Annals of Neurology

Supplementary materials for A novel mouse model of cerebral adrenoleukodystrophy highlights NLRP3 activity in lesion pathogenesis.

Ezzat Hashemi et al.

Correspondence author: Keith P. Van Haren, <u>kpv@stanford.edu</u>

The supplementary includes: Figures S1 to S9 Tables S1 to S3

Figure S1 Immune cell infiltration in the mouse brain at different time points of the CPZ diet. The graph displays the ratio of CD45^{hi} cells to the total immune cell population in the brain of wild-type mice using flow cytometry. The evaluation of immune cell infiltration was performed after 0, 2, 4, and 6 weeks of cuprizone diet. Bar graph illustrating the mean \pm SD. One-way ANOVA and multiple comparisons determined the significance between the groups, P<0.05 was considered a significant difference.

Figure S2 Grading procedure to evaluate severity of immune cell infiltration and astrocytosis. The severity of perivascular infiltration is graded based on the extent of immune cell penetration into the parenchyma and the lesion size. (**A**) The images display the grading of immune cell infiltration by DAPI staining. Immune cell aggregation, referred as Foci, is categorized as grade I. Immune cell trafficking around the blood vessel is assigned grade II. Grade III is assigned when immune cells penetrate the parenchyma. High infiltration and presence in more significant lesions indicate grade IV. (**B**) The images depict the grading of macrophage/microglia infiltration using CD68 staining which is comparable to DAPI staining. (**C**) The images display T cell grading. The attachment of a few T cells to the vessels without penetrate the parenchyma are identified as grade II and III, respectively. High infiltration and T cell accumulation in large parenchyma lesion are graded as IV. The white squares represent the grade and severity of perivascular macrophage/microglia and T cells infiltration. (**D**) Astrogliosis characterized by increases in the number and/or arborization of astrocytes in the MCC is graded as IV. The white square represents the MCC region that was graded. The scale bar represents 50 µm. MCC; Medial Corpus Callosum.

Figure S3 Disability scores in EAE and CPZ/EAE models.

(A) The disability scores in wild-type mice subjected to EAE alone and combined CPZ/EAE treatment. (B) The disability scores in $Abcd1^{y/-}$ and wild-type mice following EAE induction. (C) The graph displays the onset of clinical EAE scores in $Abcd1^{y/-}$ and wild-type mice subjected to EAE only and CPZ/EAE treatment. The bar graph represents mean \pm SEM of disability scores. A significant difference between the groups was determined using a one-way ANOVA and multiple comparisons, with a significance level set at p<0.05.

CPZ/EAE induction (n=5-6 mice/group). The significant difference between the two groups was determined using the Mann-Whitney test, P < 0.05 was considered a significant difference. The scale bar represents 200 µm. LFB; Luxol Fast Blue, MCC; Medial Corpus Callosum.

Figure S5 Reduction of oligodendrocytes in the MCC following combined CPZ/EAE induction. (A) Images indicate the presence of oligodendrocytes in the MCC of wild-type naïve mouse, as well as wild-type and $Abcd1^{\gamma/-}$ mice with combined CPZ/EAE induction. (B) Olig2⁺ cells normalized to DAPI per 0.1 mm² of MCC (n=3 mice/group). The values are presented as the mean ± SD. Statistical significance was determined using multiple comparisons and ANOVA test. p<0.05 was considered a significant difference. The scale bar represents 50 µm MCC; Medial Corpus Callosum.

Figure S6 Microgliosis and astrocytosis in the MCC of cALD mice. Images display (A) macrophages/microglia labeled with CD68 staining and (B) astrocytes labeled with GFAP staining in the MCC of wild-type and $Abcd1^{y/-}$ mice across different conditions: naïve, CPZ, EAE, and combined CPZ/EAE induction. The scale bar represents 50 µm.

