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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): clinical expertise in lung cancer radiomics 

In this study, the method of Radiomics analysis was used to evaluate the biological aggressiveness 
of lung cancer. PET/CT findings of the primary lesions including SUVmax, MTV, and TLG were 
extensively analyzed by deep learning as well as texture features obtained from CT findings. 
There are several important issues to be more discussed shown below. 

(1) The values of SUVmax and other parameters by PET should vary among PET scanner models. 
What kind of adjustments were made among multiple facilities (different PET system) to 
standardize the measurement conditions? This is related to the application of DLNMS to cases in 
other facilities. 
(2) The test set includes more than 10% squamous cell carcinoma cases. The SUVmax of 
adenocarcinoma is basically different from that of squamous cell carcinoma even though the stage 
is same. The authors did not pay attention to this matter therefore the results may be inaccurate. 
(3) We believe that texture features obtained from CT findings are also used in the analysis. I 
would like to encourage authors to explain features analyzed. 
(4) High-resolution CT findings is necessary to analyze the subtle images therefore it is difficult to 
obtain such precise findings using the conventional CT images associated with PET examination. 
Comments should be added. 

Reviewer #2 (Remarks to the Author): expertise in neural networks in digital imaging 

PET/CT based cross-modal deep learning signature to predict occult nodal metastasis and support 
comprehensive treatments in clinical stage N0 non-small cell lung cancer: a multicenter study 

NCOMMS-23-11103 

The study describes a validation of a deep learning model trained on PET/CT radiomics data for 
prediction of N1/N2 occult nodal metastasis in N0-staged patients. Training and testing are 
performed on multicenter multi-cohort data, with additional analyses of the model's value for 
clinical decision making and exploration of the biological processes associated with DLNMS 
predictions. 

1. What are the noteworthy results? 

The main strength of the study is substantial assessment of DLNMS prediction performance on 
multicenter multi-cohort data that required a lot of effort and delivered a very promising result. 
Specifically, it’s impressive that the proposed DLNMS demonstrated the ability to outperform 
existing clinical models, radiologist evaluations, and single modality models on internal, external, 
prospective, and biopsy validation sets. The authors described cohorts in detail and ran additional 
univariate and multivariate feature analyses. These results indicate the model's robustness, 
generalizability, and potential for clinical utility. On top of that, it’s great to see an extra effort 
towards assessing the utility of the model for (pre/post) surgical decision-making and exploring 
the “biological basis” of DLNMS predictions. 

Overall, the main text is written well, albeit quite dense, especially because many details are 
tucked away in Supplemental Materials and aren’t easy to find (e.g. positive/negative ratios for 
train/val sets are only available in Figure S1). Despite format limitations, I still encourage the 
authors to make an effort in improving the text flow and make more specific references to 
supplemental materials. 

2. Will the work be of significance to the field and related fields? How does it compare to the 
established literature? If the work is not original, please provide relevant references. 

The work demonstrates a promising approach to predicting occult nodal metastasis in early-stage 



NSCLC patients. The use of multimodal deep learning in this context could potentially improve 
treatment decisions, leading to better patient outcomes. The DLNMS model's superior performance 
compared to clinical models and radiologist evaluations is a significant contribution to the literature 
on nodal metastasis prediction in NSCLC patients. 

However, the study could benefit from a more thorough comparison with existing literature and 
methods. The authors review established literature very briefly and selectively and do not describe 
the state-of-the-art, which leads to a poorly defined knowledge gap that this study is trying to 
bridge. Although there may be no prior applications of deep learning to specifically predict NSCLC 
ONM, there is rich literature on related topics, from using conventional image processing 
techniques to high-performing multimodal deep learning for related tasks on PET/CT images 
(PMID: 36029345, PMID: 32773965, PMID: 33591922). E.g., see (PMID: 36870800) for overview 
of over a dozen studies that applied AI to PET/CT imaging data for management of lymphoma. 
Even if there is no previous method that DLNMS can be compared to, context for the general use 
of AI for similar tasks should be provided to establish the novelty and significance of the study in 
the context of the broader field. 

3. Does the work support the conclusions and claims, or is additional evidence needed? 

In general, the work supports the conclusions and claims made, as the authors provided robust 
evidence from multiple cohorts and validation sets. However, there are some issues with data 
analysis and methodology that need to be addressed before this article can be published – please 
see corresponding sections below. 

4. Are there any flaws in the data analysis, interpretation and conclusions? Do these prohibit 
publication or require revision? 

Overall, analyses, interpretation, and conclusions appear to be sound. The authors also point out 
some of the study limitations in Discussion. 

One issue that still needs to be addressed is that the study seems to lack proper multiple testing 
correction for the reported significance results. There are many tests performed that are used to 
compare prediction approaches, variables, etc. increasing the risk of false discoveries. The authors 
should make sure to apply appropriate correction methods to account for this issue and ensure the 
validity of their findings. The correction procedures should be clearly described in the Statistical 
analysis subsection. 

I have to point out that throughout the manuscript, the authors keep referring to various values of 
AUC as “satisfactory” or “unsatisfactory” predictive performances. Such assessment should be 
either substantiated by quantitative definition of what is “satisfactory” and why or should be 
avoided altogether. 

Finally, while the authors did compare the performance of the DLNMS model with traditional 
clinical decision-making tools and human expert performance, it would be helpful to expand on 
these comparisons in the discussion section. This could involve exploring potential reasons for the 
observed differences in performance and discussing the implications of these findings for clinical 
practice. 

5. Is the methodology sound? Does the work meet the expected standards in your field? 

The methodology seems generally sound, however, I have some concerns with regard to the 
choice of hyperparameters and the rationale behind their selection. Providing a clear explanation of 
these choices is crucial for ensuring that the study adheres to the high standards expected in the 
field. 

- The task setting is not clear. Data labeling and model training descriptions indicate that the 
model performs binary classification, however, separate scores are reported for N1 and N2 ONM 
(Figure 2A,B). Does that mean that 2 separate models were trained to predict N0 vs N1 and N0 vs 
N2? The authors should clarify data splits and model training very explicitly. 



- Another issue that is not discussed enough is substantial class imbalance (1/9 if N1/N2 are 
considered separately), which the authors only briefly mention in data preprocessing. While the 
authors balance classes during training, it does affect prediction performance as demonstrated by 
PPV values (Figures 2, 3) and confusion matrices (Figure S3). When such class imbalance is 
present, AUC curves can be misleading and AUPR curves should be preferred (PMID: 25738806). I 
suggest the authors to either report AUPR curves next to AUC curves, or replace the latter with the 
former and move AUC curves to supplemental materials. Correspondingly, Results and/or 
Discussion should mention this issue, as in some cases the model predicts as many (Figure S3 E) 
or even +30% more false positives compared to true positives (Figure S3 3G). 

- The main contribution of this study is assessment of the proposed model. However, any graphical 
or textual description of the model is missing from the main text. The authors should at least add 
a brief description of key characteristics to the main text and a diagram as a supplemental figure. 

- The choice of many hyperparameters for constructing and training the model is not justified. For 
example, choosing ResNet-18 as the base architecture for the DLNMS model may be suboptimal, 
considering that it is relatively shallow and outdated compared to more recent deep learning 
architectures. Did authors consider alternative models with superior performance in various image 
recognition tasks, e.g. deeper ResNet, EfficientNet, or DenseNet? 

- There are multiple important details missing from the description of the model in Supplemental 
Materials: (1) It’s not clear how the multimodal PET/CT model was constructed, i.e. were two 
networks trained together with the final classifier, or was it just a combination of features from the 
two single-modality extractor (which is not truly multimodal)? Did the authors consider other 
options such as multi-task learning? (2) It should be explicitly stated that ResNet-18 the authors 
employed was pretrained on the ImageNet dataset of natural images. (3) There is no information 
on how image augmentations were selected, did the authors perform any ablation studies to make 
sure selected transforms do not hurt the performance? (4) There is no analysis of model 
computational requirements or convergence. (5) Supplementary Materials mention that the 
authors used binary cross-entropy as a loss function, while the code repository employs Focal loss 
instead. 

Addressing the issues above will provide valuable insights into the model's inner workings and help 
to identify potential areas for further improvement. 

6. Is there enough detail provided in the methods for the work to be reproduced? 

Methods section need to be updated according to critiques above in order to allow other 
researchers to reproduce the method. Nevertheless, the authors could further enhance 
reproducibility by providing pre-trained models as supplementary material. 

Minor issues: 
- square brackets are missing around some confidence intervals 
- please add subtitles in Figure 2, panels G-J; Figure 3, panels A-D 
- please proofread Supplementary Information, there are many typos (e.g., line 74: retrospective -
> retrospectively) 
- Supplementary Information should have a separate References section and cite methods ad 
packages used to perform the analyses (e.g. ResNet-18, ImageNet, etc.) 



RESPONSE TO REVIEWERS’ COMMENTS

We would like to express our gratitude to each of the external reviewers for careful and 

thorough reading of this manuscript and for the thoughtful comments and constructive 

suggestions, which help to improve the quality of this study. The comments are encouraging 

and the reviewers appear to share our judgement that this study and its results are clinically 

important. Please see below, in blue, our detailed response to reviewers’ comments 

(comments are in italics). All mentioned line numbers refer to the manuscript file with tracked 

changes. We hope the revised manuscript is acceptable for publication in Nature 

Communications

Reviewer 1:

1. The values of SUVmax and other parameters by PET should vary among PET scanner 

models. What kind of adjustments were made among multiple facilities (different PET system) 

to standardize the measurement conditions? This is related to the application of DLNMS to 

cases in other facilities.

