
Open Access This file is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if
changes were made. In the cases where the authors are anonymous, such as is the case for the reports of
anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear
attribution to the source work. The images or other third party material in this file are included in the
article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Peer Review File

Review on the manuscript “Bringing uncertainty quantification to the extreme-edge
with memristor-based Bayesian neural networks” authored by Djohan Bonnet et al.,
submitted to Nature Communications. [Manuscript Number: NCOMMS-23-00214]

In this manuscript, the authors reported a memristor-based Bayesian neural network
(BNN) using the stochasticity of memristors. In this study, two memristors were used to
solve the problem of correlation between standard deviation and mean. The memristor-
based BNN was trained using arrhythmia ECG data, and two different types of
uncertainty were quantified. Using epistemic uncertainty, unknown data was almost
perfectly distinguished from trained data. The performance of the fabricated memristor-
based 75 x 32 x 32 BNN hardware (Figure 5) was impressive. This reviewer basically
agrees with the publication of this work in this journal. However, the present form of the
manuscript needs substantial reorganization because it is difficult to understand the
work's crucial point. The detailed comments are the following:

1. First, it would be much better to explain how the BNN in software works briefly
in the introduction. The current manuscript explains the limitation of
conventional (or deterministic) neural networks for an outlier, and BNN performs
better in identifying such a problem. However, it does not explain how the
software BNN works during the training and inference steps. This explanation is
especially necessary to understand why the μ and σ values must vary
independently over a space as large as possible. This will also help the readers
understand the limitations of the current memristors and PCM devices regarding
the partial decorrelation of the two parameters.

2. As the authors already mentioned, using two memory cells per weight gives better
μ vs. σ performance. It would be better to explain a bit more why this was the
case.

3. Related comment 2: one of the most crucial factors for implementing the
memristor-based BNN is solving the problem of the correlation between μ and
σ using the device physics. In this study, the method of using two memristors
proposed in previous studies was used to solve the correlation problem. This
reviewer believes that technological loss is to compensate for insufficient
decorrelation. Therefore, the “technological loss” term appears to be the most
crucial factor in determining the novelty of this paper, but there is not enough
explanation for the technological loss in this manuscript. A detailed description
of how the technological loss was defined and why it is defined as such needs to
be added. In addition, it is necessary to explain the principle of how the
technological loss matches the classical variational inference domain (ߠ) to the
domain representable in the memristor (Γ). Also, there was almost no
explanation of how this technological loss term was used during the training
step, making a clear understanding of this important term difficult.

Reviewer #1 (Remarks to the Author):

4. A related comment is that the explanation for Fig. 4 is too terse, which must
comprise the most crucial part of this work. To this reviewer, the scattered data
in (a) seem to be the weight (or μ and σ) values calculated off-chip during the
training step without considering the technological loss term. In (b), these
values are corrected to fit into the practically available μ and σ range (inside the
solid line), but how this could be the case was not explained in detail, despite its
importance.

5. In this work, the random statistical variations of the weight deviations in the
software BNN during each training and inference step were replaced
(represented) by the random variations of the memristor and PCM devices of
the 75 CBAs, which represent the cell-to-cell variation. However, it is unclear if
the cell-to-cell variation of the memristors and PCM, shown in Fig. 3, can
replace the step-to-step variation in the software BNN. A related comment is
that each of these memory cells has switching cycle-to-cycle variations. Could
this additional variation have any influence on the performance?

6. Figure 1 should be expressed more clearly. For example, in Fig 1a and 1d, the
number of output neurons and the output current should be displayed accurately
according to the number of classification classes. (or insert an omission mark)
This reviewer initially had a problem understanding this figure because there are
three classification cases (clear, unclear, unknown) and three output neurons,
which invoked a feeling that each output neuron represents the three
classification cases. Finally, it was understood that these output neurons still
correspond to the 10 classes of the ECG signals.

7. Until Figure 4, filamentary memristor and PCRAM were explained together, but
Figure 5 shows only the result of the filamentary memristor, which is confusing.
Adding the PCRAM classification results to Fig. 5 or moving the PCRAM
contents of Figs 2 to 4 to the supporting information would improve the
consistency of the work.

8. A more detailed explanation of the array mapping method needs to be added. In
addition, it is necessary to analyze how much the performance of BNN depends
on the distribution when the distribution is adjusted using the program-and-verify
method. Was the result vary significantly depending on the programming method?

9. An analysis of why memristor-based BNN outperforms the ideal case (float 32)
should be added. It is not well understood that the performance of memristor-
based BNN, where the correlation of statistical factors due to device physics still
exists, is better than the ideal case free from the problem.

10. According to the inference process flow shown in Supplementary Figure 6 and
the main text, the device conductance data should be trained off-chip by the

Reviewer #1 (Remarks to the Author):

backpropagation algorithm. Does the power mentioned in the main text include
this neural network training process?

11. Minor comments: There are typos and grammar errors.
- The caption of Fig. 2 also needs to be revised. Figures 2 (a), (b), (d) and (e) are
TEM images, not SEM images.
- In Fig. 5c on page 5, ‘exprimental’  ‘experimental’, above the graph.
- In line 172 on page 7, ‘plotted in black’  ‘plotted in red’
- In supplementary Fig.6, ‘To each distribution correspond 2 programming
conditions~~’  ‘Each distribution corresponds to 2 programming conditions~~’,
‘The three currents give an activation’, and ‘The activation gives three input
patterns~~’

Reviewer #1 (Remarks to the Author):

Reviewer #2 (Remarks to the Author):

This manuscript reports the implementation of Bayesian neural network using memristor-based

electronics, a critical improvement toward efficiently implementing Bayesian inference based on the

authors’ previous work [1]. As a demonstration, such electronics is used to process classification of

heartbeats and estimate the certainty of predictions. This approach has advantage of lower energy

consumption comparing to conventional CMOS electronic implementations.

[1] Dalgaty, T., Esmanhotto, E., Castellani, N., Querlioz, D. & Vianello, E. Ex Situ Transfer of Bayesian

Neural Networks to Resistive Memory‐Based Inference Hardware. Advanced Intelligent Systems 3,

2000103 (2021).

My comments are listed below:

1.This is not the first paper about using memristors to implement Bayesian neural network. Previous

papers [2][3] and the authors’ previous work [4] proposed to exploit different sources of variability

in memristors to implement Bayesian inference. It is important to cite them in the state of the art

and illustrate the novelty of this paper, if possible, compare with them.

[2] Lin, Y. et al. Bayesian Neural Network Realization by Exploiting Inherent Stochastic Characteristics

of Analog RRAM. in 2019 IEEE International Electron Devices Meeting (IEDM) 14.6.1-14.6.4 (IEEE,

2019). doi:10.1109/IEDM19573.2019.8993616.

[3] Li, X. et al. Enabling High-Quality Uncertainty Quantification in a PIM Designed for Bayesian

Neural Network. in 2022 IEEE International Symposium on High-Performance Computer Architecture

(HPCA) 1043–1055 (IEEE, 2022). doi:10.1109/HPCA53966.2022.00080.

[4] Dalgaty, T., Vianello, E. & Querlioz, D. Harnessing intrinsic memristor randomness with Bayesian

neural networks. in 2021 International Conference on IC Design and Technology (ICICDT) 1–4 (IEEE,

2021). doi:10.1109/ICICDT51558.2021.9626535.

2.The novelty of the research is not strong, in other words, not displayed. For example, the first

innovation of this work, that is, training Bayesian neural network using variational inference, has

already been reported for several times [2, 3]. And authors should provide some comment on the

computational efforts/cost of the off-chip training phase.

3.In the manuscript, when implementing the network, authors sample M weight values for each

synapse based on its probability distribution, and program them to the M memory array. I think it is

using 2xM memristors to the store sample value of a weight. However, the authors claimed that

using 2 memristors to implement each probability synapse weight. Please clarify this.

4.The γ scaling factor and the technological loss term both allow hardware to implement the weight

using memristor. What will the network performance be like with or without the technological loss

term? And it would be better to add some explanations about the definition of the γ scaling factor

(Eq.4).

5.For germanium-antimony-tellurium phase-change memories, it would be better to study how the

network performance is after one hour, one day, and two weeks. For hafnium-oxide-based

filamentary memristors, iterative programming techniques suffer from conductance relaxation [5],

which could also cause conductance drift like phase-change memory devices. Also, device-to-device

variability could also induce weight deviation. Their impacts on network performance should also be

investigated. It would be good if the authors could provide single-weight plots of target and

measured distribution.

[5] Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature

608, 504–512 (2022).

6.The demonstrated network models (32x16x9) and the dataset (ECG data) are quite simple. In order

to show the effectiveness of the proposed method more convincing, more complex simulated or

experimental network models and datasets (e.g., MNIST/CIFAR10) are required.

7.The manuscript lacks benchmark and comparison with other in-memory circuit implementation,

such as [1][2][3][4], which could significantly improve the impact of this work.

8.It would be better if the authors could improve the organization of this paper, especially

introduction section to highlight the novelty. It would be good if the authors could strengthen that

energy consumption estimation section.

9.Minor comments:

In line 172：“while the unseen disease data points are plotted in black” might be “while the unseen

disease data points are plotted in red”.

Reviewer #3 (Remarks to the Author):

The authors proposed a hardware-based Bayesian neural network (BNN) by employing the intrinsic

random resistance distribution of memristors (filamentary oxide memristor or phase change

memory) for edge applications, such as medical diagnoses. Some specific designs are reported: (1)

variational inference; (2) the synapse is evaluated using two memristors; (3) A critical “technological

loss” is introduced. In the application of classifying heartbeats signals, the proposed BNN shows

comparable accuracy, aleatoric and epistemic uncertainty estimations to software simulations.

My main concern about this manuscript is the novelty. The same team has already reported several

studies combining Beyesian theory with memristors. For example, in the work (“A memristor-based

Bayesian machine, Nature Electronics, 6, 52–63, 2023”), the authors used a memristor array to

implement the Bayesian inference where the probability is encoded as a bit stream. In this

manuscript, the authors describe the difference between this work and the prior work as “Ref.18

exploited the probabilistic nature of memristors to perform Bayesian learning. This approach can

only be applied to small-scale tasks, but unlike Bayesian neural networks, it does not suffer from the

limitations imposed by the correlation of mean value and standard deviation of memristors”.

However, I notice that there are substantial similarities as follow:

(1) Both are dedicated to energy-efficient edge applications

(2) Both works focus on using the random resistance of memristor to implement the Bayesian

inference/reasoning

(3) Both have similar architecture

(4) Same programming method: compare or add/subtract two memristor units to get random values

or conductance

In my opinion, this manuscript is an incremental improvement of the previous work, and the

improvement is insufficient for a publication in the Nature Communications.

Other Issues:

A major issue of this work is related to the number of neural networks and synaptic weight, which

causes a high energy consumption: 270 nJ/inference. It is better than the conventional GPU

hardware, but not competitive with memristive neural networks. For edge applications, power

consumption is a key concern. Can the authors demonstrate how to overcome this shortcoming, and

balance the necessity of uncertainty prediction and the power consumption? Apart from BNNs, a lot

of work has been done to predict uncertainty in ANNs. Besides BNN, is it possible to use memristors

to implement a high energy-efficient ANN with uncertainty prediction?

The authors argue that the mean value and the standard deviation of the resistance are correlated

for HfOx-based memristor array, while the probability distribution of parameters in BNN can “take

any shape”, which is preferred. It is well reported that the resistance distribution of some oxide

memristors is irregular. Why not use a memristor array that shows a random resistance distribution,

which favors the formation of BNN? What are the consideration when define the structures?