Figure S7 Expression of IL-18 in macrophage/microglia following combined CPZ/EAE induction. (A) Images depict the colocalization of IL-18 and perivascular CD68⁺ cells in *Abcd1^{y/-}* mouse following CPZ/EAE induction. (B) IL-18 expression in CD68⁺ cells in the lateral corpus callosum of *Abcd1^{y/-}* and (C) wild-type mice following CPZ/EAE induction. The scale bar represents 50 μ m.

Figure	Experiments	Genotype/Treatment	Sample
2	Motor disphility assay	Wild type EAE	Size
3	Motor disability assay	while type EAE $Abcd1^{1/2}$ EAE	N=7 N=6
		Wild type CPZ/EAE	N=0 N=13
		$\frac{Abcd1^{y/2}}{2} CPZ/EAE$	N = 13 N = 13
1	T2 weighted MPI	Wild type poive	N=13
4	12 -weighted MKI	$Abcd1^{y/2}$ poivo	N=4 N=5
		Wild type CPZ/EAE	N=3 N=4
		$\frac{1}{2} \frac{1}{2} \frac{1}$	N=4 N=4
4	MBD staining	Wild type poivo	N-4
4	WIDF stanning	while type halve $A h a d 1^{\frac{1}{2}}$ points	N-4 N-5
		Wild type CDZ/EAE	N=5
		while-type CPZ/EAE $Ahod 1^{1/2}$ CPZ/EAE	N=5 N=6
4	T'haine e an staining	Abcal [*] CPZ/EAE	IN=0
4	Fibrinogen staining	wild-type haive $A = d \frac{1}{2}$	N=3
		Abca1 st naive	N=4
		Wild-type CPZ/EAE	N=6
4		Abcal ^y CPZ/EAE	N=/
4	Gp91-phox staining	Wild-type naive	N=3
		Abcd1 ^{3/2} naive	N=4
		Wild-type CPZ/EAE	N=6
		Abcd1 ^{y-} CPZ/EAE	N=7
5	Severity of PVC	Abcd1 ^{y-} CPZ	N=5
		$Abcd1^{\gamma}$ EAE	N=6
		Wild-type CPZ/EAE	N=6
		Abcd1 ^{y-} CPZ/EAE	N=7
5	Severity of perivascular	$Abcd1^{y-}$ CPZ	N=5
	CD68 ⁺ cells	Abcd1 ^{y-} EAE	N=6
		Wild-type CPZ/EAE	N=6
		Abcd1 ^{y/-} CPZ/EAE	N=7
5	Severity of perivascular	$Abcd1^{y/-}$ CPZ	N=5
	CD3e ⁺ cells	Abcd1 ^{y/-} EAE	N=6
		Wild-type CPZ/EAE	N=6
		Abcd1 ^{y/-} CPZ/EAE	N=7
5	Severity of perivascular	$Abcd1^{y/-}$ CPZ	N=5
	B220 ⁺ cells	$Abcd1^{y/-}$ EAE	N=6
		Wild-type CPZ/EAE	N=6
		Abcd1 ^{y/-} CPZ/EAE	N=7
6	Microgliosis in MCC	Wild-type naive	N=5
	(CD68 staining)	$Abcd1^{y/2}$ naive	N=4
		Wild-type CPZ	N=4
		Abcd1 ^{y/-} CPZ	N=3
		Wild-type EAE	N=4
		Abcd1 ^{y/-} EAE	N=3
		Wild-type CPZ/EAE	N=5
		Abcd1 ^{y/-} CPZ/EAE	N=7

Supplementary Table S1: The table displays the number of mice used in each experiment across 4 arms.