Reply:

We thank the reviewer for this important comment. We agree with you that adjustments 

for multiple facilities are critical for the application of DLNMS to cases in other facilities. In this 

study, we utilized three main methods to standardize the input images. Firstly, for the original 

PET/CT images, the energy attenuation and imaging noise are heterogeneous among multiple 



facilities, which would affect the accuracy of quantitative analysis. Therefore, the attenuation 

correction was utilized to reduce statistical noises of original PET/CT images and the corrected 

images were reconstructed for quantitative analyses, which would preliminary reduce bias and 

improve accuracy of the diagnostic process. Secondly, to correct variability from image-

acquisition techniques and reconstruction parameters related to voxel size, each voxel in the 

original images was resampled to 0.6*0.6*0.6 mm3 in the spatial dimension. Through the 

resample process, images from different facilities were uniformed in the voxel size, which 

would reduce the variability from multicentre collection and different protocols. Finally, to 

reduce the batch effect error, pixel-wise PET/CT image data were normalized by z-score 

normalization, which means the ROI image is subtracted by the mean intensity value and 

divided by the standard deviation of the ROI image intensity. Via above three data pre-

processing procedures, radiomics data harmonization among multiple facilities was improved 

to support following modelling and validation procedures. In this revision, data pre-processing 

procedures were detailed in Supplementary Method 8.

Changes in the text:

Supplementary Method 8. Adjustments among multiple facilities

Three methods were utilized to standardize images. Firstly, for the original PET/CT images, 

the attenuation correction was applied to reduce statistical noises of original images and the 

corrected images were reconstructed for quantitative analyses. Secondly, to correct variability 



related to voxel size, each voxel in images was resampled to 0.6*0.6*0.6 mm3 in the spatial 

dimension. Finally, to reduce the batch effect error, pixel-wise ROI image data were subtracted 

by the mean intensity value and divided by the standard deviation of ROI image intensity.

2. The test set includes more than 10% squamous cell carcinoma cases. The SUVmax of 

adenocarcinoma is basically different from that of squamous cell carcinoma even though the 

stage is same. The authors did not pay attention to this matter therefore the results may be 

inaccurate.

Reply:

Thank you for this significant question. We agree with you that the pathological type is a 

key characteristic of tumors. Squamous cell carcinomas may have different ONM risk 

compared to adenocarcinomas. In the current study, the main reason to include squamous 

cell carcinomas was to meet the clinical workflow. We can hypothesize a prospective real 

clinical scenario, in which a patient with pulmonary nodule is seeking the medical attention. 

Doctors could administrate the PET/CT scanning to this patient and define benign or 

malignancy of the detected lesion. The ability of PET/CT in identifying malignancy is supported 

by that PET/CT yielded an accuracy of about 90% in diagnosing pulmonary nodules [1-3] and 

PET/CT has been widely applied by doctors for diagnosing pulmonary nodules in clinical 

practice. Thereafter, if this patient is diagnosed as benign, follow-up visit could be suggested 

and unnecessary surgery could be avoided. Conversely, if this patient is diagnosed as 



malignancy, DLNMS could be applied to this patients and further guide nodal biopsy, surgery 

and adjuvant therapy decisions. In summary, before surgery, we can determine a patient with 

pulmonary nodule is benign or malignancy via PET/CT, but we cannot determine the malignant 

nodule is adenocarcinoma or squamous cell carcinoma because that the precise pathological 

type of malignant nodule relies on primary lesion biopsy and this invasive biopsy yield low 

success rate for early lung cancer. In addition, in clinical practice, biopsy for primary lesion is 

also rarely conducted for early lung cancer. Therefore, if our DLNMS was constructed only for 

adenocarcinoma, it cannot be applied in the real clinical scenario considering we can not 

determine whether a malignant nodule is adenocarcinoma or squamous cell carcinoma before 

surgery. In such instances, we must include squamous cell carcinoma into the targets of the 

DLNMS to meet the clinical workflow, which is mandatory for applying DLNMS to clinical 

practice in future. 

Furthermore, your concern on accuracy of the DLNMS for squamous cell carcinoma is 

quite important and we agree with you that validating the DLNMS in different pathologies could 

further improve the robustness of the DLNMS and the quality of this paper. To investigate this, 

we retrieved all 195 squamous cell carcinomas in internal validation set, external cohort and 

prospective cohort, the DLNMS could achieved AUCs of 0.904 and 0.858 for N1 and N2 

prediction in patients with squamous cell carcinomas (NEW Figure 3H). To further clarify this 

in an independent squamous cell carcinoma dataset, we further collected 322 squamous cell 

carcinomas from July 2022 to June 2023 in Shanghai Pulmonary Hospital, The First Affiliated 

Hospital of Nanchang University, Affiliated Hospital of Zunyi Medical College and Ningbo 



HwaMei Hospital. Participants were included when meeting the following criteria: (a) patients 

receiving curative surgery for primary squamous cell carcinomas; (b) the maximum short-axis 

diameter of N1 and N2 nodes less than 1 cm on CT scan; (c) the SUVmax of N1 and N2 lymph 

nodes less than 2.5. Criteria for exclusion included (a) multiple lung lesions; (b) poor quality 

of PET/CT images; (c) patient not receiving SND; (d) patient receiving neoadjuvant therapy. 

The baseline information was detailed in Table-response 1. The N1 and N2 metastasis rate of 

the whole cohort was 22.0 and 10.9%. As illustrated in Figure-response 1, the proposed 

DLNMS maintained a satisfactory predictive efficacy, achieving AUCs of 0.910 and 0.856 for 

N1 and N2 prediction, respectively, which indicated that the proposed DLNMS could also be 

used in a larger population with squamous cell carcinomas. 

Finally, we definitely agree with you that the SUVmax of adenocarcinoma is basically 

different from that of squamous cell carcinoma even though the stage is same. The PET and 

CT features of adenocarcinoma are both different from that of squamous cell carcinoma. Since 

that, the discrepancy in imaging features could also be leant by the DLNMS. For example, 

squamous cell carcinoma was represented by higher SUVmax, higher CT density and larger 

size, when the DLNMS recognized tumors with these features, it tends to give a more N1 and 

N2 score for this population. To confirm this, we analyzed the deep learning scores between 

adenocarcinomas and squamous cell carcinomas, indicating that squamous cell carcinomas 

did have higher deep learning score than adenocarcinoma (entire cohort) (N1 score: 0.39 ± 

0.34 versus 0.15 ± 0.25, p<0.001; N2 score: 0.42 ± 0.39 versus 0.18 ± 0.33, p<0.001). 

Therefore, the DLNMS did learnt nodal metastasis risks whether for adenocarcinomas or 



squamous cell carcinomas, and the differences of imaging features between 

adenocarcinomas or squamous cell carcinomas are reflected by different risk scores between 

adenocarcinomas or squamous cell carcinomas. We think this point is the theoretical basis of 

the DLNMS predicting nodal metastasis risks in squamous cell carcinomas.

In this revision, we have provided the efficiency of the DLNMS in adenocarcinomas and 

squamous cell carcinomas subgroups based on existing data (New Figure 3G&H). However, 

the manuscript already contained too much content and the journal required strict word limits. 

Therefore, the independent squamous cell carcinomas dataset between July 2022 and June 

2023 was only utilized to answer this question in the response letter and we did not add this 

cohort as a part of the research (Table-response 1 and Figure-response 1). Despite this, what 

needs to be emphasized is that the sample size of squamous cell carcinomas was relatively 

small and the population cohort was mainly based on Chinese population. Therefore, the 

predictive value of the proposed signature should be further validated in international 

multicenter population. Moreover, the sample size of other pathological types except for 

adenocarcinoma and squamous cell carcinomas were too small, so we describe this as a 

limitation of this study, and we hope the efficiency of our signature in different pathological 

subgroups could be further validated by larger study in future.
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Table-response 1. Baseline characteristics of patients with squamous cell carcinomas from 

July 2022 to June 2023

Characteristics Entire cohort

(n=322)

Age (years)

>65, n (%) 136 (42.2)

139 (57.8)

Mean ± SD 63.9 ± 7.7

Sex, n (%)

Male 311 (96.6)

Female 11 (3.4)

Smoking, n (%)

Ever 113 (35.1)

Never 209 (64.9)

Location, n (%)

Left 145 (45.0)

Right 177 (55.0)

Central 171 (53.1)

Peripheral 151 (46.9)

Tumor size (cm), mean ± SD 3.28 ± 1.46

N1 involvement, n (%) 71 (22.0)

N2 involvement, n (%) 35 (10.9)



Figure-response 1. Predictive performance of the DLNMS in patients with squamous cell 

carcinomas



Changes in the text:

Result section Line 192-197: In subgroup analyses regarding pathological types for patients 

in the validation set, external cohort and prospective cohort, the DLNMS achieved AUROCs 

of 0.916 (95% CI: [0.885, 0.947]) and 0.934 (95% CI: [0.915, 0.953]) in adenocarcinoma 

population for occult N1 and N2 prediction, respectively. Additionally, for squamous cell 

carcinoma population, the DLNMS yielded AUROCs of 0.904 (95% CI: [0.842, 0.966]) and 

0.858 (95% CI: [0.779, 0.937]) for occult N1 and N2 prediction, respectively (Fig. 3G & H).

Discussion section Line 403-407: Secondly, the main histology of included cases were 

adenocarcinomas, and different histologies are represented by discrepant radiological 

phenotypes and tumor aggressiveness, contributing to their heterogeneity in the metastasis 

nature. Thus, a future study with adequate sample sizes in histologic subgroups should be 

conducted to validate the efficiency of the DLNMS.



