. Gels shown are one representative of three independent experiments with similar results. Source data are provided as a Source Data file.

Supplementary Fig. 16. The K107A substitution in H-NS did not affect the abundance of the protein in S. Typhimurium.

Western blot analysis of intracellular accumulation of H-NS and H-NS_{K107A} in the wild type (WT) and the *hns*(K107A) mutant with a FLAG tag fused to the N terminus of the *hns/hns*(K107A) gene in the chromosome. The blots shown are representative of three independent experiments with similar results. The band intensities were quantified by scanning densitometry using ImageJ (NIH, USA), normalized to intracellular ICDH, and presented as values relative to that of the wild type (mean \pm SD; *n* = 3 independent experiments). Differences were considered to be statistically significant when *p* values were less than 0.05 (two-tailed unpaired Student's *t*-test). Source data are provided as a Source Data file.

Supplementary Fig. 17. Specific binding of H-NS to the promoters of the target genes or operons within SPI-2, SPI-3 and SPI-5 is inhibited by c-di-GMP.

a-f EMSA assays show that H-NS specifically binds to the promoter sequences of *ssrAB* (**a**), *sseA* (**b**), *rmbA* (**c**), *slsA* (**d**), *pipA* (**e**) or *pipB* (**f**) (top), and the binding is impaired by c-di-GMP in a dose-dependent fashion (bottom). DNA fragments amplified from the coding regions of the corresponding genes or operons were used as DNA negative controls and BSA was used as the protein control (**a-f**, top). The average AT content of each promoter sequence is above 56.1%, while the average AT content of each DNA negative control is below 44.8%. Gels shown are one representative of three independent experiments with similar results. Source data are provided as a Source Data file.

Supplementary Tables

Strains and plasmids	Relevant characteristics*	Source
Strains		
S. Typhimurium		
SL1344	Wild-type	Laboratory stock
∆yedQ	yedQ deletion mutant in SL1344	1
∆fur	<i>fur</i> deletion mutant in SL1344	This study
Δhns	hns deletion mutant in SL1344	This study
ΔclpV	<i>clpV</i> double deletion mutant in SL1344	This study
hns(K107A)	SL1344 Wild-type strain with the K107A mutation of hns	This study
FLAG-hns	SL1344 Wild-type strain expressing in <i>situ</i> tagged FLAG–H-NS	This study
FLAG-hns _{K107A}	SL1344 Wild-type strain expressing in <i>situ</i> tagged FLAG–H-NS _{K107A}	This study
E. coli		
BL21(DE3)	Host for expression vector pET-28a	Novagen
TG1	Host for cloning	Stratagene
S17-1λpir	λ-pir lysogen of S17-1, F ⁻ <i>thi pro hsdR</i> [RP4-2 Tc::Mu Km::Tn7 (Tp Sm)]	2
Plasmids		
pCas	Crispr-Cas9 system plasmid used for in-frame deletion, Km ^r	3
pTargetF1	pTargetF with the spectinomycin resistance gene replaced by a chloramphenicol resistance gene, Cm ^r	4
pTargetF1-∆ <i>yed</i> Q	pTargetF1 derivative for <i>yedQ</i> deletion in SL1344	This study
pTargetF1-∆ <i>fur</i>	pTargetF1 derivative for <i>fur</i> deletion in SL1344	This study
pTargetF1-∆ <i>hns</i>	pTargetF1 derivative for hns deletion in SL1344	This study
pTargetF1-∆ <i>clpV</i>	pTargetF1 derivative for <i>clpV</i> deletion in SL1344	This study
pTargetF1- <i>hns</i> (K107A)	pTargetF1 derivative for the K107A mutation of hns in SL1344	This study
pTargetF1–FLAG-hns	pTargetF1 derivative for in <i>situ</i> tagged FLAG–H-NS and FLAG–H-NS _{K107A} in SL1344	This study
pDM4	Suicide vector, mobRK2, oriR6K, pir, sacB, Cm ^r	6
pDM4- <i>lacZ</i>	pDM4 derivative with a promoterless <i>lacZ</i> gene inserted into the multiple cloning site	1
pDM4-P _{c/pV} ::/acZ	pDM4 derivative for <i>clpV</i> promoter fusion	This study
pDM4-P _{hcp1} ::lacZ	pDM4 derivative for <i>hcp1</i> promoter fusion	This study
pDM4-P _{tae4} ::/acZ	pDM4 derivative for <i>tae4</i> promoter fusion	This study
pDM4-P _{vgrG} ::/acZ	pDM4 derivative for <i>vgrG</i> promoter fusion	This study
pKT100	Cloning vector, p15A replicon, Km ^r	7
pKT100- <i>hcp1-</i> VSVG	pKT100 expressing <i>hcp1</i> with a C-terminal VSVG tag	This study