The domains of normal distribution of filamentary memristor and phase-change memory are quite

different. How does this distribution affect the accuracy, aleatoric and epistemic uncertainty

estimations? It is stated that “To extend the domain of normal distributions, we store each sample

of a probabilistic weight as the difference between the conductance values of two adjacent memory

cells”. Can we further extend the domain of normal distributions by using more memory cells? What

are the pros and cons? If one memory cell is used, do the accuracy, aleatoric and epistemic

uncertainty estimations deteriorate?

BNNs provide a high prediction confidence, but the classification accuracy is around 75%, which is

much lower than other reported memristor-based neural network for the similar bio-signal

classification (~95%, Sci. Adv. 2020; 6: eabc4797; Nat Commun 11, 4234, 2020). What is the reason

for the poor accuracy? Can it be improved to a comparable level?

The performance of the memristive neural network should be added to Table 1 to make the

comparison more convincing. The authors claim 800 times improvement in energy efficiency

comparing to the conventional GPU platform. However, the benchmarks and the comparison

method for GPU and memristor BNN are unclear. More details should be provided. It will make more

sense to compare at a system level rather than focusing on the processing part.

Overall, I do not recommend publishing this in Nature Communications, based on the limited

novelty. The manuscript is more suitable for other journals, such as Scientific Reports.

Response to Reviews

We would like to thank the anonymous reviewers for their time and excellent feedback, which has allowed us to improve the
quality of our manuscript. We have addressed the points raised by the reviewers and revised the manuscript accordingly. The
revision includes multiple new results and analyses, presented over 11 new Supplementary notes, 2 new Supplementary Tables,
and 10 new Supplementary Figures. We have also reworked the article for clarity, better benchmarking, and better positioning
with regard to the state of the art.

Reviewer 1 (Remarks to the Author)
General comments
In this manuscript, the authors reported a memristor-based Bayesian neural network (BNN) using the stochasticity of memristors.
In this study, two memristors were used to solve the problem of correlation between standard deviation and mean. The memristor
based BNN was trained using arrhythmia ECG data, and two different types of uncertainty were quantified. Using epistemic
uncertainty, unknown data was almost perfectly distinguished from trained data. The performance of the fabricated memristor
based 75 x 32 x 32 BNN hardware (Figure 5) was impressive. This reviewer basically agrees with the publication of this work
in this journal. However, the present form of the manuscript needs substantial reorganization because it is difficult to understand
the work’s crucial point

We thank the reviewer for his/her review and these comments.

Comment 1:
First, it would be much better to explain how the BNN in software works briefly in the introduction. The current manuscript
explains the limitation of conventional (or deterministic) neural networks for an outlier, and BNN performs better in identifying
such a problem. However, it does not explain how the software BNN works during the training and inference steps. This
explanation is especially necessary to understand why the µ and σ values must vary independently over a space as large as
possible. This will also help the readers understand the limitations of the current memristors and PCM devices regarding the
partial decorrelation of the two parameters.

Based on this comment and similar ones, we have entirely rewritten the introduction of our article. We reproduce here the
part of the new introduction addressing this comment:

The intrinsic randomness of memory nanodevices aligns naturally with the random variable nature of synapses in Bayesian
neural networks. An implementation of Bayesian neural networks with memory nanodevices can be achieved by programming
a neural network M times to reproduce the sampling operation necessary to derive M conventional neural networks from
the Bayesian one. However, a critical question remains: how can we train Bayesian neural networks to align with the
characteristics of memory nanodevices?

Synaptic weight probability distributions in Bayesian neural networks can take any shape1, 2, but the statistical properties
of memristors and phase change memories follow rigid physics rules3–5. Filamentary memristors, for instance, demonstrate
broader probability distributions at higher resistance states and narrower ones at lower resistance states6, 7, correlating
resistance mean value and standard deviation. To overcome this difficulty, two recent studies proposed new devices with tunable
inherent resistance probability distributions, using two-dimensional materials8 and magnetic devices9. These solutions, were
validated with simulations of Bayesian neural networks.

In the main contribution of our paper, we propose a dedicated technique for Bayesian neural networks – variational
inference augmented by a “technological loss” that leads to networks readily implementable with more conventional memory
nanodevices. Standard variational inference trains the mean value and standard deviation of each synapse via backpropagation
to identify plausible interpretations of the training data.

During the training process, the mean value and standard deviation of a synaptic weight evolve following different gradient
values and become fully decorrelated. Our added technological loss constrains these synaptic weights and standard deviations
to domains implementable with the selected nanodevices for a given technological implementation. We demonstrated this
technique’s effectiveness using standard nanodevices (filamentary memristors) to accomplish the first complete nanodevice-
based Bayesian neural network implementation for a real-world task—classifying types of arrhythmia recordings with precise

1

aleatoric and epistemic uncertainty. Our system utilized 75 arrays of fabricated 32×32 memristor chips integrating hafnium
oxide memristors and CMOS peripheral circuitry for in-memory computations based on Kirchoff’s laws.

Comment 2:
As the authors already mentioned, using two memory cells per weight gives a better µ vs σ performance. It would be better to
explain a bit more why this was the case.

In Figure 1a, we present the domain of normal distributions obtained using one (blue) and two (green) memory cells per
sample of a Bayesian probabilistic weight. When employing only one cell per sample, the domain of normal distributions is
limited to two lines, representing the distributions obtained with and without iterative programming, along with an additional
point representing the reset operation. Using two cells per sample allows for a reduction in the dependencies between µ and σ ,
while simultaneously increasing the available space for both parameters (µ and σ).

As demonstrated in Figure 1b, using two cells per sample significantly improves network performance compared to the case
of one cell per sample. A broad spectrum of possibilities for µ is essential for achieving high accuracy, while a broad spectrum
of possibilities for σ is necessary for uncertainty estimation. Synapses with small σ values ensure minimal output variability
for well-known situations. Conversely, synapses with large σ provide output variability for unknown input data, facilitating
uncertainty estimation.

In the revised version of the manuscript, these new results are included in the new Supplementary Note 7.

Figure 1. Impact of the number of memristors per sample of a Bayesian probabilistic weight a Domain of the normal
distribution obtained experimentally by storing samples on one (blue), and two (green) memristors. µ and σ are normalized to
the minimum achievable standard deviation, σmin, obtained with different experimental conditions.b Network performances
obtained by storing samples on one, and two memristors. The training process was repeated ten times, and each inference was
repeated 50 times with M = 50 samples. The final result represents the average performance obtained from the 500 inferences.

Comment 3:
Related comment 2: one of the most crucial factors for implementing the memristor-based BNN is solving the problem of
the correlation between µ and σ using the device physics. In this study, the method of using two memristors proposed in
previous studies was used to solve the correlation problem. This reviewer believes that technological loss is to compensate for
insufficient decorrelation. Therefore, the “technological loss” term appears to be the most crucial factor in determining the
novelty of this paper, but there is not enough explanation for the technological loss in this manuscript. A detailed description of
how the technological loss was defined and why it is defined as such needs to be added. In addition, it is necessary to explain
the principle of how the technological loss matches the classical variational inference domain (θ) to the domain representable
in the memristor (Γ). Also, there was almost no explanation of how this technological loss term was used during the training
step, making a clear understanding of this important term difficult.

The proposed hardware-calibrated training is a novel variation of the popular Bayes By Backprop method. During the
training process, the technological loss term, −log(UΓ(θ)), is incorporated into the overall loss function

Loss = LossV I − log(UΓ(θ)). (1)

The term LossV I corresponds to the standard loss used in Bayes By Backprop, while UΓ(θ) is determined by the experimental
data, θexp, with the aim of approximating a uniform function over Γ while ensuring differentiability at the boundary.

UΓ(θ) = tanh(β · f (θ)), (2)

2/23

where f (θ) is defined as

f (θ) =
1

δ
√

2π
e−

(θ−θexp)2

2δ2 , (3)

where θ = (µ,σ) and θexp is the nearest experimental point to θ achieved in hardware (i.e., presented in Fig. 3e of the main
article). The parameters δ and β control the rate of increase of the technological loss outside Γ and the speed at which the
technological loss approaches a minimum value close to the experimental points, respectively. When the value of θ = (µ,σ) is
significantly different from the closest experimental value θexp, the function f (θ) approaches zero, resulting in a large value for
the technological loss. This has the effect of penalizing such values of θ and encourages the network to decrease the overall
loss by bringing θ closer to θexp. Conversely, when θ is sufficiently close to θexp, f (θ) is large enough to cause UΓ to saturate
to 1, thereby resulting in a null technological loss. In such cases, the network is rewarded for such values of θ and can reduce
the overall loss according to the standard rules of Bayes By Backprop. This balance between the use of Bayes By Backprop
and the incorporation of the technological loss is achieved in a continuous and smooth manner, ensuring that the network can
effectively learn and optimize while taking into account the technological constraints.

We now included this information in the Methods section. The rewritten Introduction also highlights more prominently that
the technological loss is the key novelty of our approach.

Comment 4:
A related comment is that the explanation for Fig. 4 is too terse, which must comprise the most crucial part of this work. To this
reviewer, the scattered data in (a) seem to be the weight (or µ and σ) values calculated off-chip during the training step without
considering the technological loss term. In (b), these values are corrected to fit into the practically available µ and σ range
(inside the solid line), but how this could be the case was not explained in detail, despite its importance.

Figure 4a indeed presents the weight data (µ and σ) of the synapses obtained after off-chip training of our reference
arrhythmia classification task, using the popular Bayes-By-Backprop method, without modification. These data are expressed
in µS after the mapping factor γ has been computed, as explained in detail in the Methods section. It is evident that this weight
data do not entirely fit within the range of values range achievable with filamentary memristors (materialized by the solid
Γmemristor curve).

By contrast, Figure 4b shows the weight data obtained when using our new proposed hardware-calibrated off-chip training,
incorporating the technological loss term in the loss function (Eq. 4), described in Comment 3. Figure 4b show that the approach
is very successful: all weight data now fits within the range of values range achievable with filamentary memristors. Figures 4c
and 4d show equally successful results in the PCM case.

We have now revised Figure 4 to clarify it, with clear labels and the addition of a colorbar. We have also rewritten its
caption entirely and improved its description in the main text.

3/23

Figure 2. Domains of normal distribution obtained durign off-chip training using the popular Bayes By Backprop
method and the proposed technologically plausible off-chip trining, incorporating the technological loss term in the loss
function (Eq. 4). a Domain of normal distributions θ=(µ , σ) obtained after training with the classical variational inference
method and mapping the software values to the conductance range achievable with filamentary memristors (blue) and
phase-change memories (green). b Domain of normal distributions θ=(µ , σ) obtained after training with the proposed method
calibrated on filamentary memristors (blue) and phase-change memory experimental data (green).

Comment 5:
In this work, the random statistical variations of the weight deviations in the software BNN during each training and inference
step were replaced (represented) by the random variations of the memristor and PCM devices of the 75 CBAs, which represent
the cell-to-cell variation. However, it is unclear if the cell-to-cell variation of the memristors and PCM, shown in Fig. 3, can
replace the step-to-step variation in the software BNN. A related comment is that each of these memory cells has switching
cycle-to-cycle variations. Could this additional variation have any influence on the performance?

This is an excellent question. Based on new measurements, we have included a thorough discussion of this point in the
revised manuscript, presented in a new Supplementary Note 3. We summarize its main point here.

First, we check that device-to-device variability is stable when programming the array multiple times. (Figures 3a and 3b,
for memristors and phase change memories, respectively). Each data point represents the mean and standard deviation of a
Gaussian distribution obtained by programming 1,000 distinct devices, with different points representing the 1,000 cycles. We
see that the cycle-to-cycle variability does not affect the mean and standard deviation of the Gaussian distribution obtained
from exploiting cell-to-cell variation.

To understand this result further, Figures 3c and 3d compare the probability density of 1,000 distinct devices programmed
once (device-to-device variability) with the probability density of one device cycled 1,000 times (cycle-to-cycle variability)
for memristors and PCM technologies, respectively. Both sources of variability exhibit an equivalent impact on conductance
variability.

