

Supplemental Figure 1. Heatmaps of acinar and ductal genes from RNA-sequencing

A. Log₂FC expression of several acinar genes from RNA-sequencing of *ex vivo* acinar cell cultures at Day 1, 2, or 3 compared to GFP.

B. Log₂FC expression of several ductal/ADM genes from RNA-sequencing of *ex vivo* acinar cell cultures at Day 1, 2, or 3 compared to GFP.

Δ

Enrichment plot: HALLMARK OXIDATIVE PHOSPHORYLATION 0.6 ecore (ES) Eurichment s 0.0 : metric (Signal2Noise) 4 2 Zero cross at 13463 0 -2 Ranked list 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,00 Rank in Ordered Dataset Enrichment profile — Hits Ranking metric scores

Enrichment plot:

Enrichment plot:

Ranking metric scores

- Enrichment profile - Hits

Supplemental Figure 2. Differentially expressed pathways and GSEAs from RNA-sequencing

A. Selected Hallmark GSEA plots of known pathways in ADM that are enriched in *Kras^{G12D}*-expressing acinar cells (Cre2 vs. GFP).

B. Selected Hallmark GSEA plots of metabolic pathways that are enriched in *Kras^{G12D}*-expressing acinar cells (Cre2 vs. GFP).

Enrichment score (ES) signifies the degree a gene set is overrepresented at the top or bottom of a ranked list of genes. The black vertical bars show where genes within the gene set appear in ranked list. The waterfall plot represents a gene's correlation with a phenotype.

Supplemental Figure 3. Additional NRF2 target genes from RNA-sequencing

A. LogFC expression of additional NRF2-target genes from RNA-sequencing of *Kras*^{G12D}-expressing acinar cells when comparing Cre2 to GFP.

B. LogFC expression of additional NRF2-target genes from RNA-sequencing of *Kras*^{G12D}-expressing acinar cells when comparing Cre3 to GFP.

♂ LSL-Kras^{G12D}; Ptf1a^{Cre/+} ;G6pd^{wt/y}

<u>Wildtype:</u> ♀ LSL-Kras^{G12D}; Ptf1a^{Cre/+} ;G6pd^{wt/wt}

♂ LSL-Kras^{G12D}; Ptf1a^{Cre/+} G6pd^{mut/y}

♀ LSL-Kras^{G12D}; Ptf1a^{Cre/+} ;G6pd^{mut/mut}

<u>Mutant:</u>

Supplemental Figure 4. Breeding scheme to generate KC;G6pd^{mut} and KC;G6pd^{wt} mice

Mice with mutant *G6pd*, that mimics human G6PD-deficiency, were bred into the KC (*LSL-Kras*^{G12D/+}; *Ptf1aCre*) line. *Ptf1aCre* was always maintained in female breeders. Experiments used both male and female *G6pd* mutant mice, where females were homozygous for mutant *G6pd* (*G6pd*^{mut/mut}) and males were hemizygous for mutant *G6pd* (*G6pd*^{mut/y}), as *G6pd* is an X-linked gene. *G6pd* wildtype mice used in experiments were obtained in the same colony and age matched littermates of *G6pd* mutant mice when possible. Female *G6pd* wildtype mice have two wildtype copies of *G6pd* (*G6pd*^{wt/wt}) and males have one wildtype copy (their only copy) of *G6pd* (*G6pd*^{wt/y}). In the schematics and labelling, "y" in male mice refers to the y chromosome, which does not contain a copy of *G6pd*.

Supplemental Figure 5. ¹⁴C-labeling in acinar cells

A. Schematic of ¹⁴C-labeling experiment. $[1-^{14}C]$ glucose (blue) can be used in both the oxidative pentose phosphate pathway (ox PPP) and the TCA cycle. $[6-^{14}C]$ glucose (red) can be used in the TCA cycle. **B**. Relative amount of $[^{14}C]$ -labeled CO₂ derived from $[1-^{14}C]$ glucose. $[1-^{14}C]O_2$ is generated from either the oxidative pentose phosphate pathway or the TCA cycle.

C. Relative amount of [¹⁴C]-labeled CO_2 derived from [6-¹⁴C]glucose. [6-¹⁴C]O₂ is only generated from the TCA cycle.

Each point in B and C represents technical replicates from one mouse.

Supplemental Figure 6. Low magnification images of Amylase and Alcian blue in pancreata and pancreas weight to body weight ratios

A. Immunostaining for Amylase (AMY), in 8-week and 16-week-old KC;G6pd^{wt} and KC;G6pd^{mut} pancreas. Alcian blue (PanIN-produced mucin) & nuclear fast red counterstain in pancreas of 26-week-old KC;G6pd^{wt} and KC;G6pd^{mut} mice. Scale bar = 500µm.

B. Pancreas weight (PW) to body weight (BW) ratios in 8-, 16-, and 26-week-old KC;G6pd^{wt} and KC;G6pd^{mut} mice.