New Fig. 3G&H. Predictive performance of the DLNMS in ADC and SCC in the current 

study

3. We believe that texture features obtained from CT findings are also used in the analysis. I 

would like to encourage authors to explain features analyzed.

Reply:

We appreciate the reviewer for these significant questions. In this study, PET and CT 

features were both extracted by the deep learning algorithm. Compared to conventional 

texture features based radiomics, the advantage of deep learning is that it can mine more 

deeper features than conventional radiomics with no need for manual segmentations and the 

constructed deep learning model is usually more accurate. Therefore, deep learning is more 

effective than conventional radiomics especially for large datasets. Meanwhile, the 



disadvantage of deep learning is that extracted deep learning features are nameless and we 

cannot know the definition of each feature. Therefore, the low interpretability is the main 

drawback of deep learning. Your suggestion does inspire us a lot, we realize that we can 

explain our model from texture features to further improve the interpretability of the DLNMS. 

However, the texture features of PET/CT were not directly used and analysed in model 

construction in this study, we therefore calculated the correlations between the DLNMS and 

each PET/CT texture feature to identify top 10 key PET/CT texture features related to our 

DLNMS. 

In this revision, correlation charts for PET features and correlation charts for CT features 

(Figure 2) were added to explain the DLNMS from texture features, indicating that for occult 

N1 prediction, the DLNMS was related to exponential_glcm_Imc2, 

exponential_firstorder_10Percentile, original_glcm_Imc2, original_gldm_DependenceEntropy, 

wavelet_LLL_firstorder_10Percentile, original_firstorder_10Percentile, 

squareroot_firstorder_10Percentile, logarithm_firstorder_10Percentile, 

wavelet_LLL_firstorder_Maximum and squareroot_firstorder_Mean in PET modality (Figure 

2A) and original_glszm_LargeAreaHighGrayLevelEmphasis, 

wavelet_LLL_glszm_LargeAreaHighGrayLevelEmphasis, logarithm_firstorder_Skewness, 

squareroot_firstorder_Skewness, square_glrlm_RunVariance, original_glszm_ZoneVariance, 

original_glszm_LargeAreaEmphasis, 

squareroot_gldm_LargeDependenceHighGrayLevelEmphasis, 

square_glrlm_LongRunLowGrayLevelEmphasis and square_glrlm_LongRunEmphasis in CT 



modality (Figure 2B). Similarly, for occult N2 prediction, the DLNMS was related to 

exponential_glcm_Imc2, exponential_firstorder_10Percentile, original_glcm_Imc2, 

original_firstorder_10Percentile, wavelet_LLL_firstorder_10Percentile, 

squareroot_firstorder_10Percentile, logarithm_firstorder_10Percentile, 

wavelet_LLL_firstorder_Maximum, squareroot_firstorder_Mean and 

exponential_firstorder_Median in PET modality (Figure 2C) and 

wavelet_LLL_glszm_LargeAreaHighGrayLevelEmphasis, 

original_glszm_LargeAreaHighGrayLevelEmphasis, square_glrlm_RunVariance, 

logarithm_firstorder_Skewness, square_glrlm_LongRunLowGrayLevelEmphasis, 

square_glrlm_LongRunEmphasis, logarithm_firstorder_Mean, 

square_gldm_LargeDependenceLowGrayLevelEmphasis, 

square_gldm_LargeDependenceEmphasis and original_glszm_ZoneVariance in CT modality 

(Figure 2D). In summary, your constructive suggestion helps establish the bridge between 

deep learning features and conventional texture features, which further enhances the 

interpretability of our DLNMS and improve the quality of our manuscript. Again, we thank for 

your thoughtful comments, which does inspire and benefit us a lot.

Changes in the text:

Result section Line 156-158: In addition, the DLMNS was represented by conventional PET 

and CT texture features in ONM prediction, implying the significant correlations between the 

DLNMS and PET/CT texture features (Fig. 2).



Fig. 2. PET and CT texture features related to the DLNMS.

(A) Top 10 PET and (B) top 10 CT texture features related to the DLNMS N1 prediction. (C) 

Top 10 PET and (D) top 10 CT texture features related to the DLNMS N2 prediction. 

DLNMS, deep learning nodal metastasis signature; PET, positron emission tomography; CT, 

computed tomography.

4. High-resolution CT findings is necessary to analyze the subtle images therefore it is difficult 

to obtain such precise findings using the conventional CT images associated with PET 

examination. Comments should be added.

Reply:

We thank the reviewer for raising this significant question. We agree with you that high-

resolution CT findings are crucial to obtain such precise findings. Therefore, in this revision, 



we have added this point as one of the limitations of this study in the discussion section.

Changes in the text:

Discussion section Line 407-410: Thirdly, high-resolution CT findings is necessary to 

analyze the subtle images, however, not all PET/CT equipment harbor the capability of 

outputting such high-quality images, which might reduce the clinical applicability of the DLNMS 

in certain institutions.



Reviewer 2:

1. Overall, the main text is written well, albeit quite dense, especially because many details 

are tucked away in Supplemental Materials and aren’t easy to find (e.g. positive/negative ratios 

for train/val sets are only available in Figure S1). Despite format limitations, I still encourage 

the authors to make an effort in improving the text flow and make more specific references to 

supplemental materials.

Reply:

We appreciated the reviewer for pointing this out. The journal requires strict word limits. 

Therefore, some method details could only be provided in the supplementary material. We 

agree with you that making details easily to find would improve readability of this manuscript. 

In this revision, we have made positive/negative ratios for train/validation sets, algorithm 

structures and methods for multiple comparisons clear in the main text. In addition, we have 

added more specific references to supplemental materials.

Changes in the text:

Method section Line 420-428: The study design is described in Fig. 1. The DLNMS was 

developed using an internal cohort (entire: n=1911, occult N1 proportion=11.64%, occult N2 

proportion=8.42%; training: n=1528, occult N1 proportion=11.45%, occult N2 

proportion=8.31%; validation: n=383, occult N1 proportion=12.79%, occult N2 

proportion=7.57%). Subsequently, a multicenter external cohort (n=355, occult N1 

proportion=11.27%, occult N2 proportion=9.90%) and a multicenter prospective cohort (n=999, 



occult N1 proportion=11.64%, occult N2 proportion=8.41%; ClinicalTrials.gov, NCT05425134) 

were adopted to fully validate the predictive efficiencies of the DLNMS by benchmarking the 

single-modal deep learning model, clinical model and physicians.

Method section Line 450-456: Two ResNet18 backbone networks with the same structure 

were used to extract features from PET and CT images separately. Then, the PET and CT 

features were fused using the concat operation and input into a fully connected layer for 

classifications of ONM. The DLNMS consisted of two separate models predicting occult N1 

and N2, respectively. For occult N1 prediction, data were divided into N1 metastasis and non-

N1 metastasis. Similarly, in N2 prediction, data were divided into N2 metastasis and non-N2 

metastasis.

Method section Line 509-511: The Benjaminiand Hochberg method was utilized to correct p 

values from multiple comparisons in Delong’s tests and gene analyses.
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2. However, the study could benefit from a more thorough comparison with existing literature 

and methods. The authors review established literature very briefly and selectively and do not 

describe the state-of-the-art, which leads to a poorly defined knowledge gap that this study is 

trying to bridge. Although there may be no prior applications of deep learning to specifically 

predict NSCLC ONM, there is rich literature on related topics, from using conventional image 

processing techniques to high-performing multimodal deep learning for related tasks on 



PET/CT images (PMID: 36029345, PMID: 32773965, PMID: 33591922). E.g., see (PMID: 

36870800) for overview of over a dozen studies that applied AI to PET/CT imaging data for 

management of lymphoma. Even if there is no previous method that DLNMS can be compared 

to, context for the general use of AI for similar tasks should be provided to establish the novelty 

and significance of the study in the context of the broader field.

Reply:

Thank you for pointing this out and we have acknowledged our inadequacy in literature 

review. As you commented, despite limited applications of PET/CT deep learning to 

specifically predict NSCLC ONM, there is rich literature on deep learning for related tasks on 

PET/CT images. Therefore, in the introduction section, we have described the general use of 

AI on PET/CT images to emphasize the novelty and significance of the study. Additionally, in 

the discussion section, we have summarized the multimodal algorithms in PET/CT analysing 

and clarify the reason why we choose feature-level fusion based on the ResNet 18 to construct 

our DLNMS.

Changes in the text:

Introduction section Line 95-112: The deep learning technology which allows the high-

dimensional quantification of radiological images and greater extraction of detailed 

characterizations than the human vision, has been proposed as a revolutionary approach for 

disease diagnoses, prognosis evaluations, and therapeutic decisions. PET/CT, which is 

capable of capturing the anatomic and metabolic representations of tumors, has been 



leveraged as a dependable imaging modality to characterize malignancy grade and 

metastasis burden. Its multimodal nature, on the one hand increases the feature dimensions 

and information abundance, but on the other hand poses a higher requirement for the deep 

learning algorithm.

With the development of multimodal algorithms, the current deep learning technology has 

evolved to be an effective method for PET/CT image analyzing, which harbors the capability 

of taking full advantages of the complementary information of PET and CT modalities. It has 

been demonstrated that multimodal deep learning algorithms shown potentials in cancer 

identification, tumor segmentation, and risk quantification based on PET/CT imaging. Despite 

these tremendous breakthroughs, the application of PET/CT based deep learning for ONM 

prediction of lung cancer is limited. We hypothesize that cross-modal dominance 

complementation based on PET and CT imaging is capable of quantifying ONM probability to 

support the comprehensive treatments of clinical N0 NSCLC, and the captured ONM risks 

would be associated with histologic, genetic, and microenvironment behaviors.