The reason for the apparent equivalence between device-to-device and cycle-to-device variability differs for the two types
of devices. For memristors, the conductance depends on the shape of the filament, which varies cycle-to-cycle and depends
weakly on the specific properties of a particular structure. In the case phase change memories, by contrast, the equivalence

4/23

originates solely due to the use of iterative programming.
Based on these results, we do not anticipate any significant impact from the additional cycle-to-cycle variability on the

network’s performance.

Figure 3. Impact of cycle-to-cycle variability on cell-to-cell variations for memristors and PCMs. (Top) Scatter plot
illustrating the impact of cycle-to-cycle variability on cell-to-cell variation for memristors (a) and phase change memory (PCM)
(b). Each data point represents the mean and standard deviation of a Gaussian distribution obtained by programming 1,000
distinct devices, with different points representing 1,000 cycles. (Bottom) Probability density of 1,000 cells programmed under
the same conditions, depicting device-to-device variability (blue), compared with the probability density of one device
programmed 1,000 times for both memristor (c) and PCM (d) technologies.

Comment 6:
Figure 1 should be expressed more clearly. For example, in Fig 1a and 1d, the number of output neurons and the output current
should be displayed accurately according to the number of classification classes. (or insert an omission mark) This reviewer
initially had a problem understanding this figure because there are three classification cases (clear, unclear, unknown) and
three output neurons, which invoked a feeling that each output neuron represents the three classification cases. Finally, it was
understood that these output neurons still correspond to the 10 classes of the ECG signals.

We thank the reviewer for this comment. We modified the Figure accordingly. The new version is reproduced in this
response as Fig. 4.

5/23

Figure 4. General architecture of the Bayesian neural network. a Schematic of the Bayesian neural network used for heart
disease (arrhythmia) classification. In Bayesian neural networks, the weights are represented by probability distributions, thus
naturally including uncertainty in the model. b Example of output neuron activation distributions, obtained for certain output,
uncertain output, due to noisy input data, and unknown data (i.e. out-of-distribution data). c Experimental setup. d Hardware
implementation of a Bayesian neural network by combining multiple versions of ANNs.

Comment 7:
Until Figure 4, filamentary memristor and PCRAM were explained together, but Figure 5 shows only the result of the filamentary
memristor, which is confusing. Adding the PCRAM classification results to Fig. 5 or moving the PCRAM contents of Figs 2 to
4 to the supporting information would improve the consistency of the work.

We thank the reviewer for this comment. We have followed this recommendation and included in Figure 5 of the main
text the results obtained with PCM. The new version of Figure 5 in the main text is reproduced in this response as Figure
5. To ensure readability, we have also decided to move the ROC curves (Figure 6), for both PCM and OxRAM, to a new
Supplementary Note 1. We have also extensively revised the discussion of Fig. 5 in the main text to adjust to these changes.

6/23

Figure 5. Measurements of the fabricated memristor-based Bayesian neural network and simulations of a PCM
Bayesian neural network. a tSNE visualization of input data, different colors representing different classes (diseases). Nearby
points correspond to similar data and distant points to dissimilar data. b tSNE visualization of experimental data classification.
The different colors represent points correctly or incorrectly predicted and unseen data. c Experimental probability density
distribution of the aleatoric uncertainty for correct predictions, incorrect predictions and unseen diseases, using filamentary
memristors. d Experimental probability density distribution of the epistemic uncertainty for correct predictions, incorrect
predictions and unseen diseases, using filamentary memristors. e Simulated probability density distribution of the aleatoric
uncertainty for correct predictions, incorrect predictions and unseen diseases for a conventional neural network with the same
architecture and using f loat32 encoding for the synapses. f Simulated probability density distribution of the aleatoric
uncertainty for correct predictions, incorrect predictions and unseen diseases, using PCMs. g Simulated probability density
distribution of the epistemic uncertainty for correct predictions, incorrect predictions and unseen diseases, using PCMs. h
Measured (memristor) and simulated (PCM) accuracy, epistemic uncertainty, and aleatoric uncertainty performance (calculated
as the area of the ROC curves presented in Suppl Note 1) as a function of the number of devices per synapse.

7/23

Figure 6. Receiver Operating Characteristic (ROC). a ROC curve corresponding to the differentiation between correct
prediction and incorrect prediction, based on aleatoric uncertainty measured on the proposed memristor-based Bayesian neural
network (green) and simulated (weights stored as f loat32 real numbers) for Bayesian (black) and conventional neural network
with the same architecture (red). b ROC curve corresponding to the differentiation between known and unknown data, based on
epistemic uncertainty measured on the proposed memristor-based Bayesian neural network (green) and simulated (weights
stored as f loat32 real numbers) for Bayesian (black) and conventional neural network with the same architecture (red). c ROC
curve corresponding to the differentiation between correct prediction and incorrect prediction, based on aleatoric uncertainty
measured on the proposed PCM-based Bayesian neural network (green) and simulated (weights stored as f loat32 real
numbers) for Bayesian (black) and conventional neural network with the same architecture (red). d ROC curve corresponding
to the differentiation between known and unknown data, based on epistemic uncertainty measured on the proposed PCM-based
Bayesian neural network (green) and simulated (weights stored as f loat32 real numbers) for Bayesian (black) and
conventional neural network with the same architecture (red).

8/23

Comment 8:
A more detailed explanation of the array mapping method needs to be added. In addition, it is necessary to analyze how much
the performance of BNN depends on the distribution when the distribution is adjusted using the program-and-verify method.
Was the result vary significantly depending on the programming method?

We have now incorporated a new “Mapping synaptic weights to memory arrays” section in the Methods section of the
article and included a new Supplementary Note 8 analyzing the impact of the program-and-verify method. We summarize their
content here.

Array mapping method: First, the desired weights, θ = (µ,σ), are calculated using the proposed off-chip hardware calibrated
method based on the technological loss (see the response to Comment 3). To convert the Gaussian distribution into microsiemens,
the scaling factor, γ , is utilized. Second, each Gaussian is associated with the closest experimental data point obtained by
programming two memory cells (Figure 3e in the main text). The metric used for this association is the KL divergence. Third,
each Gaussian is transferred onto N crossbar arrays, where N corresponds to the number of samples of a Bayesian probabilistic
weight. It is important to note that each sample corresponds to two memory cells, representing one positive and one negative
weight.

Impact of the program-and-verify (iterative programming) method: Regarding the impact of iterative programming, Figure
7a illustrates the domain of normal distributions obtained with (green) and without (blue) iterative programming, in the case of
filamentary memristors. The inclusion of iterative programming expands the range of achievable σ values in experimental
results. As shown in Figure 7b, a broad spectrum of possibilities for σ improves the estimation of aleatoric uncertainty of 3%
and the accuracy of 2%. Synapses with small σ ensure minimal output variability for well-known inputs. Conversely, synapses
with large σ are needed to to provide output variability for unknown input data.

For phase change memory, by contrast, iterative programming is fundamental to programming the devices and is used in all
cases.

Figure 7. Impact of iterative programming. a Domain of the normal distribution obtained experimentally by storing
samples without (blue) and with (green) iterative programming. µ and σ are normalized to the minimum achievable standard
deviation, σmin, obtained with different experimental conditions. b Network performances obtained by storing samples without
and with iterative programming. The training process was repeated ten times, and each inference was repeated 50 times with
M = 10 samples. The final result represents the average performance obtained from the 500 inferences.

Comment 9:
An analysis of why memristor-based BNN outperforms the ideal case (f loat32) should be added. It is not well understood that
the performance of memristor based BNN, where the correlation of statistical factors due to device physics still exists, is better
than the ideal case free from the problem.

We are grateful for the opportunity to clarify a point that was inadequately explained in the initial version of our manuscript.
The training process of a BNN inherently possesses a random nature: when training a BNN multiple times using the same
dataset, small variations arise in its performance, particularly in terms of accuracy and uncertainty evaluation. For this reason,
in the initial submission, Table 1 presented the mean performance of ideal case BNNs (f loat32) across ten training processes.

9/23

For the hardware experiment, we also conducted ten training runs. Then, we selected the neural network that exhibited the
best performance in software, and we programmed this network onto the 75 memristor arrays, and measured experimentally its
performance, which we reported in Table 1. The side-to-side presentation of a mean result in the f loat32 case, and of a chosen
case in the experimental case, created the impression that the experimental outcomes slightly surpassed those of the ideal case,
which is not the case.

To rectify this misinterpretation, we have now also included the “best performance” achieved in the ideal case in Table 1,
which matches the experimental result in terms of accuracy performance, while slightly surpassing it in terms of raw accuracy.

Conventional
ANN

(f loat32)

Bayesian
(f loat32)

Bayesian
Hardware

(filamentary
memristor

experimental)

Bayesian
Hardware

(filamentary
memristor
simulation)

Bayesian
Hardware

(phase-change
memory

simulation)

Accuracy
classification

best: 81%
mean: 80%

best: 80%
mean: 79%

75% best: 76%
mean: 76%

best:73%
mean: 73%

Prediction
confidence
(aleatoric)

[AUC]

best: 0.90
mean: 0.79

best: 0.92
mean: 0.90

0.91 best:0.91
mean: 0.89

best:0.85
mean: 0.87

Anomaly
detection

(epistemic)
[AUC]

0.5 best: 1
mean: 0.95

0.99 best: 0.96
mean: 0.92

best:0.96
mean: 0.82

Table 1. Comparison of accuracy and uncertainty prediction performances

Changes to the manuscript: We have made several modifications to enhance the manuscript’s clarity. Table 1 now includes
the best f loat32 performance data. We have revised the Results section to explicitly compare the f loat32 case’s performance
with the experimental findings. In the Methods section, we made it clear that the BNN programmed experimentally was chosen
from ten different training trials.

Comment 10:
According to the inference process flow shown in Supplementary Figure 6 and the main text, the device conductance data
should be trained off-chip by the backpropagation algorithm. Does the power mentioned in the main text include this neural
network training process?

The power consumption estimates discussed in the main text, both for the memristor-based approach and for the GPU
control, are specific to the inference phase. Training is performed off-chip on a GPU server, and subsequently, the network
parameters are transferred to all the chips.

Corresponding changes to the manuscript: We have added “inference” wherever talking about energy numbers.

Comment 11:
Minor comments: There are typos and grammar errors. - The caption of Fig. 2 also needs to be revised. Figures 2 (a), (b), (d)
and (e) are TEM images, not SEM images. - In Fig. 5c on page 5, ‘exprimental’ -> ‘experimental’, above the graph. - In line
172 on page 7, ‘plotted in black’ -> ‘plotted in red’ - In supplementary Fig.6, ‘To each distribution correspond 2 programming
conditions ’ -> ‘Each distribution corresponds to 2 programming conditions ’, ‘The three currents give an activation’, and ‘The
activation gives three input patterns ’

We have reviewed and corrected all these typos, we thank the reviewers for catching them!

10/23

Reviewer 2 (Remarks to the Author)
General comments
This manuscript reports the implementation of Bayesian neural network using memristor-based electronics, a critical im-
provement toward efficiently implementing Bayesian inference based on the authors’ previous work (1. Dal ex-situ). As a
demonstration, such electronics is used to process classification of heartbeats and estimate the certainty of predictions. This
approach has advantage of lower energy consumption comparing to conventional CMOS electronic implementations.

We thank the reviewer for his/her review and these comments.

Comment 1:
This is not the first paper about using memristors to implement Bayesian neural network. Previous papers [2 Lin BNN real][3 Li
Enabling] and the authors’ previous work [4, Dalgaty harnessing res rand...] proposed to exploit different sources of variability
in memristors to implement Bayesian inference. It is important to cite them in the state of the art and illustrate the novelty of
this paper, if possible, compare with them.

