Supplementary Information

Maximizing Heterologous Expression of Engineered Type I Polyketide Synthases: Investigating Codon Optimization Strategies

Matthias Schmidt^{1,2,3,4}, Namil Lee^{1,2,4#}, Chunjun Zhan^{1,2,#}, Jacob B. Roberts^{1,2,5}, Alberto A. Nava^{1,2,8}, Leah S. Keiser^{1,2,8}, Aaron A. Vilchez^{1,2,8}, Yan Chen^{1,2}, Christopher J. Petzold^{1,2}, Robert W. Haushalter^{1,2}, Lars M. Blank³, Jay D. Keasling^{1,2,5,6,7,8,9,10,*}

¹Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States.

²Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

³Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52062 Aachen, Germany.

⁴California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States.

⁵Joint Program in Bioengineering, University of California, Berkeley, California 94720, United States.

⁶Department of Chemistry, University of California, Berkeley, California 94720, United States.

⁷Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

⁸Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.

⁹The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.

¹⁰Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen 518071, China.

#Authors contributed equally.

*Corresponding author: Jay D. Keasling, jdkeasling@lbl.gov

Table S1: List of all applied constraints during codon optimization.

Codon optimization constraints
UniquifyAllKmers(9, include_reverse_complement=True)
AvoidHairpins(stem_size=10,hairpin_window=100)
AvoidPattern("9xA")
AvoidPattern("9xT")
AvoidPattern("6xC")
AvoidPattern("6xG")
AvoidPattern("Ndel_site")
AvoidPattern("Xhol_site")
AvoidPattern("Spel_site")
AvoidPattern("BamHI_site")
AvoidPattern("Bsal_site")
EnforceGCContent(mini=0.3, maxi=0.75, window=50)
EnforceTranslation()

 Table S2: Primers used in this study.

Primer	Sequence	Description	
Confirmation primers for serine recombinase-assisted genome engineering			
cPCR-AG5577_BxB1_F	AGCAAATTCGGCAACAC GC	Confirmation of BxB1 integrations into AG5577 BxB1 attB site	
cPCR-AG5577_BxB1_R	CTAGGCAGAATTTTGGG AGTGGC	Confirmation of BxB1 integrations into AG5577 BxB1 attB site	

cPCR-AG5577_MR11_F	GTGATTTGAAAGAGTTGT CAGTTAGCTCG	Confirmation of MR11 integrations into AG5577 MR11 attB site
cPCR-AG5577_MR11_R	AGGACTCACCTCTAGAA CACGC	Confirmation of MR11 integrations into AG5577 MR11 attB site
cPCR-AG6212_BxB1_F	CGAATTCTTTCATTTAAG ACCCTAATA	Confirmation of BxB1 integrations into AG6212 BxB1 attB site
cPCR-AG6212_BxB1_R	CTAGGCAGAATTTTGGG AGTGG	Confirmation of BxB1 integrations into AG6212 BxB1 attB site
cPCR-LipPKS-Cg_ubc_F	CGCCATGGAACTGCGTAA	Anneals to 3' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Cg_ubc_R	GGTATGGTGCAAAGGCAT CT	Anneals to 5' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Cg_mcu_F	CGCCATGGAATTGCGAAA C	Anneals to 3' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Cg_mcu_R	AAAGACTGTGGCCCAAGT AG	Anneals to 5' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Cg_hrca_F	AGAGCTGGACTCTGGAAC T	Anneals to 3' end of codon optimized LipPKS gene. Confirmation of integration into the host genome

cPCR-LipPKS-Cg_hrca_R	GCGTTCCAAAGGTCGGTT A	Anneals to 5' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Pp_ubc_F	CGCCATGGAACTGCGTAA	Anneals to 3' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Pp_ubc_R	GTCACGCTATCCAGCAGA C	Anneals to 5' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Pp_mcu_F	GCCATGGAACTGCGAAAC	Anneals to 3' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Pp_mcu_R	GTCACGGAATCCAGCAGA C	Anneals to 5' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Pp_hrca_F	CTTGACCGCCATGGAACT	Anneals to 3' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Pp_hrca_R	TCACGCTATCCAGCAGAG A	Anneals to 5' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Ec_ubc_F	GCGACGTTGGCTTTGATA	Anneals to 3' end of codon optimized LipPKS gene. Confirmation of integration into the host genome

cPCR-LipPKS-Ec_ubc_R	CAAATAACGCTGGCTGCA C	Anneals to 5' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Ec_mcu_F	CGCCATGGAACTGCGTAA	Anneals to 3' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Ec_mcu_R	CACGGAATCCAGCAGACT	Anneals to 5' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Ec_hrca_F	TGGGCTTCGACAGCTTAA C	Anneals to 3' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-Ec_hrca_R	TCACGCTATCCAGCAGAC T	Anneals to 5' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-WT_R	CGCAGTCGTGCAGCTTA	Anneals to 5' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-LipPKS-WT_F	TCTTCGACCACCCGACA	Anneals to 3' end of codon optimized LipPKS gene. Confirmation of integration into the host genome
cPCR-Sc_mmCoA_F	GTCGGCAAGAGCACGTT	Anneals to 3' end of S. cellulosum So ce56 mmCoA operon. Confirmation of