Discussion section Line 359-365: With the development of multimodal algorithms, the deep 

learning approach has been applied to analyze PET/CT imaging. Based on the main 

advancements of deep learning technology, multimodal fusion primarily involved three 

strategies: input-level concatenation, feature-level combination, and output-level average. Our 

preliminary experiments investigated multiple deep learning architectures and fusion 

strategies, revealing feature-level fusion based on the ResNet 18 backbone yield better 

efficiencies and was finally utilized to generate our DLNMS.



3. One issue that still needs to be addressed is that the study seems to lack proper multiple 

testing correction for the reported significance results. There are many tests performed that 

are used to compare prediction approaches, variables, etc. increasing the risk of false 

discoveries. The authors should make sure to apply appropriate correction methods to account 

for this issue and ensure the validity of their findings. The correction procedures should be 

clearly described in the Statistical analysis subsection.

Reply:

We appreciated the reviewer for this helpful comment. To compare predictive efficiency 

between DLNMS and other models, we performed multiple Delong’s tests. In this manuscript, 

5 comparisons (DLNMS versus PET model, DLNMS versus CT model, DLNMS versus clinical 

model, DLNMS versus senior physicians and DLNMS versus junior physicians) were 

simultaneously conducted. Therefore, the Benjaminiand Hochberg corrections for 5 multiple 

comparisons were utilized to reduce the risk of false discoveries, results after correction 

procedures were provided in the Table-response 1, p value for multiple Delong’s tests 

remained significant in all cohorts. In addition, in GSEA and ssGSEA analyses, the 

Benjaminiand Hochberg corrections was also adopted to adjust p values. In this revision, we 

have clarified theses in the statistic section.





Changes in the text:

Method section Line 509-511: The Benjaminiand Hochberg method was utilized to correct p 

values from multiple comparisons in Delong’s tests and gene analyses.

Fig. 3. Predictive performances of the DLNMS for occult nodal metastasis in clinical 

stage N0 non-small cell lung cancer.



Fig. 4. Predictive performances of the DLNMS for occult N2 metastasis diagnosed by 

nodal biopsy in clinical stage N0 non-small cell lung cancer.



4. I have to point out that throughout the manuscript, the authors keep referring to various 

values of AUC as “satisfactory” or “unsatisfactory” predictive performances. Such assessment 

should be either substantiated by quantitative definition of what is “satisfactory” and why or 

should be avoided altogether.

Reply:

We appreciated this important comment and we agree with you that the term “satisfactory” 

was not been defined quantitatively, which might mislead readers. Therefore, in this revision, 

we have deleted these descriptions altogether.

5. Finally, while the authors did compare the performance of the DLNMS model with traditional 

clinical decision-making tools and human expert performance, it would be helpful to expand 

on these comparisons in the discussion section. This could involve exploring potential reasons 

for the observed differences in performance and discussing the implications of these findings 

for clinical practice.

Reply:

We thank the reviewer for raising this important question and we have acknowledged our 

inadequacy in discussion. There were many publications constructing traditional clinical 

decision-making tools to predict occult nodal metastasis. In this revision, for the second 

paragraph of the discussion section, we summarized publications regrading clinical physicians 

and clinical models for ONM predictions and speculated that potential reasons of poor 



performance of clinical physicians are that this method is very subjective due to heterogenous 

experiences among physicians. In addition, we further compared clinical models to clinical 

physicians and speculated that potential reasons of improved performance of clinical models 

are that this method are capable of comprehensively estimating the probability of ONM to 

directly quantify the ONM probabilities of a given patient. Finally, we further discussed 

performances of these clinical models were far from meeting clinical requirements. We 

speculated that potential reasons are that more valuable radiographic features for predicting 

ONM are not been investigated by conventional clinical models. Therefore, the deep learning 

approach which quantifies more valuable radiological features is required and this promising 

method is further discussed in the third paragraph of the discussion section. 

Changes in the text:

Discussion section Line 338-367: In clinical practice, clinical physicians mainly rely on 

certain clinical characteristics especially imaging features to capture the ONM risks of clinical 

stage N0 NSCLC. Evidences have emerged that metabolic and morphologic parameters on 

PET/CT, such as tumor size, central location, consolidation ratio, and metabolic value might 

provide efficient clues for ONM diseases. Nevertheless, this subjective evaluation yields low 

AUROCs of 0.525-0.676 due to heterogenous experiences among physicians, and is 

incapable of comprehensively estimating the probability of ONM, so as to convey a direct 

implication to the management strategy for a given patient. The triumph of individually 



quantifying ONM risks based on predictive models represented a crucial step. Predictive rules 

integrating clinical variables could calculate the probability of ONM involvement in clinical N0 

NSCLC. However, in spite of their higher accuracies than clinical physicians, these clinical 

models were far from meeting clinical requirements, resulting in AUROCs of 0.700-0.756, 

which was also observed by the current study, our clinical model only yielded AUROCs of 

0.675-0.794 for ONM identification. As such, more valuable radiographic features for 

predicting ONM should be investigated to achieve clinical utility.

Radiomics, which allows quantitative extraction of high-dimensional radiological features, has 

provided a promising approach for more accurate evaluation of the lymph node status of lung 

cancer. Several studies have been successful in recognizing ONM in early-stage NSCLC 

utilizing radiomics phenotypes, which yielded AUROC values of 0.808 to 0.820. Despite such 

inspiring success, the above radiomics studies were limited in the CT modal, and the added 

value of PET radiomics features for ONM prediction of NSCLC are still ambiguous. With the 

development of multimodal algorithms, the deep learning approach has been applied to 

analyze PET/CT imaging. Based on the main advancements of deep learning technology, 

multimodal fusion primarily involved three strategies: input-level concatenation, feature-level 

combination, and output-level average. Our preliminary experiments investigated multiple 

deep learning architectures and fusion strategies, revealing feature-level fusion based on the 

ResNet 18 backbone yield better efficiencies and was finally utilized to generate our DLNMS. 

The current study demonstrated that the cross-modal DLNMS incorporating PET and CT 

radiomics features achieved AUROCs of 0.875-0.958, make it superior to single-modal models 



based on PET or CT alone for ONM prediction.

6. The task setting is not clear. Data labeling and model training descriptions indicate that the 

model performs binary classification, however, separate scores are reported for N1 and N2 

ONM (Figure 2A,B). Does that mean that 2 separate models were trained to predict N0 vs N1 

and N0 vs N2? The authors should clarify data splits and model training very explicitly.

Reply:

We thank the reviewer for this important question. In clinical practice, N1 ONM and N2 

ONM have their independent values for treatment decisions. As such, we must obtain both 

predictive scores to guide clinical decisions. As you commented, 2 separate models were 

trained to predict non-N1 metastasis vs N1 and non-N2 metastasis vs N2 so as to calculate 

separate scores. Therefore, in N1 prediction, data were divided into N1 metastasis and non-

N1 metastasis. Similarly, in N2 prediction, data were divided into N2 metastasis and non-N2 

metastasis. In this revision, we have clarified this explicitly.

Changes in the text:

Method section Line 450-456: Two ResNet18 backbone networks with the same structure 

were used to extract features from PET and CT images separately. Then, the PET and CT 

features were fused using the concat operation and input into a fully connected layer for 

classifications of ONM. The DLNMS consisted of two separate models predicting occult N1 

and N2, respectively. For occult N1 prediction, data were divided into N1 metastasis and non-

N1 metastasis. Similarly, in N2 prediction, data were divided into N2 metastasis and non-N2 



metastasis.

7. Another issue that is not discussed enough is substantial class imbalance (1/9 if N1/N2 are 

considered separately), which the authors only briefly mention in data preprocessing. While 

the authors balance classes during training, it does affect prediction performance as 

demonstrated by PPV values (Figures 2, 3) and confusion matrices (Figure S3). When such 

class imbalance is present, AUC curves can be misleading and AUPR curves should be 

preferred (PMID: 25738806). I suggest the authors to either report AUPR curves next to AUC 

curves, or replace the latter with the former and move AUC curves to supplemental materials. 

Correspondingly, Results and/or Discussion should mention this issue, as in some cases the 

model predicts as many (Figure S3 E) or even +30% more false positives compared to true 

positives (Figure S3 3G).

Reply:

We thank the reviewer for this important suggestion. We agree with you that on 

imbalanced datasets, the PR curve does provide more information on model’s discriminative 

ability for positive cases (ONM patients) because precision (TP/[TP + FP]) and recall (TP/[TP 

+ FN]) are both indicators for positive predictive abilities [1, 2]. However, we would like to point 

out that different from conventional classification tasks which focuses more on positive cases, 

ONM recognition, which would pose a direct impact on treatment decisions of patients, 

emphasizes model’s discriminative abilities for both positive and negative cases. For example, 



if a patient predicted as negative by models actually is ONM disease (false negative prediction), 

this patient would directly lose the opportunity of receiving optimal treatment, which is a terrible 

result for his/her survival. In contrast, if a patient predicted as positive by models actually is 

healthy disease (false positive prediction), unnecessary treatments (such as invasive biopsy, 

adjuvant chemotherapy) would be administrated to him/her. In summary, for the task of ONM 

classification, we must comprehensively consider the model’s discriminative ability for both 

positive (sensitivity and PPV) and negative cases (specificity and NPV) to avoid missed 

diagnosis (false negative) and meanwhile improve positive diagnostic accuracy. 