We would like to thank the reviewer for bringing these works to our attention, which explore the utilization of cell-to-cell
variability in populations of memory devices for storing Bayesian probabilistic weights. In response to this valuable feedback,
we have entirely rewritten the introduction highlighting the novelty of our work more explicitly and incorporating a more
extensive discussion the state of the art, including these article. Additionnally, we have included a comparison as a more
detailed comparison between our work and the state of the art in a new Supplementary Note 14. We summarize its content here.

In the existing literature, several works have also investigated the potential of using memristors to store Bayesian probabilistic
weights. We have compiled a comprehensive list of these works in Table 2, presenting a side-by-side comparison with our
own work. Notably, our experimental Bayesian neural network stands out as the only system capable of performing on-chip
inference, thanks to a novel hardware-calibrated training algorithm based on a variation of the popular Bayes By Backprop
method. Conversely, other works in the state of the art primarily relied on computer simulations calibrated using experimental
data. Furthermore, we detected out-of-distribution samples for the first time through the evaluation of epistemic uncertainty.

This work [1,4] [2] [3]

Technology RRAM H f O2 RRAM H f O2
RRAM

TaOx/H f Ox
RRAM

PCM GST

Mechanism for
probabilistic
distribution
construction

Population of devices Population of
devices

Population of
devices + read to

read

Population of
devices + read to

read

Training Algorithm

Hardware calibrated
training

(Bayes By Backprop
+ technological loss)

Markov Chain
Monte Carlo

Bayes By
Backprop

Stochastic Weight
Averaging
Gaussian

Scalability Yes No Yes Yes

Inference on Chip Yes No No No

Uncertainty
Evaluation Yes No Yes Yes

Out of Distribution
Detection Yes No No No

Table 2. Comparison of our work with approaches of the literature using memristors to store Bayesian probabilistic weights.

Comment 2:
The novelty of the research is not strong, in other words, not displayed. For example, the first innovation of this work, that is,
training Bayesian neural network using variational inference, has already been reported for several times [2, 3]. And authors

11/23

should provide some comment on the computational efforts/cost of the off-chip training phase.

We have now entirely rewritten the introduction of paper to highlight the novelty of our work more explicitly. The key
novelty – which allowed our experiments to work – was the introduction of a “technological loss” in variational inference to
perform hardware-calibrated training, which deviates from the exisiting approach of using classical variational inference for
off-chip training. During the training process, the technological loss term, −log(UΓ(θ)), is incorporated into the overall loss
function

Loss = LossV I − log(UΓ(θ)). (4)

The term LossV I corresponds to the standard loss used in Bayes By Backprop, while UΓ(θ) is determined by the experimental
data, θexp, with the aim of approximating a uniform function over Γ while ensuring differentiability at the boundary.

UΓ(θ) = tanh(β · f (θ)), (5)

where f (θ) is defined as

f (θ) =
1

δ
√

2π
e−

(θ−θexp)2

2δ2 , (6)

where θ = (µ,σ) and θexp is the nearest experimental point to θ achieved in hardware (i.e., presented in Fig. ?? of the main
article). The parameters δ and β control the rate of increase of the technological loss outside Γ and the speed at which the
technological loss approaches a minimum value close to the experimental points, respectively. When the value of θ = (µ,σ) is
significantly different from the closest experimental value θexp, the function f (θ) approaches zero, resulting in a large value for
the technological loss. This has the effect of penalizing such values of θ and encourages the network to decrease the overall
loss by bringing θ closer to θexp. Conversely, when θ is sufficiently close to θexp, f (θ) is large enough to cause UΓ to saturate
to 1, thereby resulting in a null technological loss. In such cases, the network is rewarded for such values of θ and can reduce
the overall loss according to the standard rules of Bayes By Backprop. This balance between the use of Bayes By Backprop
and the incorporation of the technological loss is achieved in a continuous and smooth manner, ensuring that the network can
effectively learn and optimize while taking into account the technological constraints. The novel proposed hardware-calibrated
training is fundamental to guarantee good performances in terms of both accuracy and uncertainty estimation (see Figure 8).

In order to compare the computational effort of the proposed hardware-calibrated training with the classical Bayes by
Backprop method, we conducted a series of experiments to measure the time required for 100 epochs on a batch of 100 images
using each approach. Our findings indicate that the network trained with the classical Bayes by Backprop method completed
the training process in 22 seconds, while the hardware-calibrated training algorithm took 120 seconds. This implies that our
model’s training process is approximately six times more computationally demanding than the classical Bayes by Backprop
approach. However, it is crucial to emphasize that this training phase is a one-time requirement for the model. Once the model
is trained, it can be deployed on any chip for inference at the edge.

We now included this information in the Methods section. Furthermore, considering this comment and similar ones, we
have revised the introduction to better elucidate the novelty of our research and provide a more comprehensive comparison with
the existing state of the art.

Comment 3:
In the manuscript, when implementing the network, authors sample M weight values for each synapse based on its probability
distribution, and program them to the M memory array. I think it is using 2xM memristors to the store sample value of a weight.
However, the authors claimed that using 2 memristors to implement each probability synapse weight. Please clarify this.

Thanks to this comment, we have realized that the initial version of the manuscript was sometimes using inconsistent
language, calling a synapse sometimes the 2xM devices, and sometimes the two devices of a unique sample. We have followed
the recommendation of the reviewer and, throughout the manuscript and its Supplementary Notes, we now call “synapse” the
ensemble of samples (i.e., 2xM devices), and pairs of device weight samples or weight values, depending on context.

Comment 4:
The γ scaling factor and the technological loss term both allow hardware to implement the weight using a memristor. What will
the network performance be like with or without the technological loss term? And it would be better to add some explanations
about the definition of the γ scaling factor (Eq.4).

12/23

Definition of the γ scaling factor: The γ scaling factor (Eq. 4 in the Methods of the main manuscript) simply multiplies
a constant to the Bayesian weights obtained after the off-chip training. This conversion is performed to transform the
Bayesian weights from arbitrary units to microsiemens. Its value is obtained using a rigorous methodology by minimizing
the Kullback-Leibler divergence between the experimental and simulated normal distributions in our reference arrhythmia
detection task.

To clarify this methodology, we have overhauled the “Correspondance between weight and conductance” section of Methods
in the revised version of the manuscript.

Importance of the technology loss: We have now included a new Supplementary Note 9, which compares network
performance with and without the use of the technological loss. We summarize its content here.

The device physics of both filamentary memristors and phase change memory imposes limitations on the range of Bayesian
weights that can be stored (see Figure 3e in the main text). These limitations result in significant performance losses when
attempting to transfer a model trained off-chip using the classical Bayes By Backprop method onto hardware chips. The issue
arises because the training algorithm may require a weight that cannot be implemented in hardware. To address this challenge,
in this work, we proposed a hardware-calibrated training method that considers the technological constraints associated with
memristor or phase change memory technology. By introducing a technological loss term, this approach restricts the domain of
achievable weights to those that can be experimentally realized with the given technology. In this note, we show the impact of
using this technological loss.

Figures 8a and b, described with more details in the new Supplementary Note 9, compare the network accuracy and
uncertainty estimation obtained by training a Bayesian neural network with and without using the technological loss. The
results confirm that the technological loss allows for important improvement in the network performances in terms of both
accuracy and uncertainty estimation. We can also observe that without the technological loss, the degradation is greater for
phase change memories than for filamentary results. This result was predictable as the technological constraints are greater for
phase change memories than filamentary memristors (see Fig. 3 of the main article).

Figure 8. a Network performances obtained on a memristor based Bayesian network trained with the popular Bayes By
Backprop method and the novel hardware calibrated training algorithm based on the technology loss. b Network performances
obtained on a PCM based Bayesian network trained with the popular Bayes By Backprop method and the novel hardware
calibrated training algorithm based on the technology loss. The training process was repeated ten times, and each inference was
repeated 50 times with M = 10 samples. The final result represents the average performance obtained from the 500 inferences.

Comment 5:
For germanium-antimony-tellurium phase-change memories, it would be better to study how the network performance is after
one hour, one day, and two weeks. For hafnium-oxide-based filamentary memristors, iterative programming techniques suffer
from conductance relaxation [5], which could also cause conductance drift like phase-change memory devices. Also, device-to-
device variability could also induce weight deviation. Their impacts on network performance should also be investigated. It
would be good if the authors could provide single-weight plots of target and measured distribution.

Thank you for these excellent recommendations. We have included two new Supplementary Notes (5 and 6), based on new
measurements and simulations, to address them. We summarize their main content here.

13/23

Conductance relaxation in hafnium oxide-based memristors. Figure 9 compares the probability density of 2,048
memristors after relaxation (six seconds after iterative programming) with the target conductance values. Relaxation causes
a rapid spread in the conductance of the devices, typically occurring within a few seconds after programming7. Figure 10
shows the technologically plausible domain of the normal distributions, Γmemristor, over a span of two weeks. These results
confirm that the conductance distributions remain stable after the initial six seconds. For this reason, we used the conductance
distributions after relaxation as experimental data, denoted as θexp = (µexp,σexp), to define the technological loss term (Eq. 3 in
Comment 3) to ensure a stable programming of the Bayesian neural networks.

Figure 9. Probability density of 2,048 memristors after relaxation (6 seconds after iterative programming) and the target
conductance values used during the iterative programming.

Figure 10. Domain of the normal distributions (Γmemristor) measured at different times after programming. a Right after
relaxation at t=6 second and at t=1 hour, b at t=1 hour and at t=1 week, c at t=1 week and at t=2 weeks.

Network performances over time, for hafnium oxide-based memristors and phase change memories.. To study the
evolution of network performance over time, we conducted simulations using calibrated experimental data from Figure 10 for
memristors and Figure 5 in Supplementary Note 4 for phase change memory. Since the effects of phase change memory drift
and memristor conductance relaxation become negligible after one day and after six seconds, respectively, the technological
loss term is based on the technologically plausible domain of normal distributions obtained after one day for phase change
memory and after six seconds for memristors. The simulations involve two separate training processes, one for memristors and
another for phase change memory. Inference simulations were repeated 50 times, and the error bars on the bar plots represent
one standard deviation. Importantly, our results, reported in Fig. 11, demonstrate that the Bayesian Neural Network exhibits
remarkable resilience to challenges posed by conductance relaxation and drift.

14/23

Figure 11. Network performances in terms of accuracy and uncertainty estimation over time for Bayesian neural network
based on memristors a and PCMs b.

Comment 6:
The demonstrated network models (32x16x9) and the dataset (ECG data) are quite simple. In order to show the effectiveness
of the proposed method more convincing, more complex simulated or experimental network models and datasets (e.g.,
MNIST/CIFAR10) are required.

In the main body of the paper, our focus was to experimentally demonstrate our idea, which led us to present it using a
selected simple dataset suitable for the size of the hardware. However, it is indeed crucial to demonstrate the scalability of our
approach to larger datasets with more complex models. As suggested, we have included new results based on the MNIST and
CIFAR datasets in the new Supplementary Notes 11 and 12, respectively. We summarize their main results here.

For this purpose, we first simulated, using the simulator validated in Supplementary Note 2, a two-layer f loat32 determinis-
tic convolutional neural network followed by a two-layer (1813, 128, 10) fully connected Bayesian neural network to address
the MNIST dataset. The training of the Bayesian layers was calibrated on the experimental data from memristors using the
technological loss described in the main article. The trained model achieved an accuracy on the MNIST test dataset of 99.2%
with 50 samples using experimental distribution achieved with two filamentary memristors per sample.