		integration into the host genome
cPCR-Sc_mmCoA_R	ATCGTGAAGCGCAGCTC	Anneals to 5' end of S. cellulosum So ce56 mmCoA operon. Confirmation of integration into the host genome
Confirmation primers	for gene deletions and repla	acements in AG6212
cPCR-prpDBC2_F	GTGTTACCGATCCACTGG GCGTCAACG	Confirmation of <i>prpDBC2</i> deletion
cPCR-prpDBC2_F	CATTGCGCATTCCGATCAT GCGCGTCTGCG	Confirmation of <i>prpDBC2</i> deletion
cPCR-kivd-CCL4_F	GACATCATTCACCAGCAG GTCGGTGGACTTCGTGC	Confirmation of <i>kivd-CCL4</i> replacing Cgl0605
cPCR-kivd-CCL4_R	GCGGTGTGCGGGATGACT TCGGAGTAGATG	Confirmation of <i>kivd-CCL4</i> replacing Cgl0605
cPCR-sfp_F	GTCAATGTTGACGCGGCC TGGACGGGTGGAACCGG T	Confirmation of <i>sfp</i> replacing Cgl1016
cPCR-sfp_F	ACCATCCGCCACATCGAG TCTGTCCACCAGCT	Confirmation of <i>sfp</i> replacing Cgl1016
Р	rimers for RT-qPCR analysis	
qPCR-LipPKS-Cg_hrca_F	ATGTCCGAACACAGAGGA AGT	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Cg_mcu_F	CATATGTCCGAGCACAGG G	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Cg_ubc_F	ATGTCCGAACACAGGGGT AG	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Ec_hrca_F	ATGAGCGAACACAGAGGA TCA	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Ec_mcu_F	ATGAGCGAACATCGTGGT AGT	Amplification of LipPKS cDNA for qPCR

qPCR-LipPKS-Ec_ubc_F	ATGAGCGAACATCGTGGC	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Pp_hrca_F	CATATGAGCGAGCACAGG G	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Pp_mcu_F	CATATGTCGGAGCACAGG G	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Pp_ubc_F	CATATGAGCGAGCACCGG	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-WT_GTG_F	CATGTGTCCGAACACCGT G	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-WT_ATG_F	CATATGTCCGAACACCGTG G	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Cg_hrca_R	TCTAAGATGAGTCCTCAGA GCCT	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Cg_mcu_R	CTAAGATGCGTTCGCAGA GC	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Cg_ubc_R	GAGATGGGTTCGCAGAGC TT	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Ec_hrca_R	AGATGAGTTCTCAGAGCC TCG	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Ec_mcu_R	GTTCGCAGAGCCTCGCTA	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Ec_ubc_R	GTAAATGGGTTCGCAGAG CTTC	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Pp_hrca_R	GTTCGCAGAGCCTCGGAT	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Pp_mcu_R	GTTCGCAGAGCCTCGCTA	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-Pp_ubc_R	GTTCGCAGAGCCTCGCTA	Amplification of LipPKS cDNA for qPCR
qPCR-LipPKS-WT_GTG_R	AGATGCGTGCGCAGAG	Amplification of LipPKS cDNA for qPCR

qPCR-LipPKS-WT_ATG_R	AGATGCGTGCGCAGAG	Amplification of LipPKS cDNA for qPCR
qPCR-Pp-RpoD_F	CAGGGCTACCTGACTTAC GC	<i>P. putida</i> housekeeping gene used as internal control for qPCR
qPCR-Pp-RpoD_R	ACGTTGATCCCCATGTCGT T	<i>P. putida</i> housekeeping gene used as internal control for qPCR
qPCR-Ec-RpoD_F	GGAGCAAAACCCGCAGTC	<i>E. coli</i> housekeeping gene used as internal control for qPCR
qPCR-Ec-RpoD_R	CGACGATATCTTCCGGCA G	<i>E. coli</i> housekeeping gene used as internal control for qPCR
qPCR-Cg-RpoC_F	GTGCTCGACGTAAACGTC TTC	<i>C. glutamicum</i> housekeeping gene used as internal control for qPCR
qPCR-Cg-RpoC_R	GAGGGTTCGGTAGTTGAT GGT	<i>C. glutamicum</i> housekeeping gene used as internal control for qPCR
Gibson primers	for assembly of pAN001 Lip	PKS-WT_GTG
gPCR-WT-LipM1-Frag1_F	CGAATTCAAAAGATCTTT TAAGAAGGAGATATACAT GTGTCCGAACACCGTGG CAGTGC	Amplification of WT sequence of LipM1 fragment 1
gPCR-WT-LipM1-Frag1_R	CCTCGTCGCGAGGGCG AACGCCACGTCGGCG	Amplification of WT sequence of LipM1 fragment 1
gPCR-WT-LipM1-Frag2_F	ACGTGGCGTTCGCCCTC GCGACGAGGCGTACTGC	Amplification of WT sequence of LipM1 fragment 2
gPCR-WT-LipM1-Frag2_R	TCCCGCTGTCCAGCTCG GCCTTGAGGTACGCG	Amplification of WT sequence of LipM1 fragment 2

gPCR-WT-EryM6-TE_F	CCTCAAGGCCGAGCTGG ACAGCGGGGACTCCCGC CC	Amplification of WT sequence of EryM6-TE
gPCR-WT-EryM6-TE_R	GTTTTATTTGATGCCTGG AGATCCTTACTCGATCAG TGGTGGTGGTGGTGGTG C	Amplification of WT sequence of EryM6-TE
Gibson primers	for assembly of pAN001 Lip	PKS-WT_ATG
gPCR-WT-LipM1-ATG-Fra g1_F	CGAATTCAAAAGATCTTT TAAGAAGGAGATATACAT ATGTCCGAACACCGTGG CAGTGC	Amplification of WT sequence of LipM1 fragment 1 with ATG start codon mutation
Gibson p	rimers for assembly of pBH	026 RFP
gPCR-pBH026_F	GAAGGTCGTCACTCCACC GGTGCTTAAGGATCCAAA CTCGAGTAAGGATCTCCA GG	Amplification of pBH026 plasmid backbone
gPCR-pBH026_R	ACGTCTTCGCTACTCGCC ATATGTATATCTCCTTCTTA AAAGATCTTTTGAATTCG	Amplification of pBH026 plasmid backbone
gPCR-RFP_F	AGAAGGAGATATACATATG GCGAGTAGCGAAGACG	Amplification of <i>rfp</i> gene
gPCR-RFP_R	TTAAGCACCGGTGGAGTG ACGACCT	Amplification of <i>rfp</i> gene
Gibson primers	for assembly of pK18 ΔCgl0	605::kivd-CCL4
gPCR-pK18-Cgl0605_F	TCGGGTGGGCCTTTCTGC GTTTATAGCCCTTGATTATT GCCAAAGAAACCTTTAAG GACT	Amplification of pK18 ΔCgl0605 plasmid backbone
gPCR-pK18-Cgl0605_R	CGAGCCGCAGCCGAATGT GACTAGTTAACGTGCAGG CTTACCTTTTGGAAGC	Amplification of pK18 ΔCgl0605 plasmid backbone
gPCR-kivd-CCL4_F	GCTTCCAAAAGGTAAGCC TGCACGTTAACTAGTCACA TTCGGCTGCGGCTCG	Amplification of <i>kivd</i> and <i>CCL4</i> expression cassette

gPCR-kivd-CCL4_R	AGTCCTTAAAGGTTTCTTT GGCAATAATCAAGGGCTAT AAACGCAGAAAGGCCCAC CCGA	Amplification of <i>kivd</i> and <i>CCL4</i> expression cassette
Gibson prime	ers for assembly of pJH209	Sc_mmCoA
gPCR-pJH209_F	GGCCAGGAACCGTAAAAA AGTCAAAAGCCTCCGGTC GGAGG	Amplification of pJH209 plasmid backbone
gPCR-pJH209_R	CGACTTCGTGACAACGAT CCCCCAACTGAGAGAACT CAAAGG	Amplification of pJH209 plasmid backbone
gPCR-Ptac-Sc_mmCoA_F	AGTTCTCTCAGTTGGGGG ATCGTTGTCACGAAGTCG ACTACG	AmplificationofS.cellulosumSo56mmCoAoperonunderthe control of P
gPCR-Ptac-Sc_mmCoA_F	GACCGGAGGCTTTTGACT TTTTTACGGTTCCTGGCCT TTTGC	AmplificationofS.cellulosumSo56mmCoAoperonunderthe control of P
Gibson primers for a	assembly of pGingerBG-Nah	R LipPKS-Pp_mcu
gPCR-pGingerBG-NahR_ F	GCGGCAATAGCTGAGGA TCCAAACTCGAGTAAGG ATCTCC	Amplification of pGingerBG-NahR plasmid backbone
gPCR-pGingerBG-NahR_ R	ACCCCTGTGCTCCGACA TATGTATATCTCCTTCTTA AATGATGGCTTTATTG	Amplification of pGingerBG-NahR plasmid backbone
gPCR-LipPKS-Pp_mcu-Fr ag1_F	GAAGGAGATATACATATG TCGGAGCACAGGGGTAG TG	Amplification of LipPKS-Pp_mcu fragment 1
gPCR-LipPKS-Pp_mcu-Fr ag1_R	CGCAAGCCTGCCATAGT GCGGCCAGACTCACC	Amplification of LipPKS-Pp_mcu fragment 1
gPCR-LipPKS-Pp_mcu-Fr ag2_F	TCTGGCCGCACTATGGC AGGCTTGCGGGGTG	Amplification of LipPKS-Pp_mcu fragment 2

gPCR-LipPKS-Pp_mcu-Fr ag2_R	CGAGTTTGGATCCTCAG CTATTGCCGCCGCCCAG	Amplification LipPKS-Pp_mcu fragment 2	of
Gibson primers for a	assembly of pGingerBG-Nah	R LipPKS-Ec_mcu	
gPCR-pGingerBG-NahR_ F	GGCGGAGGGAATAGTTA AGGATCCAAACTCGAGT AAGGATCTCC	Amplification pGingerBG-NahR plasmid backbone	of
gPCR-pGingerBG-NahR_ R	CCACGATGTTCGCTCATA TGTATATCTCCTTCTTAAA TGATGGCTTTATTG	Amplification pGingerBG-NahR plasmid backbone	of
gPCR-LipPKS-Ec_mcu-Fr ag1_F	GAAGGAGATATACATATG AGCGAACATCGTGGTAG TGCAGGT	Amplification LipPKS-Ec_mcu fragment 1	of
gPCR-LipPKS-Ec_mcu-Fr ag1_R	GTTCTTCATCACCGCTAC GTAGAACCTCCAGCAGG TTCCAATCCA	Amplification LipPKS-Ec_mcu fragment 1	of
gPCR-LipPKS-Ec_mcu-Fr ag2_F	GGAGGTTCTACGTAGCG GTGATGAAGAACTGAGT AATCGCG	Amplification LipPKS-Ec_mcu fragment 2	of
gPCR-LipPKS-Ec_mcu-Fr ag2_R	CGAGTTTGGATCCTTAAC TATTCCCTCCGCCCAGC C	Amplification LipPKS-Ec_mcu fragment 2	of

Figure S1: Principal component analysis of optimized LipPKS sequences. A high similarity in codon usage leads to clustering of the respective nucleotide sequences. The hrca optimized genes are in close proximity to each other.

Figure S2: Regression plot of LipPKS counts and relative transcript for *C. glutamicum*, *E. coli*, and *P. putida* (n = 3). Only *P. putida* showed a slight correlation between these two parameters.

Figure S3: LC-MS chromatograms showing the production of unnatural polyketides in C. glutamicum (a), E. coli and P. putida (b). Red lines indicate the retention time of the authentic standard. Additional peaks for the authentic standards are most likely caused by mixtures 3-hydroxy acids. Standards for racemic of the (2S,3S)-3-hydroxy-2,4-dimethylpentanoic acid (3H24DMPA) and (2S,3S)-3-hydroxy-2-methylpentanoic acid (3H2MPA) are enantiopure. Standards for 3-hydroxy-4-methylpentanoic acid (3H4MPA) and 3-hydroxy-2,4-dimethylhexanoic acid (3H24DMHA) are racemic mixtures. 1 = 3H2MPA; 2 = 3H4MPA; 3 = 3H24DMPA; 4 = 3H24DMHA

Figure S4: Polyketide synthesis mechanism with various loading substrates and possible products. The final polyketide depends on the availability of the starter unit propionyl-CoA (R1), isobutyryl-CoA (R2) or 2-methylbutyryl-CoA (R3). In the engineered strains *C. glutamicum* AG6212cz and *P. putida* AG5577mm, the most likely product is (2S,3S)-3-hydroxy-2,4-dimethylpentanoic acid (R2). In *E. coli* K207-3, the only possible product is (2S,3S)-3-hydroxy-2-methylpentanoic acid (R1).

Figure S5: Detection of peptides for supplementary pathways in the *C. glutamicum* ATCC 13032 derivative AG6212cz (n = 3). The corresponding peptides for the phosphopantetheinyl transferase (PPTase) Sfp and ketoisovalerate decarboxylase, Kivd, were detected in all AG6212cz strains. CCL4 peptides could not be detected.

Figure S6: Expression of the LipPKS codon variants Pp_mcu and Ec_mcu from the inducible vector system pGingerBG-NahR in *P. putida* (n = 3). The inducer salicylate was added at the time of inoculation. (a) LipPKS protein levels were comparable, while lbpA levels were significantly higher for Ec_mcu. (b) LC-MS analysis of the same samples (n = 3) revealed no production of the corresponding polyketide for the Ec_mcu variant.