What needs to be emphasized is that the PR curve only focuses on the efficiency to 

identify diseased cases (precision: TP/[TP + FP] and recall: TP/[TP + FN]) but ignores those 

correctly predicted healthy cases [3]. The AUROC is a summary indicator comprehensively 

quantifying the positive (sensitivity) and negative (specificity) predictive capabilities [4]. In 

addition, according to a publication investigating the performances of ROC and PR curves in 

the domain of epidemic diseases, they recommended to use both the AUCROC and the 

AUPRC but to prefer the AUPRC as the prevalence below 5% [5]. Therefore, we select ROC 

curves to evaluate the predictive efficiency of models considering that ROC curves 

comprehensively quantified both positive (sensitivity) and negative (specificity) discriminative. 

In addition, the cutoff values of DLNMS were determined by Youden Index in which the sum 

of sensitivity and specificity of DLNMS were maximal. By utilizing this cutoff values, as you 

pointed, confusion matrices revealed that the model predicts as many false positives 

compared to true positives. This result could also be explained by the Youden Index, we select 



a cutoff value to make the sum of sensitivity and specificity maximal, under the circumstance 

of high specificity and NPV (both more than 90%), the sensitivity and PPV would relatively 

decreased. Actually, based on the current data, if we set a high DLNMS score (such as 0.9) 

as the cutoff value, the false positive cases would significantly decrease and the PPV could 

even reached 95%. However, that would significantly decrease the specificity and NPV and 

makes more patients be predicted as false negative, which mean more patients would directly 

lose the opportunity of receiving optimal treatments. In summary, we select ROC curve to 

comprehensively evaluate the predictive efficiency of DLNMS and determine the cutoff values 

to avoid missed diagnosis (false negative) and meanwhile improve positive diagnostic 

accuracy.

For the above reasons, we did not delete ROC curves from the main text in this revision 

and we agree with that addition of AUPRC would provide more information on model’s 

discriminative ability for positive cases. Therefore, we report AUPRCs as an addition. However, 

Figure 2 have contained too many panels and Reviewer 1 suggested we provide two additional 

figures in the main text. After balancing the importance of AUPRCs and content limit, we 

reported AUPRCs of different models in the main text as a new Table 3. For N1 prediction, the 

DLNMS achieved AUPRCs of 0.882, 0.853, and 0.871 in the validation set, external cohort 

and prospective cohort, respectively. For N2 prediction, the DLNMS achieved AUPRCs of 

0.876, 0.849, 0.863, and 0.857 in the validation set, external cohort, prospective cohort, and 

biopsy cohort, respectively. The DLNMS achieved higher AUCPRCs than other models. As 

shown in the above results, AUPRCs were relatively lower than AUROCs, which might be 



explained by the imbalanced data, in this domain the number of negative examples greatly 

exceeds the number of positive examples. Consequently, a small change in the number of 

false positives can lead to a large change in the false positive rate used in PR analysis [6]. 

Additionally, as you suggested, we have discussed this point in the discussion section.
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8. The main contribution of this study is assessment of the proposed model. However, 

any graphical or textual description of the model is missing from the main text. The 

authors should at least add a brief description of key characteristics to the main text 

and a diagram as a supplemental figure.

Reply:

Thank you for pointing this out. In this study, two ResNet18 backbone networks 

with the same structure are used to extract features from PET and CT images 

separately. Then, the PET and CT features were fused using the concat operation and 

input into a fully connected layer for the classification of N1 and N2 nodules. In this 

revision, we have described key characteristics of our model and provided a diagram 

for model description as a supplemental figure.

Changes in the text:

Method section Line 450-456: Two ResNet18 backbone networks with the same 

structure were used to extract features from PET and CT images separately. Then, the 

PET and CT features were fused using the concat operation and input into a fully 

connected layer for classifications of ONM. The DLNMS consisted of two separate 

models predicting occult N1 and N2, respectively. For occult N1 prediction, data were 

divided into N1 metastasis and non-N1 metastasis. Similarly, in N2 prediction, data 

were divided into N2 metastasis and non-N2 metastasis.



Supplementary Fig. 8. Diagram illustrating the structure of DLNMS 



9. The choice of many hyperparameters for constructing and training the model is not 

justified. For example, choosing ResNet-18 as the base architecture for the DLNMS 

model may be suboptimal, considering that it is relatively shallow and outdated 

compared to more recent deep learning architectures. Did authors consider alternative 

models with superior performance in various image recognition tasks, e.g. deeper 

ResNet, EfficientNet, or DenseNet?

Reply:

We appreciate this comment. Before choosing the final algorithm, we have tried 

several deep learning architectures including Resnet18, Resnet50, Resnet152, and 

DenseNet121. According to results of preliminary experiments, deeper ResNets were 

easily overfitting than Resnet18. In test set, the Resnet 50 achieved AUCs of 0.81-0.87 

and 0.79-0.85 for N1 and N2 prediction, respectively. The Resnet 152 achieved AUCs 

of 0.72-0.79 and 0.74-0.78 for N1 and N2 prediction, respectively. Therefore, in ResNet 

architectures, we chosen Resnet 18. Subsequently, we further tried DenseNet121, 

DenseNet121 achieved AUCs of 0.83-0.89 and 0.84-0.91 for N1 and N2 prediction in 

testing. In addition, considering EfficientNet is more applied in mobile devices with 

limited computing power, we did not attempt this architecture in the primary 

experiments. However, as you mentioned, we further tried EfficientNet during revision, 

EfficientNet yield lower performance than ResNet 18, achieving AUCs of 0.79 to 0.86 

and 0.74-0.84 for occult N1 and N2, respectively. The performances of all architectures 

were shown in Table-response 1. 

In summary, the preliminary experiments revealed ResNet 18 achieved better 

efficiency and we finally chose ResNet 18 as the backbone of the DLNMS. We 

discussed above results and speculated that some deeper and more complex deep 

learning architectures might target on millions or even billions of data and thousand 

classification tasks, the current study only involved few thousand data and ONM 

prediction is a simple binary classification. Therefore, deeper and complex 



architectures might easier to overfit. In addition, ResNet 18 has been widely applied in 

medical image analyses [1-6] and we think ResNet 18 was well qualified for the medical 

task in this study. 
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Table-response 1: Performance of different deep learning architectures in testing set 

according to preliminary experiments

AUC ResNet 50 ResNet 152 DenseNet 121 EfficientNet

Occult N1 0.81-0.87 0.72-0.79 0.83-0.89 0.79-0.86

Occult N2 0.79-0.85 0.74-0.78 0.84-0.91 0.74-0.84



Changes in the text:

Discussion section Line 359-365: With the development of multimodal algorithms, 

the deep learning approach has been applied to analyze PET/CT imaging. Based on 

the main advancements of deep learning technology, multimodal fusion primarily 

involved three strategies: input-level concatenation, feature-level combination, and 

output-level average. Our preliminary experiments investigated multiple deep learning 

architectures and fusion strategies, revealing feature-level fusion based on the ResNet 

18 backbone yield better efficiencies and was finally utilized to generate our DLNMS.

Supplementary Method 7. Selection for deep learning architecture, fusion 

strategy, and image augmentation

To select the optimal deep learning architecture, preliminary experiments were 

performed between ResNet-18, ResNet-50, ResNet-152, and DenseNet-121, 

revealing that deeper ResNets were easily overfitting than ResNet-18 and DenseNet-

121 achieved a slightly lower performance than ResNet-18. Therefore, ResNet-18 was 

chosen as the basis of the DLNMS. For the fusion strategies of PET and CT images, 

the following three methods: input-level concatenation, feature-level combination, and 

output-level average were investigated, and feature-level combination achieved the 

best performance and was therefore applied in the final DLNMS. For image 

augmentations, preliminary experiments were conducted to investigate the addition of 

a certain augmentation method would improve model performances, we primarily 

attempted several augmentation methods, revealing that the current augmentation 

flow consisted of random rotation, random shift, random crop, three orthogonal planes 

extraction, random sharpness, and random blur could increase the effective size of 

training data and alleviate the overfitting problem. In addition, transforms generated 

from the current augmentations could improve the generalization ability, which was 

beneficial for external validations.



10. There are multiple important details missing from the description of the model in 

Supplemental Materials: (1) It’s not clear how the multimodal PET/CT model was 

constructed, i.e. were two networks trained together with the final classifier, or was it 

just a combination of features from the two single-modality extractor (which is not truly 

multimodal)? Did the authors consider other options such as multi-task learning? (2) It 

should be explicitly stated that ResNet-18 the authors employed was pretrained on the 

ImageNet dataset of natural images. (3) There is no information on how image 

augmentations were selected, did the authors perform any ablation studies to make 

sure selected transforms do not hurt the performance? (4) There is no analysis of 

model computational requirements or convergence. (5) Supplementary Materials 

mention that the authors used binary cross-entropy as a loss function, while the code 

repository employs Focal loss instead.