To evaluate the epistemic uncertainty performances, we incorporated into our test dataset the Kuzushiji-MNIST (KMNIST)
dataset10, as shown in 13b, which includes ten Hiragana characters in the MNIST format, and naturally provides unseen data.
Figures 12c and d depict the probability density distributions of the aleatoric and epistemic uncertainty, respectively, using the
same format as Fig. 5 of the main article. Different colors are used to represent correct predictions (blue), incorrect predictions
(orange), and unseen data (red). We observed that the aleatoric uncertainty is lower than 0.25 for 99% of correctly classified
data points, while it exceeds 0.25 for 81% of incorrectly classified data points and unseen disease data points. Additionally, 91%
of the unseen images exhibit epistemic uncertainty higher than 0.25. These results demonstrate the capability of the Bayesian
neural network to identify new and unknown images in the MNIST case.

15/23

Figure 12. Uncertainty estimation on MNIST dataset. a Images used for training. b Images used for out of distribution
detection. c Probability density distribution of the aleatoric uncertainty for correct predictions, incorrect predictions and unseen
diseases. d Probability density distribution of the epistemic uncertainty for correct predictions, incorrect predictions and unseen
diseases.

Then, we evaluated our approach on the CIFAR-10 image recognition dataset11, illustrated in Figure 13a. Our focus was
specifically on evaluating our method for the last fully connected layers and used convolutional layers pretrained on ImageNet.
We resized CIFAR images from 32x32 to 220x220 pixels. Additionally, we employed horizontal flipping to augment the dataset,
effectively doubling its size. First, we applied the convolutional layers of a deterministic ResNet-1812 network pretrained on
ImageNet (available in the PyTorch library) to reconstruct a features-based dataset. Next, we used a two-layer (512, 512,10)
fully connected Bayesian neural network to classify CIFAR-10 features. The training was calibrated on the experimental data
from memristors using the technological loss described in the main article. The trained model achieved an accuracy of 88%
with 50 samples using experimental distribution achieved with two filamentary memristors per sample. We used the simulator
validated in Supplementary Note 2,

To evaluate the epistemic uncertainty performances, we added unseen data to our test dataset. We used the data of the
flower category of the CIFAR-100 dataset, shown in Figure 13b, which is not present in CIFAR-10. Figures 13c and d present
the calculated aleatoric and epistemic uncertainties for correct predictions (blue), incorrect predictions (orange), and unseen
data (red), plotted in the same format as Fig. 5 in the main body text. The aleatoric uncertainty is lower than 0.5 for 82% of all
correctly classified data points, while it is higher than 0.5 for 75% of all incorrectly classified data points and unseen images.
89% of the unseen images have an epistemic uncertainty higher than 0.25. These results indicate that the Bayesian neural
network can evaluate uncertainty and identify new unknown images in the complex CIFAR dataset.

16/23

Figure 13. Uncertainty estimation on CIFAR dataset. a Images used for training. b Images used for out of distribution
detection. c Probability density distribution of the aleatoric uncertainty for correct predictions, incorrect predictions and unseen
diseases. d Probability density distribution of the epistemic uncertainty for correct predictions, incorrect predictions and unseen
diseases.

Comment 7:
The manuscript lacks benchmark and comparison with other in-memory circuit implementation, such as [1][2][3][4], which
could significantly improve the impact of this work.

We have now incorporated a new Supplementary note 14 benchmarking our approach with these works. We have also
included the main elements of this comparison in our rewritten version of the Introduction. We described these changes in our
answer to Comment 1 of Reviewer 2.

Comment 8:
It would be better if the authors could improve the organization of this paper, especially introduction section to highlight the
novelty. It would be good if the authors could strengthen that energy consumption estimation section.

Based on this comment and other comments from reviewers one and two, we have completely overhauled the introduction
section to highlight the novelty more prominently. We have also considerably improved the introduction to Bayesian neural
networks and to our memory-based implementation. Based on this comment and other comments of reviewers 2 and 3, we have
entirely redone the whole energy consumption estimation, based on better and more rigorous analysis. Its main findings are
described in the main body text, and its details in the new Supplementary Note 15. We hope the reviewers will like our revised
manuscript.

17/23

Comment 9:
Minor comments In l, based on line 172 while the unseen disease data points are plotted in black might be while the unseen
disease data points are plotted in red.

We have corrected this error, thank you for catching it.

18/23

Reviewer 3 (Remarks to the Author)
General Comments:
The authors proposed a hardware-based Bayesian neural network (BNN) by employing the intrinsic random resistance
distribution of memristors (filamentary oxide memristor or phase change memory) for edge applications, such as medical
diagnoses. Some specific designs are reported: (1) variational inference; (2) the synapse is evaluated using two memristors; (3)
A critical “technological loss” is introduced. In the application of classifying heartbeats signals, the proposed BNN shows
comparable accuracy, aleatoric and epistemic uncertainty estimations to software simulations. My main concern about this
manuscript is the novelty. The same team has already reported several studies combining Beyesian theory with memristors.
For example, in the work (“A memristor-based Bayesian machine, Nature Electronics, 6, 52–63, 2023”), the authors used a
memristor array to implement the Bayesian inference where the probability is encoded as a bit stream. In this manuscript, the
authors describe the difference between this work and the prior work as “Ref.18 exploited the probabilistic nature of memristors
to perform Bayesian learning. This approach can only be applied to small-scale tasks, but unlike Bayesian neural networks, it
does not suffer from the limitations imposed by the correlation of mean value and standard deviation of memristors”. However,
I notice that there are substantial similarities as follow: (1) Both are dedicated to energy-efficient edge applications (2) Both
works focus on using the random resistance of memristor to implement the Bayesian inference/reasoning (3) Both have similar
architecture (4) Same programming method: compare or add/subtract two memristor units to get random values or conductance.
In my opinion, this manuscript is an incremental improvement of the previous work, and the improvement is insufficient for
publication in the Nature Communications.

We thank the reviewer for his/her review and these comments.

Comment 1:
A major issue of this work is related to the number of neural networks and synaptic weight, which causes a high energy
consumption: 270 nJ/inference. It is better than the conventional GPU hardware, but not competitive with memristive neural
networks. For edge applications, power consumption is a key concern. Can the authors demonstrate how to overcome this
shortcoming, and balance the necessity of uncertainty prediction and the power consumption? Apart from BNNs, a lot of
work has been done to predict uncertainty in ANNs. Besides BNN, is it possible to use memristors to implement a high
energy-efficient ANN with uncertainty prediction?

We agree with the reviewer that implementing Bayesian neural networks is more challenging compared to ANN: Bayesian
neural networks involve repeated sampling and feed-forward computing. However, ANNs lack uncertainty quantification. They
often exhibit incorrect yet overconfident predictions, which can lead to catastrophic consequences in safety-critical systems like
robots, autonomous vehicles, or clinical practice13.

Still, two principal methods have been developed for estimating uncertainty in non-Bayesian artificial neural networks
(ANNs), and it is very interesting to think if they could be used for a memristor-based hardware implementation. The first, deep
ensembles, trains multiple identical ANNs, creating a prediction distribution but offering no energy or hardware benefits14.
Moreover, implementation challenges arise when transferring high-precision parameters into the imprecise conductance states
of resistive memory in memristor-equipped ANNs. In contrast, Bayesian neural networks adeptly exploit memristor variability
to store random variables, making them ideal for resistive memory-based hardware.

The second method, Monte Carlo (MC) dropout, generates a prediction distribution by randomly disabling nodes within the
model15, 16. However, the requirement for multiple forward passes precludes any reduction in energy consumption, and it is not
natural to implement in a memristor-based circuit.

Thus, memristor-based Bayesian neural networks emerge as the more promising approach for both efficient uncertainty
quantification and energy conservation via analog in-memory computation.

We have included these new elements in the Discussion section of the revised version of the manuscript.
Concerning energy consumption, we have entirely overhauled this point of our manuscript. All these changes are described

in our response to Comment 4 of Reviewer 3.

Comment 2:
The domains of normal distribution of filamentary memristor and phase-change memory are quite different. How does this
distribution affect the accuracy, aleatoric and epistemic uncertainty estimations? It is stated that “To extend the domain of
normal distributions, we store each sample of a probabilistic weight as the difference between the conductance values of two
adjacent memory cells”. Can we further extend the domain of normal distributions by using more memory cells? What are the
pros and cons? If one memory cell is used, do the accuracy, aleatoric and epistemic uncertainty estimations deteriorate?

19/23

We appreciate these suggestions, which emphasizes the significance of the size of the domain of normal distributions on
network performance in terms of both accuracy and uncertainty estimation.

Impact of the distribution on the performance in terms of accuracy and uncertainty evaluation: The domain of normal
distribution obtained using filamentary memristors surpasses the one achieved in terms of both σ and µ (refer to Figure 3e in
the main text), thereby enabling improvements in network performance in both accuracy and uncertainty estimation (see the
updated Table 1 in the main text). In the revised version of the manuscript, we discuss this point more explicitly.

What happens if we use more than two devices, or only one device: To answer these questions, we have obtained new
results, presented in the new Supplementary Note 7. We summarize its main findings here.

Figure 14a illustrates the domain of normal distributions obtained using one (blue), two (green), and four (yellow) devices
per sample of a Bayesian probabilistic weight. Increasing the number of devices per sample expands the attainable size of
the domain of normal distributions in experimental settings. As depicted in Figure 14b, a wide range of possibilities for σ

and µ enhances both neural network accuracy and uncertainty estimation. A broad spectrum of possibilities for µ is crucial
for achieving high accuracy, while a diverse range of possibilities for σ is necessary for accurate uncertainty estimation. It
is important to keep σ small to ensure minimal output variability for well-known inputs. Conversely, σ needs to be large to
provide output variability for unknown input data, thereby facilitating uncertainty estimation.

Figure 14. Impact of the number of memristors per sample of a Bayesian probabilistic weight a Domain of the normal
distribution obtained experimentally by storing samples on one (blue), two (green), and four (yellow) memristors. µ and σ are
normalized to the minimum achievable standard deviation, σmin, obtained with different experimental conditions.b Network
performances obtained by storing samples on one, two, and four memristors. The training process was repeated ten times, and
each inference was repeated 50 times with M = 10 samples. The final result represents the average performance obtained from
the 500 inferences.

Comment 3:
BNNs provide a high prediction confidence, but the classification accuracy is around 75 percent, which is much lower than other
reported memristor-based neural network for the similar bio-signal classification (95percent, Sci. Adv. 2020; 6: eabc4797; Nat
Commun 11, 4234, 2020). What is the reason for the poor accuracy? Can it be improved to a comparable level?

The poor accuracy reported in our work can be attributed to the inherent challenges associated with the chosen task, which is
more complex than the bio-signal classification proposed in17, 18, as it has a lot of ambiguity. We made this choice to emphasize
the uncertainty-evaluation capability of our system.

In our system, we have developed a classification model capable of differentiating among nine types of heart arrhythmia,
which is more challenging than the three classes distinguished by the system proposed in18. To further evaluate the capabilities
of our system, we intentionally concealed one class during the training process. As a result, approximately 7% of the test
dataset became unclassifiable. This deliberate setup allowed us to assess the network’s ability to recognize unfamiliar patterns
and quantify the associated epistemic uncertainty. The difficulty of the chosen task is underscored by the performance of

20/23

a conventional neural network with the same architecture and using f loat32 encoding for the synapses, which achieved a
classification accuracy of only 80% on the same task.

To further validate the effectiveness of the proposed neural network, we simulated the implementation of a two-layer (64,
32, 3) fully connected Bayesian neural network using our simulator (Supplementary Note 2), designed to address the same task
as the one presented in18. To extract the 64 input features required for our model, we applied a Fast Fourier Transform. Our
trained model achieved a a high accuracy of 94%, which closely aligns with the results reported in the referenced paper.

To clarify this point in the revised manuscript, we added a comment in the Discussion section of the manuscript about the
reason for a relatively low accuracy, and incorporated the simulated performance of our approach on the dataset of18.

