Parameter	Bootstrap Mean	Model	Value	Model	Bootstrap	Model
	Observation	Estimate		Std Err	CV%	CV%
θ V _d 1	4875.4	4793.26	mL/kg	327.84	9.56	6.84
V _d 2	2.1 x 10 ⁵	2222.57	mL/kg	1123.14	1677.84	50.53
θ C11	236.7	234.82	mL/kg/hr	45.86	209.2	19.53
Cl2	254.87	190.65	mL/kg/hr	53.41	400.62	28.02
dV _d 1weight	1.29	0.97		0.22	29.02	22.72
dCl1weight	1.93	1.33		0.45	59.52	33.88

Supplemental Table 2. Results of 300 bootstrap simulations and original model estimates.

 θ V_d1 is the theta (typical value) for quinolone volume of distribution of the first compartment; V_d2 is the volume of distribution of quinolone within the second compartment; θ Cl1 is the theta for quinolone clearance from the first compartment; Cl2 is the clearance of quinolone from the second compartment; dV_d1weight is the effect of the covariate weight on the volume of distribution of the first compartment; dCl1weight is the effect of the covariate weight on the quinolone clearance of the first compartment.