Reply:

Thank you for these important comments. Regarding the first question, we 

speculate you mean the issues of the deep fusion and late fusion. In preliminary 

experiments, we have tried two fusion methods. The first one is deep fusion (Figure-

response 1), we combined features from the two single-modality and input them into 

the final fully connected layers. The second one is the late fusion (Figure-response 2), 

we speculate you mean this method. In this method, two networks trained together for 

each modality, and then the two single classifiers were combined to calculate the final 

results. In testing set, this method only achieved AUCs of 0.73-0.81 for N1 and N2 

prediction. We speculate that the late fusion only combined outputs from two single-

modality, these two outputs might contain redundant information, which did not take 

the advantage of end-and-end learning. In contrast, the deep fusion could extract 

features from two modalities and combine them in the feature layer, which could reduce 

overfitting risks and maximize the utilization of multimodal imaging features. Therefore, 



we choose the deep fusion method. Actually, we also tried the early fusion method 

(Figure-response 3), in which PET and CT modalities were fused before inputting into 

the network. However, this method achieved the poorest performances compared to 

the deep fusion and late fusion methods, with AUC of 0.71-0.78 for N1 and N2 

prediction. The early fusion, deep fusion and late fusion were different methods for 

multimodal learning, which have been applied in multiple classification tasks [1-5]. As 

you commented, the best results could only be achieved after trying different methods, 

compared to others, the deep fusion in the current task was more efficient, we therefore 

chose this method in this study. In addition, multi-task learning is the first option when 

we starting this study because it can solve two classifications using one model. In our 

preliminary experiments, however, multi-task learning did not achieve good 

performances with AUCs of 0.67-0.72 for N1 and N2 prediction and therefore discard 

this method. We speculated that the difficulty of data balancing might limit the 

performance of multi-task learning considering N1 and N2 proportion were both low in 

this study. Finally, considering the current study focuses more on clinical application 

rather than algorithm comparisons, we therefore did not describe much about algorithm 

selection procedures. 

Regarding the second question, we did utilize the pretrained ResNet-18 because 

the pretrained ResNet-18 was beneficial for convergence and reducing training time 

when finetuning our model. This method has been applied by many studies regarding 

imaging analyses [6-9]. In this revision, we have clarified this point in the method 

section. 

Regarding the third question, preliminary experiments were conducted to 

investigate the addition of a certain augmentation method would improve model 

performances, we primarily attempted several augmentation methods, revealing that 

the current augmentation flow consisted of random rotation, random shift, random crop, 

three orthogonal planes extraction, random sharpness, and random blur could 



increase the effective size of training data and alleviated the overfitting problem. In 

addition, transforms generated from the current augmentations make the model learn 

more new cases, which could further improve the generalization ability of the model 

and benefit external validations. Data augmentations have been applied by multiple 

lung cancer imaging analyses [10-11]. In this revision, we have clarified this in the 

method section.

Regarding the fourth question, Over the training iteration, the loss in the training 

set decreased consistently and plateaued finally. In addition, the performance metrics 

in the validation set stabilized or shown only minor fluctuations. No overfitting or 

underfitting was observed in training process. Above results indicated the DLNMS 

reached convergence. To evaluate the model computational requirements, parameters 

and floating point operations (FLOPs) were calculated, the number of parameters and 

FLOPs for the DLNMS were 24.47M and 974.88M Mac. This point has been detailed 

in the method section in this revision.

Regarding the fifth question, we apologize for this terrible mistake, considering the 

problem of substantial class imbalance, we finally use focal loss to replace cross-

entropy as the loss function. We did not modify the description in the supplementary 

files and we apologize for our carelessness. In this revision, we have clarified this point.
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Figure-response 1: Diagram for the deep fusion method

Figure-response 2: Diagram for the late fusion method

Figure-response 3: Diagram for the early fusion method

Changes in the text:

Method section Line 450-456: Two ResNet18 backbone networks with the same 

structure were used to extract features from PET and CT images separately. Then, the 

PET and CT features were fused using the concat operation and input into a fully 



connected layer for classifications of ONM. The DLNMS consisted of two separate 

models predicting occult N1 and N2, respectively. For occult N1 prediction, data were 

divided into N1 metastasis and non-N1 metastasis. Similarly, in N2 prediction, data 

were divided into N2 metastasis and non-N2 metastasis.

Supplementary Method 6. Neural network training process

Two separate models were trained to predict N1 and N2 metastasis so as to calculate 

separate scores. In N1 prediction, data were divided into N1 metastasis and non-N1 

metastasis. Similarly, in N2 prediction, data were divided into N2 metastasis and non-

N2 metastasis. In order to obtain the occult N1/N2 metastasis probability, we 

constructed a neural network model based on the ResNet-18 algorithm. The model 

consisted of two parts: the feature extractor and the feature classifier. The input of the 

feature extractor was a tensor of size 3*112*112, and the main structure of this part 

was ResNet-18 which contains 8 residual blocks. The pretrained ResNet-18 based on 

ImageNet dataset was utilized, which enabled better parameter initialization for 

medical image analysis tasks. The latter part classified the output map of the feature 

extractor and output two prediction probabilities, which represented the probability of 

metastasis and the probability of non-metastasis (sum to 1). The classifiers consisted 

of two fully-connected layers, the first layer had 512 output nodes, and the second one 

contained two nodes whose output values were calculated by the softmax function and 

converted into probabilities. 

Additionally, for the deep learning nodal metastasis signature (DLNMS), we used two 

ResNet-18’s feature extractors to extract the features from PET and CT, respectively. 

Then we combined PET and CT features as the following classifier’s input. Models 

were trained with a mini-batch size of 32. We started training with a learning rate of 

0.001 using CosineAnnealingWarmRestarts learning rate scheduler, and the restart 

epoch was set at 50. The entire network was trained by the adamw optimizer for 100 



epochs. We used the MixUp algorithm as an additional data augmentation method. For 

the loss function, we used the binary focal loss function. The code implementation was 

based on the pytorch. The training of the algorithm was performed on a computer with 

a NVIDA 3090. 

Over the training iteration, the loss in the training set decreased consistently and 

plateaued finally. In addition, the performance metrics in the validation set stabilized 

and shown only minor fluctuations. No overfitting or underfitting was observed in the 

training process. Above results indicated the DLNMS reached convergence. To 

evaluate the model computational requirements, parameters and floating point 

operations (FLOPs) were calculated, the number of parameters and FLOPs for the 

DLNMS were 24.47M and 974.88M Mac, respectively.

Supplementary Method 7. Selection for deep learning architecture, fusion 

strategy, and image augmentation

To select the optimal deep learning architecture, preliminary experiments were 

performed between ResNet-18, ResNet-50, ResNet-152, and DenseNet-121, 

revealing that deeper ResNets were easily overfitting than ResNet-18 and DenseNet-

121 achieved a slightly lower performance than ResNet-18. Therefore, ResNet-18 was 

chosen as the basis of the DLNMS. For the fusion strategies of PET and CT images, 

the following three methods: input-level concatenation, feature-level combination, and 

output-level average were investigated, and feature-level combination achieved the 

best performance and was therefore applied in the final DLNMS. For image 

augmentations, preliminary experiments were conducted to investigate the addition of 

a certain augmentation method would improve model performances, we primarily 

attempted several augmentation methods, revealing that the current augmentation 



flow consisted of random rotation, random shift, random crop, three orthogonal planes 

extraction, random sharpness, and random blur could increase the effective size of 

training data and alleviate the overfitting problem. In addition, transforms generated 

from the current augmentations could improve the generalization ability, which was 

beneficial for external validations.



Supplementary Fig. 8. Diagram illustrating the structure of DLNMS 

11. Methods section need to be updated according to critiques above in order to allow 

other researchers to reproduce the method. Nevertheless, the authors could further 

enhance reproducibility by providing pre-trained models as supplementary material.

Reply:

Thank you for this comment and we agree that more details regarding method is 

potentially important for reproducing. In this revision, we have updated the method 

section according to your comments. In addition, we have uploaded the pre-trained 

model at https://github.com/zhongthoracic/DLNMS.

12. square brackets are missing around some confidence intervals

Reply:

Thank you for this comment and we have revised it throughout the paper.

Changes in the text:



Result section Line 138-243: 

Variables associated with ONM

As displayed in Table 2, in the training set, a younger age (odds ratio [OR]: 0.967, 95% 

confidence interval [CI]: [0.951, 0.984], p<0.001), male sex (OR: 1.403, 95% CI: [1.001, 

1.990], p=0.047), pure solid type (OR: 2.525, 95% CI: [1.638, 3.891], p<0.001), left 

location (OR: 1.512, 95% CI: [1.088, 2.100], p=0.014), central location (OR: 1.743, 95% 

CI: [1.202, 2.530], p=0.003) and larger tumor size (OR: 1.146, 95% CI: [1.001, 1.313], 

p=0.049) were identified as independent predictors for occult N1 metastasis, and the 

pure solid type (OR: 3.389, 95% CI: [1.999, 5.745], p<0.001) and higher SUVmax (OR: 

1.144, 95% CI: [1.084, 1.330], p=0.040) were independently related to occult N2 

involvement. Most variables remained predictive for patients in the validation set, 

external cohort and prospective cohort (Supplementary Table 1). In addition, after 

incorporation of the DLNMS into analyses (Supplementary Table 2 & 3), the DLNMS 

was revealed as independent predictors for both occult N1 and N2 involvements.

Predictive performance of DLNMS

With an increase of DLNMS scores, more cases with occult N1 and N2 tumors were 

observed in the training set (Supplementary Fig. 1A & B), validation set 

(Supplementary Fig. 1C & D), external cohort (Supplementary Fig. 1E & F) and 

prospective cohort (Supplementary Fig. 1G & H). In addition, the DLMNS was 

represented by conventional PET and CT texture features in ONM prediction, implying 

the significant correlations between the DLNMS and PET/CT texture features (Fig. 2). 

As illustrated in Fig. 3A & B, Table 3 and Supplementary Fig. 2, in the validation set, 

the abilities of the DLNMS to predict occult N1 and N2 diseases were shown to have 

areas under the receive operating characteristic curve (AUROCs) of 0.958 (95% CI: 

[0.923, 0.992]) and 0.942 (95% CI: [0.911, 0.973]), respectively, which were 



significantly better than 0.873 (95% CI: [0.835, 0.911]) and 0.761 (95% CI: [0.680, 

0.842]) of the PET model, 0.913 (95% CI: [0.875, 0.952]) and 0.887 (95% CI: [0.823, 

0.952]) of the CT model, 0.752 (95% CI: [0.685, 0.819]) and 0.690 (95% CI: [0.603, 

0.776]) of the clinical model, 0.612 (95% CI: [0.536, 0.689]) and 0.672 (95% CI: [0.574, 

0.771]) of the senior physicians, and 0.616 (95% CI: [0.544, 0.687]) and 0.556 (95% 

CI: [0.465, 0.647]) of the junior physicians (DeLong’s test: all p<0.05). The areas under 

the precision-recall curve (AUPRC), sensitivity, specificity, positive predictive value 

(PPV), positive predictive value (NPV) and accuracy of the DLNMS for predicting occult 

N1 and N2 metastasis were 0.882, 0.898, 0.928, 0.647, 0.984 and 0.924, and 0.876, 

0.897, 0.842, 0.317, 0.990, and 0.846, respectively.

In the external cohort (Fig. 3C & D), the DLNMS achieved AUROCs of 0.879 (95% CI: 

[0.813, 0.946]) and 0.875 (95% CI: [0.820, 0.930]) in predicting occult N1 and N2 

metastasis, respectively, and were significantly superior than the PET model (0.790, 

95% CI: [0.733, 0.847] and 0.727, 95% CI: [0.649, 0.805]), the CT model (0.826, 95% 

CI: [0.747, 0.905] and 0.817, 95% CI: [0.748, 0.887]), the clinical model (0.722, 95% 

CI: [0.642, 0.802] and 0.723, 95% CI: [0.648, 0.797]), the senior physicians (0.676, 95% 

CI: [0.590, 0.763] and 0.645, 95% CI: [0.554, 0.735]), and the junior physicians (0.633, 

95% CI: [0.548, 0.719] and 0.594, 95% CI: [0.503, 0.685]) (DeLong’s test: all p<0.05). 

In addition, the AUPRC, sensitivity, specificity, PPV, NPV and accuracy of the DLNMS 

for predicting occult N1 and N2 metastasis were 0.853, 0.700, 0.905 0.483, 0.960 and 

0.882, and 0.849, 0.857, 0.813, 0.333, 0.981, and 0.817, respectively.

In the prospective cohort (Fig. 3E & F), the DLNMS achieved AUROCs of 0.914 (95% 

CI: [0.877, 0.949]) and 0.919 (95% CI: [0.886, 0.942]) in discriminating occult N1 and 

N2 involvements, and were evidently better than the PET model (0.796, 95% CI: [0.751, 

0.841] and 0.712, 95% CI: [0.656, 0.768]), the CT model (0.828, 95% CI: [0.777, 0.879] 

and 0.835, 95% CI: [0.779, 0.891]), the clinical model (0.794, 95% CI: [0.708, 0.791] 

and 0.675, 95% CI: [0.629, 0.721]), the senior physicians (0.672, 95% CI: [0.623, 0.722] 



and 0.670, 95% CI: [0.613, 0.723]), and the junior physicians (0.645, 95% CI: [0.596, 

0.693] and 0.635, 95% CI: [0.580, 0.691]) (DeLong’s test: all p<0.05). Additionally, the 

AUPRC, sensitivity, specificity, PPV, NPV and accuracy of the DLNMS for occult N1 

and N2 prediction were 0.871, 0.793, 0.926 0.586, 0.971 and 0.911, and 0.863, 0.833, 

0.828, 0.308, 0.982, and 0.829, respectively.

In subgroup analyses regarding pathological types for patients in the validation set, 

external cohort and prospective cohort, the DLNMS achieved AUROCs of 0.916 (95% 

CI: [0.885, 0.947]) and 0.934 (95% CI: [0.915, 0.953]) in adenocarcinoma population 

for occult N1 and N2 prediction, respectively. Additionally, for squamous cell carcinoma 

population, the DLNMS yielded AUROCs of 0.904 (95% CI: [0.842, 0.966]) and 0.858 

(95% CI: [0.779, 0.937]) for occult N1 and N2 prediction, respectively (Fig. 3G & H).

For patients in the validation set, external cohort and prospective cohort, the DLNMS 

could correct 38.30% occult N1, 73.11% benign N1, 78.13% occult N2, and 53.04% 

benign N2 diseases in those incorrectly diagnosed by the PET model (Supplementary 

Fig. 3A & B). Similarly, for those incorrectly predicted by the CT model, the DLNMS 

could correct 35.42% occult N1, 67.06% benign N1, 93.80% occult N2, and 41.18% 

benign N2 diseases (Supplementary Fig. 3C & D). 

The calibration curves revealed that the DLNMS yielded better performances than 

others (Supplementary Fig. 4). Furthermore, we evaluated the clinical usefulness of 

the DLNMS compared to single-modal models for ONM detection via decision curve 

analyses, indicating that the DLNMS achieved better net benefits than other models 

no matter for occult N1 or N2 prediction (Supplementary Fig. 5). As summarized in 

Supplementary Table 4, the positive values of integrated discrimination improvements 

(all p<0.05) and net reclassification index (all p<0.05) for occult N1 and N2 predictions 

could be achieved when comparing the DLNMS to single-modal models.

Decision support for nodal biopsy



For 366 patients receiving nodal biopsy (Supplementary Table 5), the DLNMS yielded 

an AUROC of 0.853 (95% CI: [0.812, 0.895]) for predicting occult N2 diseases, which 

was significantly better than the PET model (0.644, 95% CI: [0.573, 0.715]), the CT 

model (0.780, 95% CI: [0.718, 0.841]), the clinical model (0.543, 95% CI: [0.471, 

0.715]), the senior physicians (0.621, 95% CI: [0.554, 0.688]), and the junior physicians 

(0.525, 95% CI: [0.457, 0.594]). The AUPRC, sensitivity, specificity, PPV, NPV and 

accuracy of the DLNMS were 0.857, 0.919, 0.699, 0.436, 0.971 and 0.743, respectively 

(Fig. 4A & Table 3). In addition, with an increase in the DLNMS scores, more patients 

with occult N2 tumors were observed in the nodal biopsy cohort (Fig. 4B). Moreover, 

the DLNMS could correct 79.13% occult N2 and 56.41% benign N2 diseases in 

patients incorrectly diagnosed by the PET model (Fig. 4C). Similarly, for those 

incorrectly predicted by the CT model, the DLNMS could correct 100% occult N2 and 

41.50% benign N2 diseases (Fig. 4D).

13. please add subtitles in Figure 2, panels G-J; Figure 3, panels A-D

Reply:

Thank you for this suggestion. In this revision, considering the content limit, the 

old Figure 2G-J have been moved to the new Supplementary Fig. 3. and the old Figure 

3 has been moved to new Fig. 4. Subtitles of new Supplementary Fig. 3 and new Fig. 

4A-D have been added.



Changes in the text:

Supplementary Fig. 3. Scatter graphs illustrating the DLNMS correct cases 

falsely predicted by the (A & B) PET and (C & D) CT models in the validation set, 

external cohort and prospective cohort.

Fig. 4. Predictive performances of the DLNMS for occult N2 metastasis 

diagnosed by nodal biopsy in clinical stage N0 non-small cell lung cancer.



14. please proofread Supplementary Information, there are many typos (e.g., line 74: 

retrospective -> retrospectively)

Reply:

Thank you for this comment and we apologize for out mistake. In this revision, we 

have checked spellings throughout the paper.

Changes in the text:

Supplementary Method 5. Data pre-processing process

The data pre-processing process was divided into ten steps: (1) Resampled each voxel 

in the original images to 0.6*0.6*0.6 mm3 in the spatial dimension; (2) ROI of the lesion 

was randomly rotated -180~180 around its center; (3) Extracted the 3D ROI with a ROI 

size of 150*150*150 voxels; (4) Randomly shifted -3~3 pixels lesion location as the 

center; (5) Extracted the three orthogonal scanning planes through the center of the 

lesion and stack them as pseudo-RGB images with size of 3*150*150; (6) Randomly 

cropped the stacks to 132*132; (7) Randomly cropped and resize the stacks to 112*112; 

(8) Randomly sharpen the stacks; (9) Randomly blurred the stacks; (10) Subtracted 

the mean and divide the variance. In addition, since the number of negative samples 

was much more than the number of positive samples in the dataset, we randomly up-

sampled the positive ones at the beginning of each training epoch so that the ratio of 

positive to negative samples was kept at 1:1.

Supplementary Method 6. Neural network training process

Two separate models were trained to predict N1 and N2 metastasis so as to calculate 

separate scores. In N1 prediction, data were divided into N1 metastasis and non-N1 

metastasis. Similarly, in N2 prediction, data were divided into N2 metastasis and non-

N2 metastasis. In order to obtain the occult N1/N2 metastasis probability, we 

constructed a neural network model based on the ResNet-18 algorithm. The model 



consisted of two parts: the feature extractor and the feature classifier. The input of the 

feature extractor was a tensor of size 3*112*112, and the main structure of this part 

was ResNet-18 which contains 8 residual blocks. The pretrained ResNet-18 based on 

ImageNet dataset was utilized, which enabled better parameter initialization for 

medical image analysis tasks. The latter part classified the output map of the feature 

extractor and output two prediction probabilities, which represented the probability of 

metastasis and the probability of non-metastasis (sum to 1). The classifiers consisted 

of two fully-connected layers, the first layer had 512 output nodes, and the second one 

contained two nodes whose output values were calculated by the softmax function and 

converted into probabilities. 

Additionally, for the deep learning nodal metastasis signature (DLNMS), we used two 

ResNet-18’s feature extractors to extract the features from PET and CT, respectively. 

Then we combined PET and CT features as the following classifier’s input. Models 

were trained with a mini-batch size of 32. We started training with a learning rate of 

0.001 using CosineAnnealingWarmRestarts learning rate scheduler, and the restart 

epoch was set at 50. The entire network was trained by the adamw optimizer for 100 

epochs. We used the MixUp algorithm as an additional data augmentation method. For 

the loss function, we used the binary focal loss function. The code implementation was 

based on the pytorch. The training of the algorithm was performed on a computer with 

a NVIDA 3090. 

Over the training iteration, the loss in the training set decreased consistently and 

plateaued finally. In addition, the performance metrics in the validation set stabilized 

and shown only minor fluctuations. No overfitting or underfitting was observed in the 

training process. Above results indicated the DLNMS reached convergence. To 

evaluate the model computational requirements, parameters and floating point 



operations (FLOPs) were calculated, the number of parameters and FLOPs for the 

DLNMS were 24.47M and 974.88M Mac, respectively.

Supplementary Method 7. Selection for deep learning architecture, fusion 

strategy, and image augmentation

To select the optimal deep learning architecture, preliminary experiments were 

performed between ResNet-18, ResNet-50, ResNet-152, and DenseNet-121, 

revealing that deeper ResNets were easily overfitting than ResNet-18 and DenseNet-

121 achieved a slightly lower performance than ResNet-18. Therefore, ResNet-18 was 

chosen as the basis of the DLNMS. For the fusion strategies of PET and CT images, 

the following three methods: input-level concatenation, feature-level combination, and 

output-level average were investigated, and feature-level combination achieved the 

best performance and was therefore applied in the final DLNMS. For image 

augmentations, preliminary experiments were conducted to investigate the addition of 

a certain augmentation method would improve model performances, we primarily 

attempted several augmentation methods, revealing that the current augmentation 

flow consisted of random rotation, random shift, random crop, three orthogonal planes 

extraction, random sharpness, and random blur could increase the effective size of 

training data and alleviate the overfitting problem. In addition, transforms generated 

from the current augmentations could improve the generalization ability, which was 

beneficial for external validations.

15. Supplementary Information should have a separate References section and cite 

methods ad packages used to perform the analyses (e.g. ResNet-18, ImageNet, etc.)

Reply:

Thank you for this comment. In this revision, we have added a separate references 



section to cite methods ad packages used to perform the analyses.

Changes in the text:

Supplementary Method 13. References

1 Hariharan, B., Arbeláez, P., Girshick, R. & Malik, J. in Proceedings of the IEEE 

conference on computer vision and pattern recognition.  447-456.

2 Lee, K., Zung, J., Li, P., Jain, V. & Seung, H. S. Superhuman accuracy on the 

SNEMI3D connectomics challenge. arXiv preprint arXiv:1706.00120 (2017).

3 Quan, T., Hildebrand, D. & Jeong, W. Fusionnet: A deep fully residual convolutional 

neural network for image segmentation in connectomics. arXiv 2016. arXiv preprint 

arXiv:1612.05360 (2016).

4 Beier, T. et al. Multicut brings automated neurite segmentation closer to human 

performance. Nature methods 14, 101-102 (2017).

5 Toubal, I. E., Duan, Y. & Yang, D. in 2020 IEEE Applied Imagery Pattern 

Recognition Workshop (AIPR).  1-9 (IEEE).

6 Zeng, T., Wu, B. & Ji, S. DeepEM3D: approaching human-level performance on 

3D anisotropic EM image segmentation. Bioinformatics (Oxford, England) 33, 2555-

2562 (2017).

7 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale 

image recognition. arXiv preprint arXiv:1409.1556 (2014).

8 He, K., Zhang, X., Ren, S. & Sun, J. in Proceedings of the IEEE conference on 

computer vision and pattern recognition.  770-778.

9 Russakovsky, O. et al. Imagenet large scale visual recognition challenge. 

International journal of computer vision 115, 211-252 (2015).

10 Goodfellow, I., Bengio, Y. & Courville, A. 6.2. 2.3 softmax units for multinoulli output 

distributions. Deep learning 180 (2016).



11 Brownlee, J. Probability for machine learning: Discover how to harness uncertainty 

with Python.  (Machine Learning Mastery, 2019).

12 Loshchilov, I. & Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. 

arXiv preprint arXiv:1608.03983 (2016).

13 Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. arXiv preprint 

arXiv:1711.05101 (2017).

14 Loshchilov, I. & Hutter, F. Fixing weight decay regularization in adam.  (2018).

15 Zhang, H., Cisse, M., Dauphin, Y. N. & Lopez-Paz, D. mixup: Beyond empirical 

risk minimization. arXiv preprint arXiv:1710.09412 (2017).

16 Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. in Proceedings of the IEEE 

international conference on computer vision.  2980-2988.

17 Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. in Proceedings of the 

IEEE conference on computer vision and pattern recognition.  4700-4708.



Again, we appreciate all of your insightful comments. We worked hard to be 

responsive to them. Thank you for taking the time and energy to help us improve 

the paper.

Sincerely yours,

Chang Chen

Department of Thoracic Surgery

Shanghai Pulmonary Hospital 

Tongji University, School of Medicine



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors submitted the revised manuscript, which was revised based on reviewers' comments. 
I checked every revised point as well as "Comments and Answer". 
The authors revised or made additional comments/analysis. Most of these are reasonable and well 
considered. Some of them could not be solved at present, however I postulate this is due to the 
limitation of the present work and expected to be solved in next project. 

Reviewer #2 (Remarks to the Author): 

I thank the authors for thoroughly responding to my comments. With the edits made in the revised 
version, I am ready to recommend this manuscript for publication, given that a few more small 
issues are addressed: 

- In Fig 3 & 4 legends and Statstical Analysis section, the authors refer to the multiple comparison 
correction method as “Benjaminiand Hochberg”, whereas it should be Benjamini–Hochberg or 
“Benjamini and Hochberg” 
- In “Variables associated with ONM” authors identified some variables as independent predictors 
based on their p-values, which involves comparison and therefore should be corrected 
- References should be double-checked, e.g. [10] is missing from the main text references, while 
some supplementary references miss article titles; reference for PyTorch is missing. 



RESPONSE TO REVIEWERS’ COMMENTS

We would like to express our gratitude to each of the external reviewers for careful and 

thorough reading of this manuscript and for the thoughtful comments and constructive 

suggestions, which help to improve the quality of this study. The comments are encouraging 

and the reviewers appear to share our judgement that this study and its results are clinically 

important. Please see below, in blue, our detailed response to reviewers’ comments 

(comments are in italics). All mentioned line numbers refer to the manuscript file with tracked 

changes. We hope the revised manuscript is acceptable for publication in Nature 

Communications

Reviewer 1:

1. In Fig 3 & 4 legends and Statstical Analysis section, the authors refer to the multiple 

comparison correction method as “Benjaminiand Hochberg”, whereas it should be Benjamini–

Hochberg or “Benjamini and Hochberg”.

Reply:

We thank the reviewer for this important comment and we apologize for our terrible 

mistake. In this revision, we have corrected the description as “Benjamini and Hochberg” 

throughout the paper.

Changes in the text:

Method section Line 436-437: The Benjamini and Hochberg method was utilized to correct 

p values from multiple comparisons.

Figure legends section Line 634-635: p values from Delong’s tests were adjusted by the 



Benjamini and Hochberg corrections for 5 multiple comparisons.

Figure legends section Line 645-646: p values from Delong’s tests were adjusted by the 

Benjamini and Hochberg corrections for 5 multiple comparisons.

Figure legends section Line 674: p values were adjusted by the Benjamini and Hochberg 

corrections.

2. In “Variables associated with ONM” authors identified some variables as independent 

predictors based on their p-values, which involves comparison and therefore should be 

corrected.

Reply:

Thank you for this significant suggestion. Independent predictors were determined based 

on the results of multivariable analyses, and multivariable analyses involves comparison but 

univariable analyses did not involve comparison. Therefore, in this revision, p values of 

multivariable analyses reported in the main tables and supplementary tables were all corrected 

by the Benjamini and Hochberg methods. After corrections, as displayed in Table 2, in the 

training set, a younger age (odds ratio [OR]: 0.967, 95% confidence interval [CI]: [0.951, 0.984], 

adjusted p<0.001), pure solid type (OR: 2.525, 95% CI: [1.638, 3.891], adjusted p<0.001), left 

location (OR: 1.512, 95% CI: [1.088, 2.100], adjusted p=0.023), and central location (OR: 

1.743, 95% CI: [1.202, 2.530], adjusted p=0.007) were identified as independent predictors 

for occult N1 metastasis, and the pure solid type (OR: 3.389, 95% CI: [1.999, 5.745], adjusted 

p<0.001) was independently related to occult N2 involvement.
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3. References should be double-checked, e.g. [10] is missing from the main text 

references, while some supplementary references miss article titles; reference for 

PyTorch is missing.
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