Comment 4:
The performance of the memristive neural network should be added to Table 1 to make the comparison more convincing.
The authors claim 800 times improvement in energy efficiency comparing to the conventional GPU platform. However, the
benchmarks and the comparison method for GPU and memristor BNN are unclear. More details should be provided. It will
make more sense to compare at a system level rather than focusing on the processing part.

We have now entirely overhauled the energy analysis of our paper. Upon revisiting our analysis, we indeed identified
inaccuracies in our preliminary projections of the energy consumption for the memristor-based circuit. These estimations were
initially derived from published results, which we had not properly understood, and which led us to considerably overestimate
the energy consumption number. We deeply regret the oversight and have since undertaken a comprehensive revision of these
projections, using several, instead of just one, sources, ensuring the accuracy and reliability of our data.

Simultaneously, we re-evaluated our control mechanism, which initially utilized a GPU. We realized that this benchmark
was not as useful as we hoped. Due to the high degree of parallelism of GPU, their energy consumption scales in non-obvious
way with the size of a Bayesian neural networks and the batch size. Also, a large GPU is not a device that would be used for
the extreme-edge applications that we are targeting, but rather microcontroller units (MCUs). Typically, STMicroelectronics
STM32 MCUs are used for edge AI. MCUs are simpler devices than GPUs, and it is much easier to interpret measurements of
their energy consumption meaningfully. Therefore, we now implemented the computation of our reference Bayesian neural
networks on an STM32 and use this as our main control. While these modifications have led to substantial changes in the
technical aspects of our manuscript, the overall conclusion remains largely consistent. We still posit that memristor-based
Bayesian neural networks offer an efficient approach to uncertainty quantification and energy conservation.

The new energy analysis is spread between the Discussion and the Methods sections of the revised manuscript and a new
Supplementary Note 15. We summarize its main findings here.

To estimate the energy consumption of the Bayesian neural network we first calculated the number of dot product operations
for one inference:

Operations = 4 · Il ·Hl +4 ·Hl ·Ol . (7)

Here Il is the input length, Hl is the hidden layer length, and Ol is the output length. The factor four is due to fact that each
sample of a Bayesian probabilistic weight is stored as the difference between the conductance values stored in two memory cells
and that a dot product contains addition and multiplication. One inference costs 2.624 operations. The cost of a single analog
Multiply-and-Accumulate (MAC) operation in a resistive memory-based analog in-memory computing circuit depends on the
input and output size and on the weight precision, and can vary considerably depending on the memory technology, CMOS
node, array size, and design choices. We relied on energy per operation number of three industrial platforms employing resistive
memory19, 20, and phase change memory21. The results are reported in Supplementary note 15 and Table 3. We found a cost
ranging between 0.7 and 2.5 nanojoules per inference. Note that these estimates consider only the Multiply-and-Accumulate,
which we expect to dominate. Still, additional circuitry will be needed, e.g., to present the input, analyze the outputs, and
transfer data between arrays of the neural network.

To gain a perspective on the energy efficiency of the proposed approach compared to conventional hardware, we bench-
marked this figure to the energy required for running the operations to perform inference of the same Bayesian neural network
on an STM32F746ZGT6 MCU (integrated on a test Nucleo-F746ZG board), which is typically used for edge AI applications.
These operations coded in the C language using the ST Microelectronics STM32 Cube integrated development environment
and compiled and built without debugging options and using the strongest optimizations for speed (-Ofast option). To provide a
fair comparison with our in-memory-computing platform, our C code includes only the multiply-and-accumulate operation.
(We controlled that multiply-and-accumulate operations represented more than 99% of the execution time of our program.)
We timed our program, and measured the current consumption of the MCU using an Ampere meter (we measured the current
solely consumed by the MCU, excluding any other component of the board). The STM32F746ZGT6 MCU is fabricated in

21/23

a 90-nanometer CMOS node. We found a consumption of 170 microjoules per inference (with ten samples of the Bayesian
neural network).

Wan et al.
Nature 202220

Cheng-Xin Xue
et al. Nat.

Electron. 202119

Khaddam et
al.IEEE JSSC

202221

HfOx/TaOx GST

Device RRAM RRAM PCM

CMOS node 130nm 22nm 14nm

Input bit width 4b 4b 8b

Output bit width 6b 11b 8b

Reported energy
efficiency (TOPS/W) 16 36.61 10.5

Estimation of the energy
in inference for the

Bayesian hardware with
N=10

1640 pJ 720 pJ 2500 pJ

Table 3. Comparison of the energy efficiency estimated in several state-of-the-art in-memory computing circuits based on
memristors and PCMs

References
1. Blundell, C., Cornebise, J., Kavukcuoglu, K. & Wierstra, D. Weight uncertainty in neural network. In International

conference on machine learning, 1613–1622 (PMLR, 2015).

2. Fortunato, M., Blundell, C. & Vinyals, O. Bayesian recurrent neural networks. arXiv preprint arXiv:1704.02798 (2017).

3. Dalgaty, T. et al. In situ learning using intrinsic memristor variability via markov chain monte carlo sampling. Nat.
Electron. 4, 151–161 (2021).

4. Joshi, V. et al. Accurate deep neural network inference using computational phase-change memory. Nat. communications
11, 1–13 (2020).

5. Tsai, H. et al. Inference of long-short term memory networks at software-equivalent accuracy using 2.5 m analog phase
change memory devices. In 2019 Symposium on VLSI Technology, T82–T83 (IEEE, 2019).

6. Dalgaty, T., Esmanhotto, E., Castellani, N., Querlioz, D. & Vianello, E. Ex situ transfer of bayesian neural networks to
resistive memory-based inference hardware. Adv. Intell. Syst. 3, 2000103 (2021).

7. Esmanhotto, E. et al. High-density 3d monolithically integrated multiple 1t1r multi-level-cell for neural networks. In 2020
IEEE International Electron Devices Meeting (IEDM), 36–5 (IEEE, 2020).

8. Sebastian, A. et al. Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring
inference uncertainty using bayesian neural networks. Nat. communications 13, 1–10 (2022).

9. Liu, S. et al. Bayesian neural networks using magnetic tunnel junction-based probabilistic in-memory computing. Front.
Nanotechnol. 78 (2022).

10. Clanuwat, T. et al. Deep learning for classical japanese literature (2018). cs.CV/1812.01718.

11. Krizhevsky, A. & Hinton, G. Learning multiple layers of features from tiny images. Tech. Rep. 0, University of Toronto,
Toronto, Ontario (2009).

12. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770–778 (2016).

13. Dolezal, J. M. et al. Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathol-
ogy. Nat. communications 13, 6572 (2022).

22/23

cs.CV/1812.01718

14. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep
ensembles. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (2017).

15. Gal, Y. & Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In
Proceedings of The 33rd International Conference on Machine Learning, PMLR 48:1050-1059, 2016 (2016).

16. Sida Wang, a. M. Fast dropout training. In Proceedings of the 30th International Conference on Machine Learning, PMLR
28(2):118-126, 2013 (2013).

17. Liu, Z. et al. Multichannel parallel processing of neural signals in memristor arrays. Sci. advances 6, eabc4797 (2020).

18. Liu, Z. et al. Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces. Nat.
communications 11, 4234 (2020).

19. Xue, C.-X. et al. A cmos-integrated compute-in-memory macro based on resistive random-access memory for ai edge
devices. Nat. Electron. 4, 81–90 (2021).

20. Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).

21. Khaddam-Aljameh, R. et al. Hermes-core—a 1.59-tops/mm 2 pcm on 14-nm cmos in-memory compute core using
300-ps/lsb linearized cco-based adcs. IEEE J. Solid-State Circuits 57, 1027–1038 (2022).

23/23

Review on the revised manuscript “Bringing uncertainty quantification to the
extreme-edge with memristor-based Bayesian neural networks” authored by Djohan

Bonnet et al., submitted to Nature Communications. [Manuscript Number: NCOMMS-

23-00214A]

The manuscript has been effectively reorganized, highlighting the main novelty of this

work. In the introduction section, a well-explained description was provided regarding

the limitations of conventional neural networks and the advantages and operational

principles of Bayesian neural networks. In addition, various additional measurement

results and theoretical explanations were included to support the performance of this

study. Moreover, detailed explanations regarding the essential novelty of this research,

namely “technological loss,” were provided. However, this reviewer suggests a few

additional modifications to improve the manuscript further.

1. Figure 1b was revised to show the number of output neurons and output currents

accurately. Still, it would be better to indicate the number of input and hidden

neurons using omission marks.

2. In line 197 on page 8, while explaining Figure 5d, it was mentioned that since

98 % of the unseen disease data points have epistemic uncertainty greater than

0.5, new unknown inputs can be well distinguished. However, in Supplementary

Note 12, it was mentioned that since 89 % of the unseen images have epistemic

uncertainty greater than 0.25, new unknown images can be identified in the

complex CIFAR dataset. It is necessary to clarify the criteria for determining the

threshold values of epistemic or aleatoric uncertainty that enable the distinction

of unknown data in each application.

3. In Supplementary Figure 3, the descriptions corresponding to Fig.3a, 3b, and 3c

should be placed directly following the labels (a), (b), and (c).

4. Related comment 3: The presented data only displays cycle-to-cycle and cell-to-

cell variation for a single programming level in memristors and PCM. It would

be advantageous to present cycle-to-cycle and cell-to-cell variation for all eight

programming levels in memristors and phase change memories to show that the

Bayesian neural network works well even with these variations.

Reviewer #1 (Remarks to the Author):

5. In Supplementary Figure 6a, it is necessary to incorporate an additional data point

at t = 0 (sec) to illustrate the initial conductance relaxation in memristors.

Moreover, the conductance distributions of memristors after the initial six

seconds, as depicted in Supplementary Figure 6a and b, do not exhibit

stabilization, in contrast to the findings presented in Supplementary Figure 5c.

Consequently, it is essential to comprehensively explain of conductance

distribution observed at t > 6 (sec).

6. Minor comments: There are some typos and grammar errors.

- In Fig. 5b on page 10, ‘inorrect’  ‘incorrect’ on the graph.

- In line 322, ‘Algorithm 2’ on page 12, ‘Voltage incremment’  ‘Voltage

increment’

- In supplementary Fig. 6a ‘6 Second’  ‘6 Seconds’

- In supplementary Fig. 6b and 6c, ‘1 Weeks’  ‘1 Week’

- In supplementary Fig. 8b, ‘2 pair’  ‘2 pairs’

- In supplementary note 11, on the second line of the third paragraph on page 11,

the description of Kuzushiji-MNIST (KMNIST) states ‘as shown in

Supplementary Figure 13b’. However, the correct figure for KMNIST is

‘Supplementary Figure 12b’. Please update the reference accordingly.

Reviewer #1 (Remarks to the Author):

Reviewer #2 (Remarks to the Author):

I appreciate the clarifying comments from the authors and the substantial work in the additional

analyses. I'm pleased to see that my previous concerns have been addressed in this revision. And the

authors have extensively revised the manuscript and improved the overall quality. I would like to

recommend that the paper be accepted for publication.

Reviewer #3 (Remarks to the Author):

The authors have addressed many of my technical comments and improved the overall clarity and

quality of the manuscript. However, I still have a few concerns that need to be addressed.

(1) In my previous review, I raised a concern about the novelty of the research, which the authors

did not fully address. Recently, in the paper titled "A memristor-based Bayesian machine" published

in Nature Electronics (6, 52–63, 2023), the authors investigated a memristive Bayesian machine

using a similar memristor-based 1T1R array, with a similar weight presentation method (using two

memristor units to represent 1 value). It seems that both works are based on the same circuit and

architecture, but applied to different applications. The authors should explicitly explain the

differences between the two works to clarify the foundational differences in circuit design and

programming schemes. Without addressing these differences, this work might be perceived as an

incremental improvement of the previous research, which could raise concerns about its suitability

for publication in Nature Communications.