Table S1. Bacterial strains and plasmids used in this study.

pBBR1MCS1	Cloning vector containing REP, Cm ^r	8
pBBR1MCS1-hns	hns cloned into pBBR1MCS1 for complementation	This study
pBBR1MCS1-fur	fur cloned into pBBR1MCS1 for complementation	This study
pBBR1MCS1-adrA	pBBR1MCS1 expressing adrA	This study
pBBR1MCS1-STM3611	pBBR1MCS1 expressing STM3611	This study
pBBR1MCS1-yedQ	pBBR1MCS1 expressing yedQ	This study
pBBR1MCS1-FLAG-hns	pBBR1MCS1 expressing FLAG-H-NS	This study
pET-28a	Expression vector with N-terminal hexahistidine affinity tag, Km ^r	Novagen
pET28a- <i>ycgR</i>	pET-28a expressing <i>ycgR</i>	This study
pET28a- <i>invF</i>	pET-28a expressing <i>invF</i>	1
pET28a- <i>stpA</i>	pET-28a expressing <i>stpA</i>	This study
pET28a- <i>stpA</i> ^{F98Y}	pET-28a expressing <i>stpA</i> ^{F98Y}	This study
pET28a- <i>hns</i>	pET-28a expressing <i>hns</i>	This study
pET28a- <i>hns_{Ctd}</i>	pET-28a expressing <i>hns_{Ctd}</i>	This study
pET28a- <i>hns^{Y99A}</i>	pET-28a expressing <i>hns</i> ^{Y99A}	This study
pET28a- <i>hns</i> ^{D101A}	pET-28a expressing <i>hns</i> ^{D101A}	This study
pET28a- <i>hns^{K107A}</i>	pET-28a expressing <i>hns</i> ^{K107A}	This study
pET28a- <i>hns</i> ^{T115A}	pET-28a expressing <i>hns</i> ^{T115A}	This study

*Km^r and Cm^r represent resistance to kanamycin and chloramphenicol, respectively.

Table S2. Primers used in this study.