6	Astrocytosis in MCC	Wild-type naive	N=4
	(GFAP staining)	$Abcd1^{y/2}$ naive	N=4
		Wild-type CPZ	N=3
		$Abcd1^{y/-}$ CPZ	N=3
		Wild-type EAE	N=3
		Abcd1 ^{y/-} EAE	N=5
		Wild-type CPZ/EAE	N=6
		$Abcdl^{\tilde{y}}$ CPZ/EAE	N=7
1S	%CD45 ^{hi} /total immune	Wild-type naive	N=11
	cells in brain	Wild-type 2-week CPZ	N=7
	(Flowcytometry)	Wild-type 4-week CPZ	N=7
		Wild-type 6-week CPZ	N=8
3S	Onset of disease in EAE	Wild-type EAE	N=7
	and CPZ/EAE	$Abcd1^{\tilde{y}}$ EAE	N=3
	treatments	Wild-type CPZ/EAE	N=10
		$Abcdl^{y/2}$ CPZ/EAE	N=12
4S	LFB staining	Wild-type CPZ/EAE	N=5
	C C	$Abcd1^{y/-}$ CPZ/EAE	N=6
5S	Olig2 staining	Wild-type naive	N=3
	0	Wild-type CPZ/EAE	N=3
		$Abcdl^{\tilde{y}}$ CPZ/EAE	N=3
8S	T2-weighted MRI	Wild-type naive	N=4
		Wild-type CPZ/EAE 5-week	N=4
		Wild-type CPZ/EAE 10-week	N=2
		$Abcd1^{y/-}$ naive	N=5
		Abcd1 ^{y/-} CPZ/EAE 5-week	N=4
		Abcd1 ^{y/-} CPZ/EAE 10-week	N=3
8S	Microgliosis in MCC	Wild-type naive	N=5
	(CD68 staining)	Wild-type CPZ/EAE 5-week	N=5
		Wild-type CPZ/EAE 10-week	N=3
		$Abcd1^{y/2}$ naive	N=4
		Abcd1 ^{y/-} CPZ/EAE 5-week	N=7
		Abcd1 ^{y/-} CPZ/EAE 10-week	N=3
8S	Astrocytosis in MCC	Wild-type naive	N=4
	(GFAP staining)	Wild-type CPZ/EAE 5-week	N=6
	_	Wild-type CPZ/EAE 10-week	N=3
		$Abcd1^{y/-}$ naive	N=4
		Abcd1 ^{y/-} CPZ/EAE 5-week	N=7
		Abcd1 ^{y/-} CPZ/EAE 10-week	N=3

Antibody	Supplier	Host	Dilution	Cat. Number
CD3e	BD Biosciences	Hamster	1:300	550277
CD45R/B220	BD Biosciences	Rat	1:300	553085
CD68	Bio-Rad	Rat	1:300	MCA1957GA
GFAP	DAKO	Rabbit	1:600	Z0334
GP91-phox	BD Bioscience	Mouse	1:200	611414
Iba1	Wako	Rabbit	1:100	019-19741
IL-18	Protein Tech	Mouse	1:200	60070-1-Ig
IL-18	Abcam	Rabbit	1:100	ab191152
IL-18	Invitrogen	Rabbit	1/100	PA5-79481
MBP	Abcam	Rat	1:300	AB7349
OLIG2	Millipore	Mouse	1:400	MABN50
PLP	Abcam	Rabbit	1:300	AB28486
Alexa Flour TM 555	Invitrogen	Goat anti-mouse	1:1000	A21424
Alexa Flour TM 555	Invitrogen	Goat anti-rat	1:1000	A21434
Alexa Flour TM 555	Invitrogen	Goat anti-rabbit	1:1000	A21428
Alexa Flour TM 647	Invitrogen	Goat anti-rabbit	1:1000	A27040
Alexa Flour TM 647	Sigma-Aldrich	Goat anti-mouse	1:1000	A32728
Alexa Flour TM 647	Invitrogen	Goat anti-hamster	1:1000	A21451
Alexa Flour TM 488	Invitrogen	Goat anti-rabbit	1:1000	A-11008
Streptoavidin 488	Invitrogen	Not Applicable	1/700	S32354

Supplementary Table S2. The table lists information about the primary and secondary antibodies used for immunohistochemistry.

Supplementary Table S3. The table indicates the homogeneity of variances and mean \pm SD for each immunostaining and T2-weighted MRI test.

Figure	Experiments	Homogeneity of	Genotype/Treatment	Mean ± SD
4	T2 weighted	Variances Brown Forsythe	Wild type poive	2474 ± 421
4	MRI	and Welch	Abc $d1^{y-}$ naive	2474 ± 421 3086 ± 655
		ANOVA	Wild-type CPZ/EAE	3667 ± 407
			$Abcd1^{y/2}$ CPZ/EAE	5185 ± 493
4	MBP staining	Ordinary One-	Wild-type naive	78 75 + 4 11
	6	Way ANOVA	$Abcd1^{y/2}$ naive	75.6 ± 6.22
			Wild-type CPZ/EAE	59.38 ± 4.80
			Abcd1 ^{y/-} CPZ/EAE	50.42 ± 7.21
4	Fibrinogen	Brown-Forsythe	Wild-type naive	0.10 ± 0.09
	staining	and Welch	$Abcd1^{y/-}$ naive	0.11 ± 0.08
		ANOVA	Wild-type CPZ/EAE	0.91 ± 0.62
			Abcd1 ^{y/-} CPZ/EAE	2.4 ± 0.84
4	Gp91-phox	Brown-Forsythe	Wild-type naive	0.03 ± 0.02
	staining	and Welch	$Abcd1^{y/-}$ naive	0.02 ± 0.01
		ANOVA	Wild-type CPZ/EAE	0.82 ± 0.60
			Abcd1 ^{y-} CPZ/EAE	1.77 ± 0.26
5	Severity of PVC	Brown-Forsythe	$Abcd1^{y/-}$ CPZ	0.07 ± 0.08
		and Welch	Abcd1 ^{y/-} EAE	0.05 ± 0.05
		ANOVA	Wild-type CPZ/EAE	0.75 ± 0.60
			Abcd1 ^y CPZ/EAE	2.21 ± 0.74
5	Severity of	Brown-Forsythe	Abcd1 ^{y/-} CPZ	0.05 ± 0.05
	perivascular	and Welch	Abcd1 ^{y-} EAE	0.07 ± 0.08
	CD68 ⁺ cells	ANOVA	Wild-type CPZ/EAE	0.48 ± 0.45
_	~		Abca1 ^{**} CPZ/EAE	2.11 ± 0.99
5	Severity of	Unpaired t-test	Wild-type CPZ/EAE	0.45 ± 0.43
	perivascular		Abcd1 ^{y-} CPZ/EAE	1.6 ± 0.62
5	Severity of	Mann Whitney	Wild type CPZ/EAE	0.19 ± 0.21
5	perivascular	test	$\frac{Abcd1^{y/2}}{CP7/FAF}$	0.18 ± 0.21
	B220 ⁺ cells			1.1±0.31
6	Microgliosis in	Brown-Forsythe	Wild-type CPZ	15.3 ± 6.34
	MCC (CD68	and Welch	Abcd1 ^{y/-} CPZ	16.3 ± 3.51
	staining)	ANOVA	Wild-type EAE	3.50 ± 2.08
			Abcd1 ^{y/-} EAE	3.0 ± 1.0
			Wild-type CPZ/EAE	22.2 ± 9.78
			Abcd1 ^{y-} CPZ/EAE	19.4 ± 3.51
6	Astrocytosis in	Brown-Forsythe	Wild-type naive	1.38 ± 0.48
	MCC (GFAP	and Welch	$Abcd1^{y/-}$ naive	2.13 ± 0.85
	staining)	ANOVA	Wild-type CPZ	3.5 ± 0.5
				3 ± 0.5
			wild-type EAE $Abad1$ /- EAE	2.33 ± 0.76
			Wild-type CPZ/EAE	1.38 ± 0.48