(2) Regarding the energy analysis, I understand the authors' point about the inappropriate

comparison between the memristive in-memory computing circuit designed for edge computing and

a large GPU. However, comparing it with STM32F4, which is a typical MCU designed for embedded

system control and not specifically intended for edge AI purposes, might not be fair either. The

STM32F4 operates as a CPU performing computing in a serial manner, whereas memristive circuits

perform computing in parallel, requiring significantly less time than a CPU. This difference in

computing schemes makes it difficult to observe the advantages of memristors for BNN

implementation. I recommend using edge GPUs (such as Jetson Nano) or MCUs with accelerators

(such as Gap9 from Greenwaves) as new baselines to provide a fairer comparison.

(3) In this version, the authors removed the power estimation and instead provided typical power

consumption from previous works, indirectly illustrating the power advantages of memristors and

PCM chips. While this information is useful, it would be beneficial to include a more detailed analysis

of the power efficiency in the revised manuscript.

(4) As mentioned in the rebuttal letter, I agree that the uncertainty evaluation task is more

challenging than classification tasks. The slow modeling of uncertainty is a main drawback of BNNs,

and if the authors' method can accelerate BNNs, it could be a potential solution. However, it is

essential to compare the proposed solution with well-established deep learning algorithms and

discuss their respective advantages and limitations. I suggest referencing a few works on this topic,

such as "Bounding Box Regression with Uncertainty for Accurate Object Detection" (CVPR 2019) and

"Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for

Autonomous Driving" (ICCV 2019), to provide a more comprehensive comparison.

Response to Reviews

We would like to thank the anonymous reviewers for their time and excellent feedback, which has allowed us to improve
the quality of our manuscript. We have addressed the points raised by the reviewers and revised the manuscript accordingly.
The revised versions includes additional experiments to investigate cycle-to-cycle and cell-to-cell variations across eight
programming levels for both memristors and PCM technologies. We have also decided to include a benchmark using an
NVIDIA Jetson Nano, a device capable of parallel computing.

Reviewer 1 (Remarks to the Author)
General comments
The manuscript has been effectively reorganized, highlighting the main novelty of this work. In the introduction section,
a well-explained description was provided regarding the limitations of conventional neural networks and the advantages
and operational principles of Bayesian neural networks. In addition, various additional measurement results and theoretical
explanations were included to support the performance of this study. Moreover, detailed explanations regarding the essential
novelty of this research, namely “technological loss,” were provided. However, this reviewer suggests a few additional
modifications to improve the manuscript further.

We thank the reviewer for his/her review and these encouraging comments.

Comment 1:
Figure 1b was revised to show the number of output neurons and output currents accurately. Still, it would be better to indicate
the number of input and hidden neurons using omission marks.

Based on this comment, we have modified the figure.

Comment 2:
In line 197 on page 8, while explaining Figure 5d, it was mentioned that since 98 % of the unseen disease data points have
epistemic uncertainty greater than 0.5, new unknown inputs can be well distinguished. However, in Supplementary Note 12, it
was mentioned that since 89 % of the unseen images have epistemic uncertainty greater than 0.25, new unknown images can be
identified in the complex CIFAR dataset. It is necessary to clarify the criteria for determining the threshold values of epistemic
or aleatoric uncertainty that enable the distinction of unknown data in each application.

The choice of the threshold value depends on the specific application and context. For instance, applications that necessitate
zero false negatives will require a lower threshold. Due to this consideration, we opted not to utilize this metric for comparing
our results with the existing literature. The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) is
application-independent and thus more suitable for making comparisons. This is the metric we have adopted for Table 1.

We have clarified this point in the main text.

Comment 3:
In Supplementary Figure 3, the descriptions corresponding to Fig.3a, 3b, and 3c should be placed directly following the labels
(a), (b), and (c).

Based on this Comment and Comment 4, we have made modifications to Figure 3 in the Supplementary Information, along
with its corresponding caption.

Comment 4:
Related comment 3: The presented data only displays cycle-to-cycle and cell-to cell variation for a single programming level in
memristors and PCM. It would be advantageous to present cycle-to-cycle and cell-to-cell variation for all eight programming
levels in memristors and phase change memories to show that the Bayesian neural network works well even with these
variations.

1

In response to this comment, we conducted additional experiments to investigate cycle-to-cycle and cell-to-cell variations
across eight programming levels for both memristors and PCM technologies. Figure 1 illustrates the results, with distinct
clusters of data points in Figures 1a and 1b representing different programming conditions. Each data point reflects the
mean and standard deviation derived from programming 1,000 distinct devices, with varying points indicating 1,000 cycles
per programming condition. These findings affirm the stability of device-to-device variability across multiple programming
iterations under all studied conditions, whether with memristors or phase change memories.

Figures 1c and 1d compare the probability density of 1,000 distinct devices programmed once (representing device-to-device
variability) with the probability density of one device cycled 1,000 times (representing cycle-to-cycle variability) for memristors
and PCM technologies, respectively. For each technology, we have presented the distributions obtained using the programming
conditions corresponding to the smallest and largest mean conductance values, as well as an intermediate distribution. Both
sources of variability demonstrate a similar impact on conductance variability across different programming conditions.

Supplementary Note 3 and Supplementary Figure 6 have been updated to incorporate the new experiments examining
cycle-to-cycle and cell-to-cell variations under various programming conditions.

Figure 1. Impact of cycle-to-cycle variability on cell-to-cell variations for memristors and PCMs. a Scatter plot
illustrating the influence of cycle-to-cycle variability on cell-to-cell variation in memristors for different programming
conditions. Different clusters of data points represent distinct programming conditions. Each data point reflects the mean and
standard deviation of a Gaussian distribution obtained by programming 1,000 distinct devices, with varying points representing
1,000 cycles per each programming condition. b Scatter plot illustrating the effect of cycle-to-cycle variability on cell-to-cell
variation in phase change memory for different programming conditions. c Probability density of 1,000 cells programmed
under the same conditions, depicting device-to-device variability (blue), compared with the probability density of one device
programmed 1,000 times (green) for memristor technology. The experiment has been repeated for three different programming
conditions corresponding to the smallest and largest mean conductance values in a, as well as an intermediate distribution. d
Probability density of 1,000 cells programmed under the same conditions, illustrating device-to-device variability (blue),
compared with the probability density of one device programmed 1,000 times (green) for PCM technology. The experiment has
been repeated for three different programming conditions corresponding to the smallest and largest mean conductance values in
b, as well as an intermediate distribution.

Comment 5:
In Supplementary Figure 6a, it is necessary to incorporate an additional data point at t = 0 (sec) to illustrate the initial
conductance relaxation in memristors. Moreover, the conductance distributions of memristors after the initial six seconds, as

2/7

depicted in Supplementary Figure 6a and b, do not exhibit stabilization, in contrast to the findings presented in Supplementary
Figure 5c. Consequently, it is essential to comprehensively explain of conductance distribution observed at t > 6 (sec).

In reponse to this feedback, we incorporated an additional data point at t = 0 sec and compared it with data point at t = 6 sec
(Figure 4). Rapid conductance spread, or short-term conductance relaxation, is observed immediately after programming,
between t = 0 sec and t = 6 sec, accordingly with data presented in Figure 5 in Supplementary Information. This fast relaxation
effect occurs on the same time scale throughout the conductance range. Conductance spread then continues at a slower pace
over longer time scales as demonstrated in Figure 3, which plots the standard deviation of normal distributions obtained under
three distinct programming conditions measured at varying times post-programming. This result aligns with our previous
work1. Consequently, the technological loss term is based on the technologically plausible domain of normal distributions
obtained after six seconds for memristors. As demonstrated in Supplementary note 7, the long-term relaxation only slightly
affects the performances of the neural network.

Supplementary Note 5 and Supplementary Figure 6 have been revised to include an additional data point at t = 0 sec and
provide a more detailed explanation of both short-term and long-term relaxation phenomena.

Figure 2. Domain of the normal distributions (Γmemristor) measured at different times after programming. a at t=0 second and
right after relaxation at t=6 seconds, b Right after relaxation at t=6 seconds and at t=1 hour, c at t=1 hour and at t=1 week, d at
t=1 week and at t=2 weeks.

Figure 3. Standard deviation of normal distributions obtained under three different programming conditions measured at
different times post-programming.

Comment 6:
Minor comments: There are some typos and grammar errors. - In Fig. 5b on page 10, ‘inorrect’ -> ‘incorrect’ on the graph. - In
line 322, ‘Algorithm 2’ on page 12, ‘Voltage incremment’ -> ‘Voltage increment’ - In supplementary Fig. 6a ‘6 Second’ ->
‘6 Seconds’ - In supplementary Fig. 6b and 6c, ‘1 Weeks’ -> ‘1 Week’ - In supplementary Fig. 8b, ‘2 pair’ -> ‘2 pairs’ - In
supplementary note 11, on the second line of the third paragraph on page 11, the description of Kuzushiji-MNIST (KMNIST)
states ‘as shown in Supplementary Figure 13b’. However, the correct figure for KMNIST is ‘Supplementary Figure 12b’.
Please update the reference accordingly.

We thank the reviewer for this comment. We modified the Figures and the text accordingly.

3/7

Reviewer 2 (Remarks to the Author)
General comments
I appreciate the clarifying comments from the authors and the substantial work in the additional analyses. I’m pleased to see
that my previous concerns have been addressed in this revision. And the authors have extensively revised the manuscript and
improved the overall quality. I would like to recommend that the paper be accepted for publication.

We would like to express our heartfelt thanks to the reviewer for his/her favorable comments.

4/7

Reviewer 3 (Remarks to the Author)
General Comments:
The authors have addressed many of my technical comments and improved the overall clarity and quality of the manuscript.
However, I still have a few concerns that need to be addressed.

We thank the reviewer for his/her review and these comments.

Comment 1:
In my previous review, I raised a concern about the novelty of the research, which the authors did not fully address. Recently,
in the paper titled "A memristor-based Bayesian machine" published in Nature Electronics (6, 52–63, 2023), the authors
investigated a memristive Bayesian machine using a similar memristor-based 1T1R array, with a similar weight presentation
method (using two memristor units to represent 1 value). It seems that both works are based on the same circuit and architecture,
but applied to different applications. The authors should explicitly explain the differences between the two works to clarify the
foundational differences in circuit design and programming schemes. Without addressing these differences, this work might
be perceived as an incremental improvement of the previous research, which could raise concerns about its suitability for
publication in Nature Communications.

Thank you for the opportunity to clarify the differences between our work and the research presented in Ref.2. While at a
glance, both systems employ the same 2T2R memristor-based technology, there are foundational differences, both conceptually
and practically, as outlined below:

• The Bayesian machine of Ref.2 uses memristors as memory for the model parameters and uses stochastic computing to
perform inference on a Bayesian network. Bayesian networks differ from Bayesian neural networks investigated in the
present submission. The former are constructed using expert knowledge and are fully explainable, which makes them
ideal for tasks like sensor fusion. On the contrary, Bayesian neural networks are trained from the ground up and excel on
more data-intensive tasks like electrocardiogram or electroencephalogram classification.

• From a circuit point of view, the Bayesian machine also differs strongly from the present work: The Bayesian machine is
a digital system that tolerates memristor imperfections but does not exploit them2.

We have now rewritten the second-to-last paragraph of the introduction to position our work with regard to the Bayesian
machine very explicitly. Also, we have included a detailed comparison between the present work and the Bayesian machine
within Supplementary Note 14.