Primiers	5'-3' sequence*	
Afur-sa20-F	AGCTAGCTCAGTCCTAGGTATAAT <u>ACTAGTC</u> ATCTTATC	
Diul-3920-1	TGCCTTGATTGGTTTTAGAGCTAGAAATAGC	
∆ <i>fur-</i> sg20-R	CCGAGTCGGTGCTTTTTTTGAAGCCACGATTGTGGGTC A	
∆ <i>fur</i> -up-F	TGCGGTATTGTTGTCAGTCA	To gonorato
Δ <i>fur</i> -up-R	AAATCTTCCAGTTGCTTACCTTAAGTGCTTCGCTCATTG TAGTA	pTargetF1-∆ <i>fur</i>
Δ <i>fur-</i> down-F	TGACTGACAACAATACCGCATCACAGCCTCTATCTTTAC GG	
∆ <i>fur</i> -down-R	GGTAATAGATCTAAGCTTCTGCAG <u>GTCGAC</u> CGGACATC GGCATAGTTTT	
Δ <i>hns</i> -sg20-F	AGCTAGCTCAGTCCTAGGTATAAT <u>ACTAGT</u> AAGCGCTG	
-	CTGCTGCTGAAGGTTTTAGAGCTAGAAATAGC	
∆ <i>hns</i> -sg20-R	GGGTGATGATAAGCATTGTTGTTCAAAAAAAGCACCGA CTCGG	
Δ <i>hns</i> -up-F	CCGAGTCGGTGCTTTTTTTGAACAACAATGCTTATCATC ACCC	To generate
Δ <i>hns</i> -up-R	AAATCTTCCAGTTGCTTACCTTAAGTGCTTCGCTCATTG TAGTA	pTargetF1-∆ <i>hns</i>
∆ <i>hns</i> -down-F	TACTACAATGAGCGAAGCACTTAAGGTAAGCAACTGGA AGATTT	
∆ <i>hns</i> -down-R	GGTAATAGATCTAAGCTTCTGCAG <u>GTCGAC</u> TTGTCGGG CGTTATGTGT	
AclpV-sa20-F	AGCTAGCTCAGTCCTAGGTATAAT <u>ACTAGT</u> TGTTGCAGA	
	TTGCCGAACCGGTTTTAGAGCTAGAAATAGC	
∆ <i>clpV</i> -sg20-R	GGGTGATGATAAGCATTGTTGTTCAAAAAAAGCACCGA CTCGG	
∆ <i>clpV</i> -up-F	CCGAGTCGGTGCTTTTTTTGAACTGCGACTGTATTTTCC GTA	To generate pTargetF1-Δ <i>clpV</i>
∆ <i>clpV-</i> up-R	GTCGTGGCAGAATGTGCTGGGATTAGAGCGTAGTTTGC	
∆ <i>clpV</i> -down-F	GCAAACTACGCTCTAATCCCAGCACATTCTGCCACGAC	
∆ <i>clpV</i> -down-R	GGTAATAGATCTAAGCTTCTGCAG <u>GTCGAC</u> TCAGCGTA TTCGGCACAG	
<i>hns</i> (K107A)-sg20-F	AGCTAGCTCAGTCCTAGGTATAAT <u>ACTAGT</u> TGTATCCGC TTCTGTTCGCCGTTTTAGAGCTAGAAATAGC	
<i>hns</i> (K107A)-sg20-R	GCCAAAAAGTAAAGTCACCAGTTCAAAAAAAGCACCGA CTCGG	
hns(K107A)-up-F	CCGAGTCGGTGCTTTTTTTGAACTGGTGACTTTACTTTT TGGC	To generate pTargetF1 <i>-hns</i> (K107A)
hns(K107A)-up-R	TATCCGCAGACTTTAGCCATCGCCTGTTCAACCGCT	
<i>hns</i> (K107A)-down-F	AGCGGTTGAACAGGCGATGGCTAAAGTCTGCGGATA	
<i>hns</i> (K107A)-down-R	GGTAATAGATCTAAGCTTCTGCAG <u>GTCGAC</u> AAGTGATT	

	GCTGAGCCGAT	
	AGCTAGCTCAGTCCTAGGTATAATACTAGTCATCCGTACT	
FLAG-nns-sg20-F	CTTCGTGCGCGTTTTAGAGCTAGAAATAGC	
ELAC has sale B	TGCAATGAGATCGTATTTCATCTTCAAAAAAAGCACCGAC	
PLAG-IIIIS-SYZU-R	TCGG	
FLAG-hns-un-F	CCGAGTCGGTGCTTTTTTTGAATGCAATGAGATCGTATTT	
	CATC	To generate
FLAG-hns-up-R	CTTATCGTCGTCCTTGTAATCCATTGTAGTAATCTCAAAC	pTargetF1-FLAG- <i>hns</i>
	ТТАТА	
FLAG-hns-down-F	ATGGATTACAAGGACGACGATAAGATGAGCGAAGCACTT	
	AAAATTCT	
FLAG-hns-down-R	GGTAATAGATCTAAGCTTCTGCAG <u>GTCGAC</u> TTAGCGGCA	
	GCCATGCTATTCA	
P _{clpV} ∷ lacZ- F	ACGC <u>GTCGAC</u> ATGTTGCTCAAAAAGCGGAA	To generate
P _{clpV} :: /acZ- R	CTAG <u>TCTAGA</u> AGTTTCCATGTGTTATGCCTTGT	pDM4-P _{c/pV} ::lacZ
P _{hcp1} ∷ <i>lacZ</i> -F	ACGC <u>GTCGAC</u> TCGCTATTGGGTTTCGTGTA	To generate
P _{hcp1} :: /acZ- R	CTAG <u>TCTAGA</u> GTCATAAGCCATTTTTATATCCTTA	pDM4-P _{hcp1} ::lacZ
P _{tae4} ::/acZ-F	ACGC <u>GTCGAC</u> GATTGTCGCCGTGGTTTC	To generate
P _{tae4} ::/acZ-R	CTAG <u>TCTAGA</u> TCTGTTCATTTTGCTTAACCTCTA	pDM4-P _{tae4} ::lacZ
P _{vgrG} ∷ <i>lacZ</i> -F	ACGC <u>GTCGAC</u> TGGTGAAAAGACATTTACGGTT	To generate
P _{vgrG} ∷ <i>lacZ</i> -R	CTAG <u>TCTAGA</u> TACAAAACTCATGGTAGTGACTCCT	pDM4-P _{vgrG} ::lacZ
hand F	GACGACAAGCTTACTAGTCTGCAG <u>GGATCC</u> ATGGCTTA	
перт-г	TGACATTTTTTGAA	To concrete
	ATCTTAGTTACTTAGGTACCCGGG <u>GTCGAC</u> TTATTTTCC	nKT100-bon1-\/S\/G
hcp1-VSVG-R	TAATCTATTCATTTCAATATCTGTATAAATTTCTTTGTTGG	pr(100- <i>ncp1</i> -030G
	CCTTGAA	
Chns-F	GACGGTATCGATAAGCTTGATATC <u>GAATTC</u> ATGAGCGAA	
	GCACTTAAAATTCT	To generate
Chns-R	GGTGGCGGCCGCTCTAGAACTAGT <u>GGATCC</u> TTATTCCT	pBBR1MCS1-hns
	TGATCAGGAAATCTTC	
Cfur-F	GACGGTATCGATAAGCTTGATATC <u>GAATTC</u> ATGACTGAC	
	AACAATACCGCA	To generate
Cfur-R	GGTGGCGGCCGCTCTAGAACTAGT <u>GGATCC</u> TTATTTAG	pBBR1MCS1-fur
		- .
adrA-F	GACGGTATCGATAAGCTTGATATC <u>GAATTC</u> ATGTTCCCA	lo generate
		pBBR1MCS1-adrA
adrA-R	GGTGGCGGCCGCTCTAGAACTAGT <u>GGATCC</u> TCATGCC	and
STM3611-F		nBBP1MCS1_STM3611
	GGTGGCGGCCGCTCTAGAACTAGTGGATCCTTACAGG	and
<i>STM3611</i> -R	GTCAGAATCACCTCT	pBBR1MCS5-STM3611
	GACGGTATCGATAAGCTTGATATCGAATTCATGGATTAC	To generate
FLAG-hns-F	AAGGACGACGATGACAAGAGCGAAGCACTTAAAATTCT	pBBR1MCS1-FLAG-hns
		· ·

FLAG-hns-R	GGTGGCGGCCGCTCTAGAACTAGT <u>GGATCC</u> TTATTCCT TGATCAGGAAATCTTC	
ycgR-F	ACTGGTGGACAGCAAATGGGTCGC <u>GGATCC</u> GTGAGTG	
	GIGGIGGIGCICGAGIGCGCCGCAAGCTTTATTCTC	nFT28a-vcaR
<i>ycgR</i> -R	GCACTITATICGCTCTT	perzoalyogik
	ACTGGTGGACAGCAAATGGGTCGCGGATCCATGAATTT	
stpA-F	GATGTTACAGAACTTAA	To generate
	GTGGTGGTGCTCGAGTGCGGCCGC <u>AAGCTT</u> TTAGATTA	pET28a- <i>stpA</i>
<i>stpA</i> -R	AGAAATCATCCAGAGAT	
<i>stpA</i> ^{F98Y} -up-F	TCTTATTGTGCTGAAATATTCACTT	
stn 4 ^{F98Y} un P	TCTTCGCCATTGAAATCAGTATAACGATATTTTGCCGGA	
SipA -up-N	C	To generate
stp4 ^{F98Y} -down-F	GTCCGGCAAAATATCGTTATACTGATTTCAATGGCGAAG	pET28a- <i>stpA</i> ^{F98Y}
	A	
<i>stpA</i> ^{F98Y} -down-R	TTTCCTCATTAGCGGTTTTG	
hns-F	ACTGGTGGACAGCAAATGGGTCGC <u>GGATCC</u> ATGAGCG	
	AAGCACTTAAAATTCT	To generate
hns-R	GTGGTGGTGCTCGAGTGCGGCCGC <u>AAGCTT</u> TTATTCCT	pET28a- <i>hns</i>
	TGATCAGGAAATCTTC	
hns _{Ctd} -F	ACTGGTGGACAGCAAATGGGTCGC <u>GGATCC</u> ATGGCAG	_
	CTCGTCCGGCTAA	To generate
hns _{Ctd} -R	GIGGIGGIGCICGAGIGCGGCCGC <u>AAGCII</u> IIAIICCI	pET28a-hns _{Ctd}
μ		
nns ¹³⁵⁷ -up-F		
hns ^{Y99A} -up-R		To generate
		n Generale
<i>hns^{Y99A}-</i> down-F	ACTA	perzoa-nins
<i>hns^{Y99A}-</i> down-R	ATTGTCGGGCGTTATGTGTT	
hns ^{D101A} -up-F	CGGTGAGTATCCCCCCTG	
	CAGGTTTTAGTTTCACCGTTTTCGGCAACATAGCTATAT	
hns ^{D101A} -up-R	TTAGCCG	To generate
· D1014 · -	CGGCTAAATATAGCTATGTTGCCGAAAACGGTGAAACTA	pET28a- <i>hns</i> ^{D101A}
hns ^{brorg} -down-F	AAACCTG	
<i>hns</i> ^{D101A} -down-R	ATTGTCGGGCGTTATGTGTT	
hns ^{K107A} -up-F	CAGACGGTGAGTATCCCCC	
hns ^{K107A} -up-R	CCCTGGCCAGTCCAGGTTGCAGTTTCACCGTTTTCG	To generate
<i>hns</i> ^{K107A} -down-F	CGAAAACGGTGAAACTGCAACCTGGACTGGCCAGGG	pET28a- <i>hns</i> ^{K107A}
hns ^{K107A} -down-R	AAAAACCAAAAGCGGATGTC	
hns ^{T115A} -up-F	TCTTTTTTGTGCGGTGCCT	
hns ^{T115A} -up-R	TGCTTTTTTGATTACAGCCGGTGCACGACCCTGGCCA	To generate
hns ^{T115A} -down-F	TGGCCAGGGTCGTGCACCGGCTGTAATCAAAAAAGCA	pET28a- <i>hns</i> ^{T115A}
hns ^{T115A} -down-R	TGGTTGGCGTGGTTGAAAA	

16S-F	GAAGGTGTTGTGGTTAATA	
16S-R	AGTAATTCCGATTAACGCTT	qRI-FCR
<i>clpV</i> -RT-F	AAAAAATGGGGATTCAGTC	
<i>clpV</i> -RT-R	CCTGCCACTCCCTTAGC	qR1-FCR
hcp1-RT-F	GGATGACAAACACAAAAATGAAA	
hcp1-RT-R	ACAATCAGGTCGGTGAAGGTA	qivi-roix
<i>tae4</i> -RT-F	ATTCCGTCGCTGATGTG	
<i>tae4</i> -RT-R	TCAGGCTTGCCCATAGTA	
<i>vgrG</i> -RT-F	AAGAGTGAAGGCGAGATGCT	aRT-PCR
<i>vgrG</i> -RT-R	AAACGGGTGGAAAAGGTAAA	
ssrB-RT-F	TCCTTGATCTTAGTCTACCTGG	aRT-PCR
ssrB-RT-R	CTGCTTTTTAAAACATAGCCAT	
sseA-RT-F	TAAGGTGAGTCAACAGCTTGC	
sseA-RT-R	TTGTTTTTCCTGACGGTATCT	
rmbA-RT-F	TGACAGCGCAGTACGGGT	aRT-PCR
rmbA-RT-R	CGTCGAAGATTCGGGAAA	
misL-RT-F	CAGCATCCTCCTCCAGAAC	
<i>misL</i> -RT-R	TCGCCCGCCATAGTAATA	qRI-PCR
s/sA-RT-F	CTGGCTAAGATCGCCACCTT	
s/sA-RT-R	CGCTTTTACCGCTTGTACAAAA	
pipA-RT-F	ACTTCAAACTTTCAGAAGGCAG	
pipA-RT-R	GGTATATTCGACAACAGGGC	
<i>pipB</i> -RT-F	AGTAAACATAATATACAACAGCCT	aRT-PCR
<i>pipB</i> -RT-R	AACACAAATTTGCACCG	
stpA-RT-F	CTTAAATAATATCCGCACGC	
<i>stpA</i> -RT-R	CCATTGAAATCAGTAAAACG	qivi-roix
ropS-RT-F	ACAATCGAACGGGCGATC	
ropS-RT-R	CGGGGTGTCTACCGAGGTA	qivi-roix
phoP-RT-F	GGCGCAGCAGTGATGTTT	
phoP-RT-R	AAGCGTTTCCATAATGGTGTAT	qRI-FCR
phoQ-RT-F	TTCCATGAAATTGAAACCAA	
phoQ-RT-R	TATACGAACCAGCTCCACAC	qRI-FCR
fimA-RT-F	GTGCCTTTCTCCATCGTCC	
fimA-RT-R	CAGCGTATTGGTGCCTTCA	qivi-roix
<i>yaiU</i> -RT-F	CTTTTGGCACAGGTCACTTT	
<i>yaiU</i> -RT-R	TATCATCACCATCAGCATCG	qivi-ron
<i>clpV-</i> ChIP-F	TCTGTATCATTGTTTGTTTCGATA	
<i>clpV</i> -ChIP-R	AGTTTCCATGTGTTATGCCTTG	
<i>vgrG-</i> ChIP-F	TATTTTCATGGCTCTTGTCAGCAAT	
<i>vgrG-</i> ChIP-R	GGTAGTGACTCCTTTAATACCGGAT	
ssrAB-ChIP-F	TAATTGTAGTCATCGACTGGGTTAT	ChIP-qPCR

<i>ssrAB-</i> ChIP-R	AATGCTTCCCTCCAGTTGC	
sseA-ChIP-F	TAGTACGTGAGGTTTGACTCGC	
sseA-ChIP-R	TCCCCTCCATATACACGATAGA	CHIP-qPCK
rmbA-ChIP-F	TGTCATGGTTCCTTAAAGCTGTATT	
rmbA-ChIP-R	CCTGAACGACTCCTGTCGATG	CHIF-qPCK
s/sA-ChIP-F	CTGTCATCAGCTTAAAAACGG	
s/sA-ChIP-R	TTAATTCATTCCTTGTTGTTGCCTT	CHIF-9FCK
<i>pipA-</i> ChIP-F	GCCCCTAAGTTTCATTATAAATA	
<i>pipA-</i> ChIP-R	AACTTCTTATTTCCTGACTACAATT	CHIF-9FCK
<i>pipB-</i> ChIP-F	CTACTCATACTCAACCAAAGCTCTA	
<i>pipB-</i> ChIP-R	TTTGATTCCTTCTTATGGAAGTG	CHIF-9FCK
fimA-ChIP-F	AGTTTGCGGCTATTTTTATTT	
fimA-ChIP-R	GGATTTCCCTTGAATTACACAC	CUIL-dLCK
<i>yaiU-</i> ChIP-F	AAGTAAATGTGGGTTTTAACATTATTCA	
<i>yaiU-</i> ChIP-R	TTGTCATCCCTCCAGGGAC	CNIP-qPCR
P _{c/pV} -EMSA-F	TTTTTATCTTGCTGTTCATTGATTA	
P _{c/pV} -EMSA-R	TTCCATGTGTTATGCCTTGTG	EMSA
P _{c/pV} -EMSA-CK-F	TGTTTGACAAGGGTGGGATG	To generate fragment of
P _{clpV} -EMSA-CK-R	CAGCGGCAGGTAAGGGAT	negative control for EMSA
P _{vgrG} -EMSA-F	TATTGTTATGTTCATTTCCTTATTTA	EMGA
P _{vgrG} -EMSA-R	CAAAACTCATGGTAGTGACTCC	EINISA
PvgrG-EMSA-CK-F	TATTGTTATGTTCATTTCCTTATTTA	To generate fragment of
P _{vgrG} -EMSA-CK-R	CAAAACTCATGGTAGTGACTCC	negative control for EMSA
P _{fimA} -EMSA-F	CGGCTATTTTTTATTTAGCGAAA	EMSA
P _{fimA} -EMSA-R	ATGTTTCATGGATTTCCCTTGA	EINISA
P _{fimA} -EMSA-CK-F	TACGGCGATTGGTAATACGACT	To generate fragment of
P _{fimA} -EMSA-CK-R	TGCCTTATAGCGTGCGGTAA	negative control for EMSA
P _{yai∪} -EMSA-F	TTAATACCTCAGGCACTATATCATTTTA	EMSA
P _{yai∪} -EMSA-F	CAAGAAGGATTATGCGGCG	EINISA
P _{yai∪} -EMSA-CK-F	GGTTCAGATTATATCCTGGATAGTGC	To generate fragment of
P _{yai∪} -EMSA-CK-R	CATTATCAAGTGTAAGGTTCAGTTCGT	negative control for EMSA
P _{ssrAB} -EMSA-F	TACAATATCAGGATGCTGTCTACA	EMSA
P _{ssrAB} -EMSA-R	TAATCGATGGTGTTATCATTAGG	EINISA
PssrAB-EMSA-CK-F	AACCCATGCCGGGTTTTACT	To generate fragment of
PssrAB-EMSA-CK-R	ATCCATCATGCAGCGTTACATT	negative control for EMSA
P _{sseA} -EMSA-F	AACATTATTATTATCGTTACCATAAC	EMGA
P _{sseA} -EMSA-R	GCTATTTTACTTGCCATTTTGA	EINISA
PsseA-EMSA-CK-F	GCTGCGTTTAGTGAATATCGT	To generate fragment of
P _{sseA} -EMSA-CK-R	TATCTCCACCGGGGCTT	negative control for EMSA
PrmbA-EMSA-F	ATAGTGACGAAGGCAGCAGA	EMSA
PrmbA-EMSA-R	AAACTCCTGGAAAGACCTAAAAT	EIVIJA

PrmbA-EMSA-CK-F	GCGGTTTTATCTTTGTTGAT	To generate fragment of	
PrmbA-EMSA-CK-R	TTCGTCCACGTTTACTGTTG	negative control for EMSA	
Ps/sa-EMSA-F	TTTCAATCAATAATCCTCTC	EMSA	
P _{s/sA} -EMSA-R	TGATAGTCACTATCAGTGTTAAAGTCA	EMSA	
Ps/sA-EMSA-CK-F	GGGTACAAGGTATTTGCGG	To generate fragment of	
P _{s/sA} -EMSA-CK-R	AATCCAGCAGTTCATTATTTT	negative control for EMSA	
P _{pipA} -EMSA-F	AGGTAGTCAACATACCCCTACTC		
P _{pipA} -EMSA-R	CATACAGGTAACGCTATGATTCA	EMSA	
P _{pipA} -EMSA-CK-F	ACAGATTAATACCTCAAAGCGG	To generate fragment of	
P _{pipA} -EMSA-CK-R	GGATAGTTCATCGTAGCATTCG	negative control for EMSA	
P _{pipB} -EMSA-F	TTTATTCAATGATGATGAAGCGT	EMSA	
P _{pipB} -EMSA-R	TTCTTATGGAAGTGAGCCGAC	EWISA	
P _{pipB} -EMSA-CK-F	TTTGGAATGTATGTCGAATGTTA	To generate fragment of	
P _{pipB} -EMSA-CK-R	CAAGTCAGGTCTGCGTGAGT	negative control for EMSA	

*Underlined sites indicate restriction enzyme cutting sites added for cloning.

Supplementary References

- Li, S. et al. Autoinducer-2 and bile salts induce c-di-GMP synthesis to repress the T3SS via a T3SS chaperone. *Nat Commun.* **13**, 6684 (2022).
- Simon, R., Priefer, U. & Puhler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. *Nat. Biotechnol.* 1, 784–791 (1983).
- Jiang, Y. et al. Multigene editing in the *Escherichia coli* genome via the CRISPR-Cas9 system. *Appl. Environ. Microbiol.* 81, 2506–2514 (2015).
- Zhang, L. et al. The catabolite repressor/activator Cra is a bridge connecting carbon metabolism and host colonization in the plant drought resistance-promoting bacterium *Pantoea alhagi* LTYR-11Z. *Appl. Environ. Microbiol.* 84, e00054-18 (2018).
- Schäfer, A. et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene* **145**, 69–73 (1994).
- Zhao, Y. & Shao, F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. *Immunol. Rev.* 265, 85–102 (2015).
- Hu, Y. et al. OmpR positively regulates urease expression to enhance acid survival of Yersinia pseudotuberculosis. Microbiology 155, 2522–2531 (2009).
- Kovach, M. E. et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* 166, 175–176 (1995).

27