			A = J1 - CD7 / EAE	27.052
			Abcal [*] CPZ/EAE	2.7 ± 0.52
				3.42 ± 0.61
1S	%CD45 ^m /total	Kruskal-Wallis	Wild-type naive	3.31 ± 1.96
	immune cells in	test	Wild-type 2-week CPZ	16.4 ± 6.24
	brain,		Wild-type 4-week CPZ	2.70 ± 0.66
	Flowcytometry		Wild-type 6-week CPZ	4.64 ± 0.83
3S	Onset of disease	Kruskal-Wallis	Wild-type EAE	14.3 ± 1.7
	in EAE and	test	Abcd1 ^{y/-} EAE	13.3 ± 2.31
	CPZ/EAE		Wild-type CPZ/EAE	11.9 ± 2.02
	treatments		Abcd1 ^{y/-} CPZ/EAE	10.8 ± 1.47
4S	LFB staining	Mann-Whitney	Wild-type CPZ/EAE	1.0 ± 0.04
		test	Abcd1 ^{y/-} CPZ/EAE	2.0 ± 0.6
5S	Olig2 staining	Brown-Forsythe	Wild-type naive	70 ± 4.0
		and Welch	Wild-type CPZ/EAE	50 ± 5.5
		ANOVA	Abcd1 ^{y/-} CPZ/EAE	43 ± 6.4
8S	T2-weighted	Ordinary One-	Wild-type naive	2474 ± 421
	MRI	Way ANOVA	Wild-type CPZ/EAE 5-week	3667 ± 407
			$Abcd1^{y/-}$ naive	3068 ± 655
			Abcd1 ^{y/-} CPZ/EAE 5-week	5185 ± 493
8S	Microgliosis in	Ordinary One-	Wild-type naive	0.2 ± 0.45
	MCC (CD68	Way ANOVA	Wild-type CPZ/EAE 5-week	22.2 ± 9.78
	staining)		Wild-type CPZ/EAE 10-week	8.57 ± 1.4
			Abcd1 ^{y/-} naive	1.25 ± 0.96
			Abcd1 ^{y/-} CPZ/EAE 5-week	19.4 ± 3.51
			Abcd1 ^{y-} CPZ/EAE 10-week	12.5 ± 1.13
8S	Astrocytosis in	Kruskal-Wallis	Wild-type naive	1.38 ± 0.48
	MCC (GFAP	test	Wild-type CPZ/EAE 5-week	2.67 ± 0.52
	staining)		Abcd1 ^{y/-} naive	2.13 ± 0.85
			Abcd1 ^{y/-} CPZ/EAE 5-week	3.43 ± 0.61

Authors	Contribution	Affiliation	
Ezzat Hashemi, PhD	contributed to the conception and design of the	Department of Neurology and	
	study, oversaw the generation, acquisition,	Neurological Sciences,	
	analysis, and interpretation of the mouse data,	Stanford University School of	
	wrote the initial draft of the manuscript, and	Medicine, Stanford, CA, USA	
	approved the final version of the manuscript.		
Isha Narain Srivastava,	contributed to the conception and design of the	Department of Neurology and	
MD, PhD	study, oversaw the generation, collection,	Neurological Sciences,	
	assembly, analysis, and interpretation of the	Stanford University School of	
	human data, wrote the initial draft of the	Medicine, Stanford, CA, USA	
	manuscript.		
Alejandro Aguirre MD	contributed to the generation, collection,	Department of Neurology and	
	assembly, analysis, and interpretation of the	Neurological Sciences,	
	human data.	Stanford University School of	
		Medicine, Stanford, CA, USA	
Ezra Tilahan Yoseph,	contributed to the generation, collection,	Department of Neurology and	
BS	assembly, analysis, and interpretation of the	Neurological Sciences,	
	mouse data.	Stanford University School of	
		Medicine, Stanford, CA, USA	
Esha Kaushal PhD	contributed to the generation, collection,	Department of Neurology and	
	assembly, analysis, and interpretation of the	Neurological Sciences,	
	mouse data.	Stanford University School of	
		Medicine, Stanford, CA, USA	
Avni Awani, PhD	contributed to the generation, collection,	Department of Neurology and	
	assembly, analysis, and interpretation of the	Neurological Sciences,	
	data.	Stanford University School of	
		Medicine, Stanford, CA, USA	
Jae Kyu. Ryu, PhD	contributed to the generation, collection,	Gladstone Institute for	
	assembly, analysis, and interpretation of the		
	data.	Center for Neurovascular	
		Brain Immunology at	
		Francisco, CA USA.	

		Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA.
Katerina Akassogiou, PhD	contributed to the generation, collection, assembly, analysis, and interpretation of the data.	Gladstone Institute for Neurological Disease; San Francisco, CA, USA. Center for Neurovascular Brain Immunology at Gladstone and UCSF; San Francisco, CA USA. Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA.
Shahrzad Talebian	contributed to the generation, collection,	Department of Neurology and
M.Sc	assembly, analysis, and interpretation of the	Neurological Sciences,
	data.	Stanford University School of
		Medicine, Stanford, CA, USA.
Pauline Chu B.S, HT	contributed to the generation, collection,	Stanford Human Research
	assembly, analysis, and interpretation of the	Histology Core, Stanford
	data.	University School of
		Medicine, Stanford, CA,
		USA.
Laura Pisani PhD	contributed to the generation, collection,	Department of Radiology,
	assembly, analysis, and interpretation of the	Stanford University School
	data.	of Medicine Stanford, CA,
		USA.
Patricia Musolino MD, PhD	contributed to the generation, collection, assembly, analysis, and interpretation of the data.	Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.

		Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
Lawrence Steinman,	contributed to the generation, collection,	Department of Neurology
MD	assembly, analysis, and interpretation of the	and Neurological Sciences,
	data.	Stanford University School
		of Medicine, Stanford, CA,
		USA.
Kristian Doyle, PhD	contributed to the generation, collection,	Department of
	assembly, analysis, and interpretation of the	Immunobiology,
	data.	University of Arizona,
		Tucson, AZ, USA.
William H Robinson	contributed to the generation, collection,	Department of Immunology
MD, PhD	assembly, analysis, and interpretation of the	& Rheumatology, Stanford
	data.	University School of
		Medicine, Stanford, CA,
		USA.
Orr Sharpe, MSc	contributed to the generation, collection,	Department of Immunology
	assembly, analysis, and interpretation of the	& Rheumatology, Stanford
	data.	University School of
		Medicine, Stanford, CA,
		USA.
Romain Cayrol, MD,	contributed to the generation, collection,	Department of Pathology,
PhD	assembly, analysis, and interpretation of the	Clinical Department of
	data.	Laboratory Medicine,
		University of Montreal,
		Quebec, Canada.
Paul Orchard, MD	contributed to the generation, collection,	Division of Pediatric Blood
	assembly, analysis, and interpretation of the	& Marrow Transplantation,
	data.	University of Minnesota,
		Minneapolis, MN, USA.

Troy Lund, MD, PhD	contributed to the generation, collection,	Division of Pediatric Blood
	assembly, analysis, and interpretation of the	& Marrow Transplantation,
	data.	University of Minnesota,
		Minneapolis, MN, USA.
Hannes Vogel, MD	contributed to the generation, collection,	Departments of Pathology,
	assembly, analysis, and interpretation of the	Stanford University School
	data.	of Medicine, Stanford, CA,
		USA.
Max Lenail, BS		
May Htwe Han MD	contributed to the generation, collection,	Department of Neurology and
	assembly, analysis, and interpretation of the	Neurological Sciences,
	data.	Stanford University School of
		Medicine, Stanford, CA, USA
Joshua Leith	contributed to the conception and design of the	Division of Pediatric
Bonkowsky MD, PhD	study, contributed to the generation, collection,	Neurology, Department of Pediatrics University of
	assembly, analysis, and interpretation of the	Utah School of Medicine,
	data.	Salt Lake City, Utah.
		Primary Children's
		Hospital, Salt Lake City,
		Utah. Primary Children's Center
		for Personalized Medicine,
Kid D. Ver Herry		Salt Lake City, Utah
MD	contributed to the conception and design of the	Neurological Sciences
MD	study, supervised the generation, collection,	Stanford University School of
	assembly, analysis, and interpretation of all data,	Medicine Stanford CA
	contributed to the original draft.	USA
	All authors read and approved the final	Department of Pediatrics
	manuscript.	Stanford University School
		of Medicine Stanford CA
		USA