Comment 2:
Regarding the energy analysis, I understand the authors’ point about the inappropriate comparison between the memristive
in-memory computing circuit designed for edge computing and a large GPU. However, comparing it with STM32F4, which is a
typical MCU designed for embedded system control and not specifically intended for edge AI purposes, might not be fair either.
The STM32F4 operates as a CPU performing computing in a serial manner, whereas memristive circuits perform computing
in parallel, requiring significantly less time than a CPU. This difference in computing schemes makes it difficult to observe
the advantages of memristors for BNN implementation. I recommend using edge GPUs (such as Jetson Nano) or MCUs with
accelerators (such as Gap9 from Greenwaves) as new baselines to provide a fairer comparison.

Thank you for this valuable input. Following this suggestion, we have included another benchmark using an NVIDIA Jetson
Nano, a device capable of parallel computing. We evaluated energy consumption for various scenarios, as depicted in Figure 4.
We performed inference using 1, 10, or 100 samples of the output per input, and also different batches (i.e., the number of
inputs processed in parallel by the Jetson Nano GPU). During these measurements, we monitored the power consumption of
both the NVIDIA Jetson Nano GPU and the whole system, using the built-in power monitoring feature of the board. Figure 4
presents the energy required to infer an input, in all these situations. Notably, larger batch sizes result in lower average energy
consumption per input, due to the parallelization of computing. Additionally, multiplying the number of samples for a single
inference by ten does not proportionally increase the energy required, again due to parallelization.

For ten samples, the configuration we previously used in our benchmark, we achieved energy consumption of less than ten
microjoules per inference for batch sizes larger than 100. This energy consumption is an order of magnitude lower than the
STM32 MCU, but still several orders of magnitude above the performance achievable with memristive devices. This result
underscores the potential efficiency of memristive-based ASICs for edge computing applications.

5/7

Methodology. We have included another benchmark using an NVIDIA Jetson Nano, an edge-computing board widely used
for edge AI applications equiped with an NVIDIA Tegra X1 system on chip, featuring a GPU and a multicore CPU. This
chip-based system is manufactured in a more modern 20-nanometer CMOS node. In our benchmarch test, we perform the
multiply-and-accumulate operations of our system on the GPU. Our benchmark code is written using Pytorch 1.10 with
NVIDIA Jetpack 4.6 and NVIDIA CUDA 10.2. All the multiply-and-accumulate operations for the different output samples
are performed with a single tensor multiplication using the Pytorch torch.matmul function, ensuring a fully parallel operation
and an optimal use of the GPU. Additionnally, our code allows batching, i.e., the processing of several inputs simultaneously
within the same torch.matmul call. As described in the Discussion section of the paper, higher batching allows a better use of
the resources of the GPU and reduces the energy consumption per input. To obtain a reliable estimate of energy consumption,
with repeated the multiply-and-accumulate operations multiple times and timed the process using the repeat function from the
Python 1.10 timeit library. We chose the number repetitions to reach a total computation time of a minute, allows the power
consumption of the board to stabilize. During these measurements, we monitored the power consumption of both the NVIDIA
Jetson Nano GPU and the whole system, using the built-in power monitoring feature of the board. The energy consumption is
obtained by multipliying the computation time of a torch.matmul call by the power consumption.

These new results are now included in the Results section. We also incorporated the methodology for obtaining them in the
Methods section.

Figure 4. Energy to infer one image depending on the batch size and the number of sample. a For the Jetson’s GPU only. b
For the overall system

Comment 3:
In this version, the authors removed the power estimation and instead provided typical power consumption from previous
works, indirectly illustrating the power advantages of memristors and PCM chips. While this information is useful, it would be
beneficial to include a more detailed analysis of the power efficiency in the revised manuscript.

Based on this comment, we included a more detailed power analysis in the revised paper. When looking at how power
is distributed in fully integrated analog in-memory computing circuits, it is seen that a significant portion, is consumed by
peripheral circuits, as documented, e.g., in ref.3. More specifically, operations at the neuron level, which include DAC, ADC,
and activation functions, are the primary contributors to power consumption, accounting for approximately 40% of the total in
ref.3. ADCs (Analog-to-Digital Converters) are in fact the most significant power consumers, accounting for even more than
40% in ref.4. The energy for charging the word lines of the array is also very significant, 30 to 40% of the total energy in ref.3.
Consequently, although memristors have approximately five times lower resistance compared to PCM in the low-resistance
state, as seen in Figure 3 of our main paper, this difference is not expected to have a significant impact on overall power
consumption, as it has a minimal impact on both ADCs and word line charging energy.

These considerations are the reason for which we prefer to rely on these other works for our energy estimates. The fabricated
in-memory computing circuit that we used in our work includes essential periphery circuitry on-chip (see its description in
Supplementary Note 13), but the ADCs are off-chip. Its energy consumption is therefore not representative of the one of a final
product.

We have edited the Discussion section of the paper to clarify these points.

6/7

Comment 4:
As mentioned in the rebuttal letter, I agree that the uncertainty evaluation task is more challenging than classification tasks. The
slow modeling of uncertainty is a main drawback of BNNs, and if the authors’ method can accelerate BNNs, it could be a
potential solution. However, it is essential to compare the proposed solution with well-established deep learning algorithms and
discuss their respective advantages and limitations. I suggest referencing a few works on this topic, such as "Bounding Box
Regression with Uncertainty for Accurate Object Detection" (CVPR 2019) and "Gaussian YOLOv3: An Accurate and Fast
Object Detector Using Localization Uncertainty for Autonomous Driving" (ICCV 2019), to provide a more comprehensive
comparison.

Based on this recommendation, we added a comparison with the works suggested in the paragraph of the Discussion section
positioning our work with regard to non-Bayesian approaches:

“Two principal methods exist for estimating uncertainty in non-Bayesian artificial neural networks (ANNs). The first, deep
ensembles, trains multiple identical ANNs, creating a prediction distribution but offering no energy or hardware benefits5.
Moreover, implementation challenges arise when transferring high-precision parameters into the imprecise conductance states
of resistive memory in memristor-equipped ANNs. In contrast, Bayesian neural networks adeptly exploit memristor variability
to store random variables, making them ideal for resistive memory-based hardware. The second method, Monte Carlo dropout,
generates a prediction distribution by randomly disabling nodes within the model6, 7. However, the requirement for multiple
forward passes precludes any reduction in energy consumption, and it is not natural to implement in a memristor-based
circuit. Besides these general techniques, some task-specific approaches have also been proposed. In particular, some models
use artificial neural networks representing Gaussian distributions, where one neuron represents the mean and another the
standard deviation of a distribution. This approach has proven useful in tasks such as detecting out-of-distribution data in video
surveillance or improving the accuracy of bounding box regression8–11. Bayesian neural networks constitue a more general
solution to the uncertainty evaluation challenge.”

References
1. Esmanhotto, E. et al. Experimental demonstration of multilevel resistive random access memory programming for up to

two months stable neural networks inference accuracy. Adv. Intell. Syst. 2200145 (2022).

2. Harabi, K.-E. et al. A memristor-based bayesian machine. Nat. Electron. 6, 52–63 (2023).

3. Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).

4. Xue, C.-X. et al. A cmos-integrated compute-in-memory macro based on resistive random-access memory for ai edge
devices. Nat. Electron. 4, 81–90 (2021).

5. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep
ensembles. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (2017).

6. Gal, Y. & Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In
Proceedings of The 33rd International Conference on Machine Learning, PMLR 48:1050-1059, 2016 (2016).

7. Sida Wang, a. M. Fast dropout training. In Proceedings of the 30th International Conference on Machine Learning, PMLR
28(2):118-126, 2013 (2013).

8. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).

9. Choi, J., Chun, D., Kim, H. & Lee, H.-J. Gaussian yolov3: An accurate and fast object detector using localization
uncertainty for autonomous driving. In Proceedings of the IEEE/CVF International conference on computer vision,
502–511 (2019).

10. He, Y., Zhu, C., Wang, J., Savvides, M. & Zhang, X. Bounding box regression with uncertainty for accurate object
detection. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition, 2888–2897 (2019).

11. Fan, Y. et al. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder.
Comput. Vis. Image Underst. 195, 102920 (2020).

7/7

Review on the revised manuscript “Bringing uncertainty quantification to the
extreme-edge with memristor-based Bayesian neural networks” authored by Djohan

Bonnet et al., submitted to Nature Communications. [Manuscript Number: NCOMMS-

23-00214B]

This reviewer appreciates the responses to the comments, and the authors incorporated

them into the manuscript and figures appropriately. The revised paper is qualitatively

improved over the initial version. Therefore, this paper is suitable for publication in this

journal after addressing the typos and grammar errors.

- In supplementary note 3, ‘Distinct clusters of data points represents different

programming conditions.’  ‘Distinct clusters of data points represent different

programming conditions.’ and ‘In the case phase change memories ~~’  ‘In the

case of phase change memories ~~’

- The first paragraph of the text below the supplementary Fig. 6, ‘However, as

Supplementary Note 7 dmonstartes ~~’  ‘However, as Supplementary Note 7

demonstrates ~~’

- The second paragraph of the text below the supplementary Fig. 6, ‘This results

confirm that the mean value of conductance distributions remain ~~’  ‘This

results confirm that the mean value of conductance distributions remains ~~’

- In supplementary note 6, ‘In this simulator, the synaptic weight are ~~’  ‘In

this simulator, the synaptic weights are ~~’

- In the caption of supplementary Fig. 8b, ‘The performances are evaluated for

ten training run.’  ‘The performances are evaluated for ten training runs.’

Reviewer #1 (Remarks to the Author):

Reviewer #3 (Remarks to the Author):

I appreciate the authors' extensive efforts on additional experiment and revision of the manuscript.

The relays well addressed most of my main concerns. However, I noticed minor typographical errors

within the supplementary materials, such as the instance in Note 14 (“an an analog”). I highly

recommend a meticulous proofreading to keep the manuscript's quality. Overall, I have no more

technical questions and recommend the manuscript for publication in Nature Communications.

Response to Reviews

Once again we would like to thank the reviewers whose comments have continually led us to improve the strength of the
manuscript. We are delighted with their positive evaluation of our most recent work as well as our current version of the paper.
We have addressed the typo and grammar errors raised by the reviewers in the Supplementary material.

Reviewer 1 (Remarks to the Author)
General comments
This reviewer appreciates the responses to the comments, and the authors incorporated them into the manuscript and figures
appropriately. The revised paper is qualitatively improved over the initial version. Therefore, this paper is suitable for
publication in this journal after addressing the typos and grammar errors.

• In supplementary note 3, ‘Distinct clusters of data points represents different programming conditions.’ –> ‘Distinct
clusters of data points represent different programming conditions.’ and ‘In the case phase change memories ’ –> ‘In
the case of phase change memories ’

• The first paragraph of the text below the supplementary Fig. 6, ‘However, as Supplementary Note 7 dmonstartes ’ –>
‘However, as Supplementary Note 7 demonstrates ’

• The second paragraph of the text below the supplementary Fig. 6, ‘This results confirm that the mean value of conductance
distributions remain ’ –>‘This results confirm that the mean value of conductance distributions remains ’

• In supplementary note 6, ‘In this simulator, the synaptic weight are ’ –> ‘In this simulator, the synaptic weights are ’

• In the caption of supplementary Fig. 8b, ‘The performances are evaluated for ten training run.’ –> ‘The performances are
evaluated for ten training runs.’

We have corrected the typos and grammar errors in the Supplementary material.

Reviewer 3 (Remarks to the Author)
General comments
I appreciate the authors’ extensive efforts on additional experiment and revision of the manuscript. The relays well addressed
most of my main concerns. However, I noticed minor typographical errors within the supplementary materials, such as the
instance in Note 14 (“an an analog”). I highly recommend a meticulous proofreading to keep the manuscript’s quality. Overall,
I have no more technical questions and recommend the manuscript for publication in Nature Communications. We have

proofread the Supplementary material and corrected several typos and grammar errors.

1

	': Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks

