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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): expertise in multi-omics integration methods 

Reviewers: Jo Lynne Rokita, Ph.D. and Ryan J. Corbett, Ph.D. 

He et al. report extensive molecular profiling of patient-derived xenografts (PDXs) and matched 

primary tumor (PT) samples derived from multiple pediatric cancer types, and compare mutational 

landscapes, clonality, and gene expression between matched samples. The authors identify 

variation in mutational similarities across PDX-PT pairs, and present two distinct patterns of 

engraftment evolutionary patterns characterized by clone retention (group 1) and subclonal 

expansion/branch seeding (groups 2 & 3). The authors present multiples lines of evidence that the 

unique evolutionary profiles of group 2 & 3 PDXs is likely driven by an immunogenic subclone in 

the PT that rapidly expands in the absence of immune surveillance. The authors further show that, 

unlike SNVs and indels, somatic copy number alterations and gene expression are highly similar 

between PDXs and matched PTs. Some of the results presented in this manuscript are available to 

view interactively through an online portal. Overall, this manuscript provides novel insight into 

observed disparities between PDXs and PTs that are driven in part by PT heterogeneity and we are 

enthusiastic about the work being published for the pediatric oncology community. However, there 

are concerns regarding the reproducibility of this work that should be addressed before full 

manuscript consideration. 

- General 

o This reviewer suggests the use of “mutation” for somatic alterations and “variant” for germline 

alterations throughout the manuscript in order to alleviate confusion. 

o While most of the analyses in this manuscript are restricted to matched PDX and PT samples 

from the same patients, PDX without a matched PT sample, and vice versa, are also included in 

some of the comparisons made between PDX and PT samples (in Supp figures 3 and 4, for 

example). It would be helpful for the readers if there was clear designation for analyses using 

paired samples versus all samples. 

o Lines 130-133. Is it known what chemotherapy treatments these 10 patients received, and 

whether these are associated with the specific mutational signatures found? For example, SBS31 

and SBS35 are associated with platinum chemotherapy treatment and SBS87 thiopurine 

treatment. Also, were other treatment-related signatures observed (SBS25, 32, 86)? 

o Figure 2a is slightly hard to read – a suggestion would be to remove the box colors making a 

transparent box showing only the jitter points and shapes. 

o Figure 2b. It is said in the results text that 7/8 high mutation samples have therapy-related 

mutational signatures, but it looks as though all samples have some non-zero value shading in 

cells for at least one therapy mut sig. If there is some exposure threshold that signatures must 

meet to be considered “present” in a patient, this needs to be made clear in the heatmap (either 

by zeroing-out sigs that don’t meet threshold, or an asterisk-like indication in cells that do meet 

threshold). 

o It is interesting that there are some PDX-specific oncogene or tumor suppressor gene mutations 

(Supplemental Figure 4d-e). Were they all predicted to be oncogenic/likely oncogenic or are they 

VUS (eg OncoKB)? Perhaps an updated figure which only includes oncogenic/likely oncogenic (eg 

predicted by OncoKB) would be more functionally relevant if these are mixed. Are these oncogene 

clonal mutations present at subclonal levels in the PT tumor even below variant calling criteria in 

the PT tumor (ie, did the authors do a deep dive outside of 585, even in the absence of additional 

deep sequencing)? Likewise, the authors can investigate this from the other direction, but the 

unexpected finding would be a novel oncogene mutation in the PDX which never existed in the PT 

tumor and what is the mechanism of this? 

o The “clone sweeping” examples vary from expansion of one sublone or many subclones, so the 

text can be that this is defined as at least one subclone expanding from PT to PDX. 

o Figure 3g would likely be easier to interpret if it were shown as a box/dot/violin plot. 

o Lines 210-211: a correlation test should be performed to show statistical evidence for PT genetic 

heterogeneity being inversely associated with mutational similarity. 

o Lines 306-307: Should this say “hepatoblastoma and Wilms tumor samples showed significant 



intra-lineage correlations” (remove “Except for sarcoma”. 

o The observation that more mutationally diverse PT tumors yield PDX with differing genetics 

makes sense, but it does appear that 2/3 branch seeding models (1957 and 1823) were derived 

from PTs treated with chemotherapy, so this may not be unexpected. Additionally, can this be a 

tumor+chemotherapy-specific phenomenon? It appears that 2 hepatoblastoma models pre-therapy 

nicely recapitulated PT tumors, but the two with chemotherapy did not. In other cancer types, 

there is not a similar trend, albeit overall numbers are low. Were the retinoblastoma PTs treated 

with a different agent? 

- Molecular Methods 

o The kits or protocols used for DNA and RNA extraction are not described in the Methods text. 

- Computational Methods 

o “NGSCheckMate9 (v1.0.0) was applied to both DNA and RNA sequencing data to make sure 

matched samples were from the same patient.” This reads as if PDX DNA and RNA were checked 

for matching, but was this also done between PDX and patient to ensure PDX/patient matches? 

o The text states that “The BAM file of human reads was converted to FASTQ format using 

Samtools7 (v1.14) for further analyses”. This seems incorrect; was there another reason for re-

generating fastq files with human-only reads? 

o “High confidence somatic mutations were identified as those that were called by at least two 

callers.” Were there any hotspot mutations missed by two callers, or were these checked, for 

example using the MSKCC hotspot database: https://www.cancerhotspots.org/#/home 

o What was the genetic sex makeup of the 40 PON samples? Is it balanced to ensure quality calls 

in XY chromosomes? What was the accuracy of the calls using 3/3 algorithms in tumor only 

samples? Did this result in a loss of any oncogenic calls? 

o Mutational signature analysis: it is unclear what is mean by “We excluded …signatures with the 

highest weight < 0.25 for further analysis.” Were mean signature weights recalculated using only 

the remaining signatures? (ie- if when using “all signatures ABCDEF”, Signature E had <0.25 in all 

samples, then was deconstructSigs rerun for only ABCDF signatures?) Additionally, it is common to 

filter out any signatures in patients with exposure weight < 0.06 (i.e., set them to zero). The 

results text and corresponding figure for this analysis make it unclear if this was performed. 

o “The cancer gene list was downloaded from Cancer Gene Census17.” The authors can include 

this gene list as a supplemental table since this can change over time. 

o It is stated in the Methods that differential gene and pathway expression analyses were 

performed, but these results are not presented (gene) or shown in reduced form in Supp. Table 5 

(enriched pathways). These results should either be presented in full in a supp. table AND 

discussed in the text, or the methods should not be included. 

o For differential expression analysis, the authors state that a multifactor analysis was performed 

but do not indicate if any additional covariates were included in the model (tumor type, treatment 

status, etc). 

- Reproducibility 

o The code used to generate the results has not been shared within the manuscript text. The 

authors should share all computational analyses used in this manuscript via Github or some other 

repository in order to enable reproducible analyses of these data. 

Reviewer #2 (Remarks to the Author): expertise in solid tumour model development 

In their manuscript titled “Genomic profiling of subcutaneous patient-derived xenografts reveals 

immune constraints on tumor evolution in childhood solid cancer,” He et. Al. describe their 

genomic profiling of a small cohort of pediatric solid tumors (90). Their engraftment rates were 

similar to several previous publications. Only 68 tumors were genomically profiled with low pass 

WGS, WES and RNA-seq. Only 27 of those 68 had the matched patient tumor and 40 of the 68 had 

the germline. With these limited data, they report clonal enrichment as has been shown in multiple 

studies previously. They claim that the clonal selection may be due to anti-tumor immunity in the 

patient relative to the PDX. The evidence for this comes from the observation that in some PDXs, 

the minor clone in the minor clone in the patient predominates and those cells are more 

proliferative. Overall, this is a very small cohort with imcomplete characterization and validation 

and the conclusions regarding anti-tumor immunity are not supported by the data. 

Specific Comments: 



A major limitation is the lack of patient tumor and germline for all of their cohort. The patient 

tumor and germline should be used with WGS, WES and RNA-seq to identify somatic lesions. The 

PDX and patient tumor should be used to assess clonal heterogeneity. Without all 3 samples 

(patient, germline, PDX) the impact of the study is minimal. Based on Fig. 1, there are only 22 

with all 3 samples. Among those 22, 8 are Wilms, 2 are clear cell sarcoma, 1 is neuroblastoma, 3 

are osteosarcoma, 4 are hepatoblastoma and 3 are germ cell tumor. It is very difficult to make any 

conclusion with such small numbers of tumor samples. 

It is not clear why low pass WGS was performed rather than deeper WGS and there was no 

discussion of validation using custom capture and deep sequencing or at least cross validation of 

the WES and RNA-seq. 

The mutation rate and mutation signature analysis were limited by sample size and there are 

much larger studies that have been published on patient tumors and PDXs with rigorous validation 

and deep sequencing. 

It is interesting that they did perform capture enrichment and deep sequencing on a single patient 

tumor that had low PDX similarity. However, they did not perform the same analysis on the PDX. 

The proper way to do the study is to design capture probes for all somatic SNVs across the 

genome in each patient-PDX pair and then do deep sequencing on all SNVs on both samples. Using 

this approach, they can identify rare clones in both the patient tumor and the PDX. 

A germline sample is required to serve as a reference to identify somatic mutations. It is not clear 

how they could conclude that mutations were clonal without doing the target enrichment and 

capture for all the SNVs across all the tumors. Subclonal SNVs may be lost in the shallow WGS and 

the exonic SNVs may have functional significance so interpreting clonal architecture in WES alone 

must take into account the rare SNVs and the possibility that they provide a selective growth 

advantage or disadvantage. 

The clonal selection has been reported previously but there is no biologic or mechanistic data 

presented here to indicate that it is related to antitumor immunity rather than a stochastic event 

or some other mechanism. Indeed, if a minor clone overtakes the PDX, it is predicted to be more 

proliferative than in the patient but this does not prove anti-tumor immunity in the patient. 

Reviewer #3 (Remarks to the Author): expertise in clone sweeping and genomics analysis 

The authors generated patient-derived xenografts (PDXs) data from 65 pediatric tumors with 

various cancer types. Mutation similarity between the patient tumor (PT) and PDX was analyzed. 

The number of PDX datasets that were generated in this study is very large, and it will be a great 

resource. Also, the pattern of evolution in PDX is still largely unknown, so the findings are 

potentially useful. However, the results need to be more carefully interpreted. 

1. In this study, only a single section of PT was sequenced, and similarities of mutation, copy 

number, and transcriptomics profiles between PT and PDX were analyzed. However, the observed 

difference can be due to sampling error, i.e., subclone/clone used for the xenograft was not 

sequenced in the PT data. Sequencing more sections from the PT may change the amount of 

observed similarity between PT and PDX. Ideally, sequencing more than one sample is necessary 

for this type of data analysis. Actually, sequencing multi-sections is very common in the analysis of 

tumor evolution, as sampling errors due to sequencing a single sample are a well-known problem. 

2. Three evolutionary patterns were identified, i.e., clone retention, clone sweeping, and branch 

seeding. However, this classification can be also affected by sampling errors of clones in PT. 

3. The low mutational similarity was concluded to be correlated with the high genetic 

heterogeneity of the PT without reporting clones within PT. Clones and clone phylogenies should be 

inferred, which is a common practice. Please note that clone prediction from a single tumor sample 

is not reliable, so caution is necessary. 

4. Observed similarities of mutation, copy number, and transcriptomics profiles between PT and 

PDX are often not properly interpreted. For example, chemotherapy-related signatures were 

expected to be observed for PDXs when their corresponding PTs have those signatures, because 



mutations that occurred in PTs are inherited in their PDXs. To test if mice without treatment 

accumulate mutations under the chemotherapy-related mutational processes, mutations that are 

unique only in PDXs should be compared with those from PTs. But, only a few datasets have a 

sufficient number of mutations that are unique to PDXs, so I think mutational processes in PDXs 

cannot be elucidated from these datasets. 

5. The evolutionary patterns were concluded to correlate with PDX engraftment time. However, the 

number of unique mutations within PDX is expected to increase as the engraftment time. The 

mutation rate should be computed and compared. 

6. Line178: The loss of PT clonal mutations can be also expected through copy number alteration 

(deletion). To reject this possibility copy number analysis is necessary. 

7. Line 213: How were major clones identified?
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RESPONSE TO REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): expertise in multi-omics integration methods 

Reviewers: Jo Lynne Rokita, Ph.D. and Ryan J. Corbett, Ph.D. 

He et al. report extensive molecular profiling of patient-derived xenografts (PDXs) and matched 
primary tumor (PT) samples derived from multiple pediatric cancer types, and compare mutational 
landscapes, clonality, and gene expression between matched samples. The authors identify 
variation in mutational similarities across PDX-PT pairs, and present two distinct patterns of 
engraftment evolutionary patterns characterized by clone retention (group 1) and subclonal 
expansion/branch seeding (groups 2 & 3). The authors present multiples lines of evidence that 
the unique evolutionary profiles of group 2 & 3 PDXs is likely driven by an immunogenic subclone 
in the PT that rapidly expands in the absence of immune surveillance. The authors further show 
that, unlike SNVs and indels, somatic copy number alterations and gene expression are highly 
similar between PDXs and matched PTs. Some of the results presented in this manuscript are 
available to view interactively through an online portal. Overall, this manuscript provides novel 
insight into observed disparities between PDXs and PTs that are driven in part by PT 
heterogeneity and we are enthusiastic about the work being published for the pediatric oncology 
community. However, there are concerns regarding the reproducibility of this work that should be 
addressed before full manuscript consideration.  

We thank the reviewers for their enthusiasm, and for pointing out that our finding of distinct clonal 
evolution patterns and their association with immune surveillance is supported by “multiple lines 
of evidence.” Because this is our main message in this work, we are encouraged by the reviewers’ 
positive comments. 

- General 

1. This reviewer suggests the use of “mutation” for somatic alterations and “variant” for germline 
alterations throughout the manuscript in order to alleviate confusion. 

Done.  

2. While most of the analyses in this manuscript are restricted to matched PDX and PT samples 
from the same patients, PDX without a matched PT sample, and vice versa, are also included in 
some of the comparisons made between PDX and PT samples (in Supp figures 3 and 4, for 
example). It would be helpful for the readers if there was clear designation for analyses using 
paired samples versus all samples.  

Done. We have clarified in figures whether “all samples” or “PT/PDX pairs” were used. See 
Supplementary Fig 3 for example.  

3. Lines 130-133. Is it known what chemotherapy treatments these 10 patients received, and 
whether these are associated with the specific mutational signatures found? For example, SBS31 
and SBS35 are associated with platinum chemotherapy treatment and SBS87 thiopurine 
treatment. Also, were other treatment-related signatures observed (SBS25, 32, 86)?  

We thank the reviewers for raising this excellent question. Before we address this question, we 
note to the reviewers about two updates of our data. In our initial mutation signature analysis, we 
inadvertently missed four PDX samples (471, 466, 543, 1960), because either they or their 
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germlines were re-sequenced due to issues detected through our quality control steps. We later 
added their mutation data back to our MAF after the resequencing but forgot to include them in 
the mutation signature analysis. We apologize for the mishap. We now add these cases back. 
Adding them does not change the mutation signature results of any other samples.  

Figure R1. Distribution of chemo-related mutational signatures in samples with at least 10 mutations. The 
asterisk represents signature weight larger than 0.25. In the revised manuscript, we only used samples 

with at least 20 mutations in mutational analysis (the first dashed vertical line on the left). Figure 2b has 
been updated accordingly.

The second update is related to SBS87. In COSMIC, SBS87 is associated with thiopurine 
treatment. We observed SBS87 in 2324, 1763, 1960, and to a lesser extent, in 2197. These 
patients received varying treatment regimens including AREN0321 (patient 2324), AREN0532 
(patients 1763, 1960), and AEWS0031 (patient 2197), but none of the regimens contain thiopurine. 
We notice that samples demonstrating SBS87 in our cohort have low mutation counts (<15) 
(Figure R1). Signature deconvolution is generally less reliable with a small number of input 
mutations. A recent study on mutation signatures in pediatric cancer (Thatikonda et al. Nat Cancer, 
2023; PMID: 36702933) applied a threshold of 20 mutations as the minimum. In the revision, we 
adopted their threshold and included only samples with at least 20 mutations. This change led to 
removal of SBS87 in our data. Though we now have less samples in this analysis, we feel more 
confident with the results.  

In the new results (also the initial data), we found robust evidence of platinum drug associated 
signatures SBS31 and SBS35 in samples derived from patients 1792, 585, 1925, 560, 1957, and 
543. Except for 560 that does not have treatment information, all the other 5 patients received a 
platinum-based drug (cisplatin). SBS86 was found in PDX_471. It is currently unknown what 
chemo-drugs can cause SBS86. Patient 471 received unspecified chemo-drugs before tumor 
collection. Thus, the signatures in these patients are supported by their treatment history. 

We did not observe signatures SBS25 and SBS32 in our cohort. This is not unexpected. SBS25 
was identified in Hodgkin’s lymphoma, which is not present in our cohort. SBS32 is associated 
with azathioprine. The signature is rarely seen in cancer; in the ICGC study (Alexandrov et al. 
Nature, 2020. PMID: 32025018), SBS32 was only seen in a very small fraction of biliary cancer 
and MDS, both of which are not present in our cohort. 

We think the change we have made cleans the data and further sharpens our main message from 
this figure, that PDXs carry chemotherapy related signatures despite no exposure to chemo-
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agents. In the revision, we have updated Figure 2b and Method to reflect the changes. We have 
also included patient treatment information in the main text to support the mutational signature 
analysis. We thank the reviewers for their comments that prompted us to make the changes.  

4. Figure 2a is slightly hard to read – a suggestion would be to remove the box colors making a 
transparent box showing only the jitter points and shapes. 

Figure updated as suggested.  

5. Figure 2b. It is said in the results text that 7/8 high mutation samples have therapy-related 
mutational signatures, but it looks as though all samples have some non-zero value shading in 
cells for at least one therapy mut sig. If there is some exposure threshold that signatures must 
meet to be considered “present” in a patient, this needs to be made clear in the heatmap (either 
by zeroing-out sigs that don’t meet threshold, or an asterisk-like indication in cells that do meet 
threshold).  

Done. We have added asterisks to Fig 2b to indicate signature weight greater than 0.25. 

6. It is interesting that there are some PDX-specific oncogene or tumor suppressor gene 
mutations (Supplemental Figure 4d-e). Were they all predicted to be oncogenic/likely oncogenic 
or are they VUS (eg OncoKB)? Perhaps an updated figure which only includes oncogenic/likely 
oncogenic (eg predicted by OncoKB) would be more functionally relevant if these are mixed. Are 
these oncogene clonal mutations present at subclonal levels in the PT tumor even below variant 
calling criteria in the PT tumor (ie, did the authors do a deep dive outside of 585, even in the 
absence of additional deep sequencing)? Likewise, the authors can investigate this from the other 
direction, but the unexpected finding would be a novel oncogene mutation in the PDX which never 
existed in the PT tumor and what is the mechanism of this? 

Using oncoKB-annotator, we identified 46 oncogenic or likely oncogenic mutations, 30 of which 
were found in PT-PDX pairs. Among the 30, 28 were shared between PT and PDX. The other 
two mutations were identified as likely oncogenic (MUTYH, 529_PDX; MYCN, 1823_PT). We 
have added these oncoKB annotation results in Supp Fig 4c,f (highlighted by asterisks). 

The reviewer raised a longstanding question about the detection sensitivity of PT specific 
mutations in the matched PDX, or vice versa, PDX specific mutations in the matched PT. We did 
have a rescue strategy in our analysis: once we found a mutation unique to PT or PDX, we went 
back to raw output of each mutation caller and rescued the mutation if any caller identified it. This 
way, we in total rescued 37 mutations (2% of all mutations).    

To further address the reviewers’ question, we did a supervised analysis for all the remaining PT 
or PDX specific mutations. Briefly, for any PT or PDX specific mutation, we searched for the 
mutation in the matched sample by piling up the nucleotides from sequencing reads at the 
mutation site. We found evidence (at least two reads carrying the mutant allele) for only 2 PDX 
specific mutations in the matched PT, and found no evidence of PT specific mutations in the 
matched PDX. This is a very small number considering that we have 294 PT or PDX specific 
mutations. These two mutations indeed have very low VAF in the PT (0.024 and 0.014) despite 
being clonal in the PDX. Encouragingly, their rediscovery lends further support to the evolutionary 
pattern for the corresponding PT/PDX pairs, both of which were classified as clone sweeping (529 
and 1753. Clone sweeping: PDX derived from a PT subclone).  

We have added these new data to the revised manuscript. 
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7. The “clone sweeping” examples vary from expansion of one sublone or many subclones, so 
the text can be that this is defined as at least one subclone expanding from PT to PDX.  

Revised.  

8. Figure 3g would likely be easier to interpret if it were shown as a box/dot/violin plot.  

Done. 

9. Lines 210-211: a correlation test should be performed to show statistical evidence for PT 
genetic heterogeneity being inversely associated with mutational similarity.  

Done. Results are shown below (rho=0.43, p=0.034, Spearman correlation). Figure R2 has 
been added to the manuscript (now Supplementary Fig. 7a). 

Figure R2. The correlation between mutation similarity and PT heterogeneity. Each dot represents a 

paired sample. The correlation coefficient was calculated by Spearman’s correlation.

10. Lines 306-307: Should this say “hepatoblastoma and Wilms tumor samples showed 
significant intra-lineage correlations” (remove “Except for sarcoma”. 

Done. 

11. The observation that more mutationally diverse PT tumors yield PDX with differing genetics 
makes sense, but it does appear that 2/3 branch seeding models (1957 and 1823) were derived 
from PTs treated with chemotherapy, so this may not be unexpected. Additionally, can this be a 
tumor+chemotherapy-specific phenomenon? It appears that 2 hepatoblastoma models pre-
therapy nicely recapitulated PT tumors, but the two with chemotherapy did not. In other cancer 
types, there is not a similar trend, albeit overall numbers are low. Were the retinoblastoma PTs 
treated with a different agent?

The reviewer made a great observation. We also noticed that the two chemo-treated 
hepatoblastomas showed the pattern of clonal selection, in contrast to the two without 
chemotherapy. We agree with the reviewer that chemotherapy could have played a role, given 
that chemotherapy as an external evolutionary pressure may increase the genetic heterogeneity 
of the PT. However, there is no enrichment of pre-chemotherapy between group 1 and group 2 
tumors (P = 1, chi-square test): 31% (5/16) of group 1 tumors versus 29% (2/7) of group 2 tumors 
received chemotherapy. Based on these results, we refrained from associating chemotherapy to 
the evolutionary patterns. We have added the chi-square test results to the revised manuscript.  
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Patient 1957 received AHEP0731 regimen T (cisplatin, fluorouracil, and vincristine); patient 585 
received regimen AHEP1531 Group D (cisplatin, doxorubicin).   

- Molecular Methods
12. The kits or protocols used for DNA and RNA extraction are not described in the Methods 
text. 

Added in Method. Genomic DNA was extracted with DNeasy Blood & Tissue Kit (QIAGEN) and 
RNA was isolated using RNeasy Mini Kit (Qiagen). 

- Computational Methods 

13. “NGSCheckMate9 (v1.0.0) was applied to both DNA and RNA sequencing data to make sure 
matched samples were from the same patient.” This reads as if PDX DNA and RNA were checked 
for matching, but was this also done between PDX and patient to ensure PDX/patient matches? 

We apologize for the confusion. What we did was exactly what the reviewers asked: we checked 
the matching between PTs and PDXs using both DNA and RNA sequencing data (Supplementary 
Fig 1). In the revision, we have reworded the sentence in Method to improve clarity.   

14. The text states that “The BAM file of human reads was converted to FASTQ format using 
Samtools7 (v1.14) for further analyses”. This seems incorrect; was there another reason for re-
generating fastq files with human-only reads?  

To remove mouse reads from RNAseq data, we used an alignment-based tool called 
disambiguate. The input for disambiguate was the BAM file that contains mapped reads, because 
disambiguate differentiates human reads from mouse reads using mapping quality. The 
unmapped reads were not included in these BAMs. After removing mouse reads, the unmapped 
reads had to be recollected for fusion identification because they contain critical evidence, i.e., 
junction-spanning reads. We converted BAMs back to FASTQ so that we can merge them with 
the unmapped reads, and re-run fusion detection tools, both of which (STAR-fusion and PRADA) 
prefer FASTQ as input. We apologize for any confusion. In the revision, we have added these 
clarifications in Method. 

15. “High confidence somatic mutations were identified as those that were called by at least two 
callers.” Were there any hotspot mutations missed by two callers, or were these checked, for 
example using the MSKCC hotspot database: https://www.cancerhotspots.org/#/home  

We appreciate the reviewer’s concern. It is routine to use multi-callers for mutation detection. For 
instance, the TCGA MC3 effort used 7 callers (Ellrott et al. Cell Systems, 2018. PMID: 29596782). 
To address reviewer’s concern, we compared mutations downloaded from the MSKCC hotspot 
database with the mutations that have been filtered out. Of the 3554 somatic mutations that were 
called by only one caller, only one point mutation (NUP93, E14V) and two indels of CTNNB1 were 
documented in the MSKCC hotspot database. As the reviewer knows, indels are notoriously 
difficult to identify from short-read sequencing data. Thus, the number of missed mutations is 
negligible. We note for the reviewer that in our analysis, we had taken additional steps to detect 
indels specifically for CTNNB1 in hepatoblastoma samples because it is known that CTNNB1
frequently harbors indels in this disease (Sumazin et al. Hepatology, 2017. PMID: 27775819). 
And we indeed detected one of these two hotspot indels in our hepatoblastoma samples. We 
have added these discussions in the revised Method.  

https://www.cancerhotspots.org/
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16. What was the genetic sex makeup of the 40 PON samples? Is it balanced to ensure quality 
calls in XY chromosomes? What was the accuracy of the calls using 3/3 algorithms in tumor only 
samples? Did this result in a loss of any oncogenic calls? 

The Panel of Normal included 17 female and 23 male samples. The male to female ratio (1.35:1) 
reflects the overall patient cohort (1.3:1).  

We agree with the reviewer that the 3/3 algorithm is stringent. However, as the reviewer well 
understands, there are few established protocols for calling somatic mutations in model systems 
for which the matched normal is often unavailable. Loosening the stringency is much less 
desirable because it would inflate artifacts. In our study, if we use 2/3 approach for samples 
without germline, we could identify roughly twice as many mutations as the 3/3 approach. It is 
hard to know if these additional mutations are bona fide because there is no ground truth to 
compare with.  

Several observations made us feel confident about our mutation data. First, the mutation rates of 
several cancer types are highly consistent between our dataset and published datasets. We refer 
the reviewer to Table R2. Second, known driver genes also show consistent mutation frequency 
with the literature. Table R1 shows the mutation frequencies of known driver genes in our PDXs 
and in published datasets, including both PDX datasets (Murphy et al. and Rokita et al.) and 
patient tumor datasets (others). Although it is difficult to evaluate mutation frequency with small 
sample sizes, our mutation frequencies are generally consistent with those published in the 
literature. KIT in germ cell tumor is an exception. However, a close look suggests that KIT 
mutations were found in germinomas by the cited studies. Germinoma is not represented in our 
cohort.  

Wilms 
Tumor 

Gene 
Grobner et al. 
Nature, 2018 

(n=51) 

PeCan2 
(st.jude cloud, 

n=138) 

Gadd et al. 
Nat Genet, 

2017. 
(n=768) 

Rokita et al. Cell 
Rep, 2019 

(PDX, n=13) 

Murphy et 
al. Nat 

Commun 
(PDX, n=45) 

Our PDXs 
(n=13) 

CTNNB1 4% 6% 12% 15% 22% 15% 

SIX2 / 3% 3% / 4% 10% 

NONO / 3% 2% / 4% 10% 

TP53 8% 19% 12% 23% 16% / 

WT1 2% 3% 6% 8% 16% / 

DROSHA 8% 7% 10% 15% 13% / 

DGCR8 10% 3% 4% / 7% / 

SIX1 10% 3% 4% / 7% / 

Osteosa
rcoma 

Gene 
Grobner et al.
Nature, 2018 

(n=42) 

PeCan2 
(st.jude cloud, 

n=151) 

Rokita et al. Cell 
Rep, 2019 

(PDX, n=36) 

Our PDXs 
(n=11) 

RB1 5% 17% 17% 18% 

TP53 8% 20% 28% 9% 

ATRX 13% 19% 8% 9% 

ARID1A 5% 2% / 9% 

SYNE2 / 4% 17% 18% 

Hepatobl
astoma 

Gene 
Grobner et al. 
Nature, 2018 

(n=16) 

Hirsch et al.
Cancer Discov, 

2021 (n=65) 

Sumazi et al.
Hepatology, 
2017 (n=88) 

Our PDXs 
(n=11) 

CTNNB1 19% 94% 89% 64% 
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NFE2L2 / 6% 5% 9% 

DDX3X / 3% / 9% 

LEF1 / 3% / 9% 

Germ 
Cell 

Tumor 

Gene 
Kubota et al. 
Commun Bio, 
2020 (n=51) 

Shen et al. Cell 
Rep, 2018 

(adult, n=137) 

Our PDXs 
(n=9) 

KRAS 4% 13% 11% 

KIT 12%* 18%* / 

Table R1. Mutation frequency of known cancer drivers in 4 cancer types where we have relatively good 
sample sizes. Driver genes are defined by studies cited in the table.  

*KIT mutations were found exclusively in germinomas in Kubota et al. Germ cell tumors in our cohort are 
of the testis and ovary.  

We respectfully emphasize to the reviewer that 19 of 23 PT/PDX pairs had matched normal DNA; 
thus, the most important findings including the PT/PDX similarity and the evolutionary patterns 
are minimally impacted by the lack of germline samples. 

We have included Table R1 in the revised manuscript (now Supplementary Table 3).  

17. Mutational signature analysis: it is unclear what is mean by “We excluded …signatures with 
the highest weight < 0.25 for further analysis.” Were mean signature weights recalculated using 
only the remaining signatures? (ie- if when using “all signatures ABCDEF”, Signature E had <0.25 
in all samples, then was deconstructSigs rerun for only ABCDF signatures?) Additionally, it is 
common to filter out any signatures in patients with exposure weight < 0.06 (i.e., set them to zero). 
The results text and corresponding figure for this analysis make it unclear if this was performed.  

We apologize for the confusion. For signature analysis, we first filtered out samples with low 
mutation counts. In the updated analysis, 58 samples with less than 20 mutations were excluded. 
We consider a minimum weight of 0.25 as evidence of robust detection of a signature, and 
removed samples where no signature had a weight higher than 0.25. Fourteen samples passed 
these filters in the final results (see Figure R1 and Figure 2b). No signature score scaling was 
done. In the revision, we have edited Method to improve clarity. 

18. “The cancer gene list was downloaded from Cancer Gene Census17.” The authors can 
include this gene list as a supplemental table since this can change over time. 

Done. The list is now included as Supplementary Table 5.

19. It is stated in the Methods that differential gene and pathway expression analyses were 
performed, but these results are not presented (gene) or shown in reduced form in Supp. Table 
5 (enriched pathways). These results should either be presented in full in a supp. table AND 
discussed in the text, or the methods should not be included. 

Done. We have removed these texts in the revised manuscript. In our initial pathway analysis, we 
found abundant immune-related pathways enriched with differentially expressed genes, but we 
chose not to show them because this was largely redundant with the GSEA results. We thank the 
reviewer’s scrupulous reading of our manuscript.  

20. For differential expression analysis, the authors state that a multifactor analysis was 
performed but do not indicate if any additional covariates were included in the model (tumor type, 
treatment status, etc). 
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See our response to the above comments. 

- Reproducibility 

21. The code used to generate the results has not been shared within the manuscript text. The 
authors should share all computational analyses used in this manuscript via Github or some other 
repository in order to enable reproducible analyses of these data. 

We did include the link to the Github repository in the software policy document in the initial 
submission (https://github.com/fnhe/PediatricSolidTumorPDX). We agree with the reviewer that 
this link should have been included in the main text (see data availability). We have hence 
included it in the revision.  

Reviewer #2 (Remarks to the Author): expertise in solid tumour model development 

In their manuscript titled “Genomic profiling of subcutaneous patient-derived xenografts reveals 
immune constraints on tumor evolution in childhood solid cancer,” He et. Al. describe their 
genomic profiling of a small cohort of pediatric solid tumors (90). Their engraftment rates were 
similar to several previous publications. Only 68 tumors were genomically profiled with low pass 
WGS, WES and RNA-seq. Only 27 of those 68 had the matched patient tumor and 40 of the 68 
had the germline. With these limited data, they report clonal enrichment as has been shown in 
multiple studies previously. They claim that the clonal selection may be due to anti-tumor immunity 
in the patient relative to the PDX. The evidence for this comes from the observation that in some 
PDXs, the minor clone in the minor clone in the patient predominates and those cells are more 
proliferative. Overall, this is a very small cohort with incomplete characterization and validation 
and the conclusions regarding anti-tumor immunity are not supported by the data. 

We respectfully but strongly disagree with the reviewer that (1) our cohort is very small, and that 
(2) our conclusion is not supported by the data. In the following rebuttal, we will demonstrate that 
our sample size is comparable to published high-profile studies, and our conclusion is supported 
by the data (“based on multiple lines of evidence” per Reviewer 1).    

Specific Comments: 

1. A major limitation is the lack of patient tumor and germline for all of their cohort. The patient 
tumor and germline should be used with WGS, WES and RNA-seq to identify somatic lesions. 
The PDX and patient tumor should be used to assess clonal heterogeneity. Without all 3 samples 
(patient, germline, PDX) the impact of the study is minimal. Based on Fig. 1, there are only 22 
with all 3 samples. Among those 22, 8 are Wilms, 2 are clear cell sarcoma, 1 is neuroblastoma, 
3 are osteosarcoma, 4 are hepatoblastoma and 3 are germ cell tumor. It is very difficult to make 
any conclusion with such small numbers of tumor samples. 

Childhood cancers make up about 1% of all cancer diagnoses in the US. Among them, about 40% 
are blood cancers, leaving the total incidence of solid childhood cancers to be around 0.6% of all 
cancer diagnoses. Please note that this 0.6% comprises many different entities; the central nervus 
system alone has more than 100 known cancer types (Capper et al. Nature, 2018. PMID: 
29539639). Essentially, solid cancers in children are rare cancers. This rarity imposes an 
enormous challenge for basic, preclinical, and clinical research. That is why collaborative groups 
such as COG (Children’s Oncology Group) have been formed to coordinate clinical trials because 
it is difficult, if not impossible, for single centers to recruit enough cases for trials. PDXs are 

https://github.com/fnhe/PediatricSolidTumorPDX


9

important for the same reason because they can be used to prioritize trials and preserve tumor 
tissue.  

Below is a table comparing sample sizes between our dataset and previously published studies. 
We are not aware of other larger PDX datasets for childhood solid cancer. Given that the overall 
engraftment rate is ~48%, establishing 68 PDXs would take around 140 patient tumors. This is 
an enormous size for pediatric solid cancer. Of note, the Rokita et al. study is a consortium effort 
on sequencing PDXs used in NCI’s Pediatric Preclinical Testing Consortium (PPTC, since 2004). 
Even with the consortium effort, the sample size appears small compared to many adult cancer 
studies. This again shows the challenges with childhood cancer research and the resource value 
of our dataset.  

Study Molecularly 
profiled Solid 
tumor PDX

PDX/PT pair Germline  Cancer type 

Stewart et al. Nature 
2017 
PMID: 28854174 

67 51* 51 Diverse 

Rokita et al. Cell Rep, 
2019 (PPTC) 
PMID: 31693904

171 0 0 Diverse 

Our cohort 68 27 40 Diverse 
Table R2. Comparison of Cohort size of our dataset and other two published datasets. * Clonal analysis 
was done on 42 of the 51 PT/PDX pairs.   

The lack of PT or germline samples is not without reasons. Because these tumors are so rare, 
tumors are typically cut in several pieces for various purposes including pathology review, banking, 
and research. Samples we receive are usually very small in size, some from biopsies. To ensure 
successful generation of PDXs, we implant a tumor sample into 2-5 mice. This typically exhausts 
the tumor tissue. We send PTs to sequencing only when there is tissue left. This problem is not 
unique to us. In a landmark paper (Stewart et al. Nature, 2017. PMID: 28854174), the authors
noted in the supplementary discussion that “The biggest challenge of producing O-PDX tumors 
was procuring enough tissue. For biopsy specimens or small tumor samples, there is rarely 
enough tissue for injection.” 

In summary, the relatively small sizes of childhood cancer cohorts compared with adult cancers 
stem from their rarity, a reality that highlights the value and impact of this resource. Besides its 
resource value, we show in our paper how this resource can be used to shed light on fundamental 
questions about PDXs, i.e., what causes the genomic disparity between PTs and PDXs. We 
respectfully remind the reviewer that our clonal analysis is supported by multiple lines of evidence 
derived from orthogonal data. These insights are novel, and the implications are much beyond 
childhood cancer PDXs. 

In the revised manuscript, we have added texts to emphasize the rarity of childhood solid cancers.  

2. It is not clear why low pass WGS was performed rather than deeper WGS and there was no 
discussion of validation using custom capture and deep sequencing or at least cross validation of 
the WES and RNA-seq.  

We used low pass WGS and WES because the two methods give us complementary, high-quality 
data. Low pass WGS provides genome wide coverage thus is more suitable for copy number 
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profiling. For mutation calling, WES provides a depth of 300-400x. This depth allows for detection 
of somatic mutations at a very low cellular frequency. Deeper WGS can do both copy number 
profiling and mutation calling. But at the depth of 300-400x the cost is unsustainable for us. In our 
view, both WES and low pass WGS are mature, reliable sequencing methods, and there is no 
reason we cannot use them.  

Regarding the reviewer’s comment on mutations validation, we did have deep sequencing data 
for 585_PT, as the reviewer noted below. More importantly, Illumina WES is technologically very 
mature. We respectfully point out to the reviewer that the consistency between our dataset and 
the published datasets (Ma et al. Nature, 2018; Grobner et al. Nature, 2018) in mutation rates 
(see Table R2), and the expected mutation frequencies of driver genes in selected cancer types 
(see Table R1) provide strong validation for our mutation data.  

To address the reviewer’s concern on absence of validation, we cross-compared mutations from 
WES with RNAseq and low pass WGS data. Of the 1,787 mutations called from WES, 211 have 
coverage ≥10 in low pass WGS (minimum mapping quality 20), 184 of which show at least one 
read covering the mutant allele (validation rate 87%). The unvalidated mutations (n=27) show an 
average VAF of 0.15 (median 0.13; mean 0.15). At this VAF, we would only expect 1-2 reads at 
the sequencing depth of 10. In RNAseq, 219 mutations show coverage ≥10, 194 of which show 
at least one read covering the mutant allele (validation rate 89%). Similarly, the unvalidated 
mutations have low VAFs (median, 0.11; mean, 0.15). If we combine RNAseq and low pass WGS, 
388 mutation sites have coverage ≥10 in either data type, and 356 of them show at least one read 
covering the mutant allele (validation rate 92%). The average VAF of validated mutations is 0.34, 
compared with 0.13 of the unvalidated mutations. 

In addition, we now add deep sequencing data on 585_PDX (average 7000x). Of the 55 point 
mutations from WES in this sample, 54 were captured in deep sequencing, and all 54 were 
validated. A similar result was described in the manuscript for 585_PT (6/6 mutations validated 
by deep sequencing). Taken together, these results show our WES-based mutations are highly 
confident.  

We have added descriptions on the new validation data in the revised manuscript. The deep 
sequencing data has been provided in Supplementary Table 2.   

3. The mutation rate and mutation signature analysis were limited by sample size(???) and there 
are much larger studies that have been published on patient tumors and PDXs with rigorous 
validation and deep sequencing.  

We would appreciate the reviewer’s reference to the specific childhood cancer PDX studies that 
have much larger sample sizes. We are not aware of such studies except those listed in Table 
R2.  

We apologize for not understanding how sample size can limit mutation rate analysis, which is 
calculated on a per-sample basis. We respectfully point out that our mutation rates are consistent 
with results from the recently published pan-childhood cancer studies (Grobner et al. Nature, 2018, 
PMID: 29489754. Ma et al. Nature, 2018, PMID: 29489755). The following table compares the 
median number of exonic mutations of three cancer types shared between our dataset and the 
two studies.  As the reviewer can see, the mutation rates are highly similar. These results lend 
strong support to our mutation analysis.     
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Our data Grobner et al. Ma et al. (WGS) Ma et al. (WES) 
Wilms tumor 7 11 7 7

Neuroblastoma 15 17 19 16 
Osteosarcoma 22 23 31 21

Table R3. Comparison of median mutation rates between our study and two recently published studies 

across three cancer types that were shared among the three studies. For WGS and WES mutation data 
from Ma et al., we inferred the mutation number based on 39Mb exonic region (same as our data) and the 

mutation rate listed in their manuscript. 

Mutation signature analysis is limited by mutation counts per sample, not by sample size. Our 
mutation signature results are highly consistent with patient treatment history when the tumor has 
a decent mutation count: of the seven samples that carried a platinum-based drug signature 
(SBS31 and SBS35), all received the platinum-based drug cisplatin. This consistency strongly 
supports our mutation signature analysis. We refer the reviewer to Figure R1.   

4. It is interesting that they did perform capture enrichment and deep sequencing on a single 
patient tumor that had low PDX similarity. However, they did not perform the same analysis on 
the PDX. The proper way to do the study is to design capture probes for all somatic SNVs across 
the genome in each patient-PDX pair and then do deep sequencing on all SNVs on both samples. 
Using this approach, they can identify rare clones in both the patient tumor and the PDX. 

We appreciate the reviewer raising this issue. In the initial submission, we performed deep 
sequencing on 585_PT but not 585_PDX, because in our view deep sequencing of the PDX 
sample provides little biological insight--it is pointless to know if a PT specific mutation exists in 
the PDX at an ultralow frequency. Nonetheless, for the revision, we have done deep sequencing 
on 585_PDX (average depth, 7000x). As we mentioned in response to comment #2, the deep 
sequencing data validated all 54 mutations that were captured in the assay. None of the PT 
specific mutations were found in the PDX deep sequencing data and vice versa.  

We wish to discuss with the reviewer about the use and interpretation of deep sequencing data.  

First, “deep” sequencing must be considered a quantitative but not qualitative measurement. 
There is no golden-standard depth of coverage for deep sequencing data. For example, 
compared to 50x, both 400x and 4000x can be considered “deep”. The difference is the detection 
sensitivity. This is very important, because at any of these depths, the absence of a mutation in 
deep sequencing data does not prove the absence of the mutation in the sample; it only proves 
the absence of the mutation at the specified sensitivity. The average depth of our WES data is 
317x (min, 182x; max, 795x). At this depth, we can detect variant alleles at a fraction as low as 
1.6% (assuming minimum 4 mutant reads and 80% purity). This is equivalent to a cellular 
frequency of 3% (assuming neutral copy number, heterogeneous mutation). We think this is an 
acceptable sensitivity. 

Second, the scope of deep sequencing data is bounded by WES/WGS. Deep sequencing data 
does not identify new mutations. Rather, their purpose is to validate mutations identified by WGS 
or WES. In the context of PT vs. PDX, if a mutation is not detected in WES or WGS, deep 
sequencing cannot be used to call it for a simple reason: at 1000x, given the Illumina sequencing 
error rate (0.1%-0.5%, Stoler et al. PMID: 33817639), we would expect 1-5 variant reads at any 
nucleotide site. Moreover, deep sequencing is typically capture enriched, meaning by design only 
mutation sites identified by WGS/WES are effectively captured. Thus, if the WES or WGS does 
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not identify mutations that are indicative of a rare clone, deep sequencing certainly cannot identify 
them.  

Third, the sample ‘PT’, as we call it, is not the tissue origin of the PDX. The tissue origin of PDX 
has been exhausted to generate the PDX. As such, its genetic makeup is impossible to know. 
The ‘PT’ sample is taken from a different section of the patient tumor. How PT genetically relates 
to the tissue origin of the PDX is determined by intratumoral heterogeneity (see Figure R4). If 
deep sequencing of the ‘PT’ detects PDX specific mutations, most likely these mutations also 
exist in the PDX’s tissue of origin. However, absence of such mutations in deep sequencing data 
does not suggest that these mutations are absent in the PDX’s tissue origin, and hence, the 
patient tumor. For this reason, deep sequencing does not provide definitive evidence for the 
presence or absence of PDX specific mutations in the patient tumor. This is also why we think 
treatment related mutational signatures are so important. Because mice were not treated with 
chemo-agents, the observation of chemo-related signatures in PDXs can be only explained by 
the inheritance of mutations from the tissue origin, no matter whether these mutations are seen 
in the ‘PT.’ 

Here we are not denying the value of deep sequencing. It provides higher sensitivity for detecting 
PDX specific mutations in PTs and can potentially prove these mutations pre-exist in the patient 
tumor (Stewart et al. Nature, 2017. PMID: 28854174). However, it has also been shown that a 
substantial proportion of PDX specific mutations are not found in the PT by deep sequencing 
(Murphy et al. Nat Commun, 2019. PMID: 31862972). As we pointed out in the discussion above, 
interpreting this negative result carries certain ambiguity. Thus, deep sequencing has its 
limitations and is not used in every PT/PDX study (examples include a study by NCI PDXNet 
Consortium. Sun et al. Nat Commun. 2021. PMID: 34429404). 

In the revision, we have added more discussion on deep sequencing in Methods.  

Figure R4. Schematic of PT, PDX, and PDX tissue origin (PT-TO). PT denotes the patient tumor sample 

that is gnomically profiled. However, PT is distinct from the tissue origin of the PDX, which is denoted as 
PT-TO. PDX here denotes early passage PDX tumors such as used in our study.  

5. A germline sample is required to serve as a reference to identify somatic mutations. It is not 
clear how they could conclude that mutations were clonal without doing the target enrichment and 
capture for all the SNVs across all the tumors. Subclonal SNVs may be lost in the shallow WGS 
and the exonic SNVs may have functional significance so interpreting clonal architecture in WES 
alone must take into account the rare SNVs and the possibility that they provide a selective growth 
advantage or disadvantage.  
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We apologize for not understanding the reviewer’s comments. We used WES and never used 
shallow WGS for mutation calling, thus we are confused by the reviewer’s comment “Subclonal 
SNVs may be lost in the shallow WGS.”  

We are also baffled by the comment “It is not clear how they could conclude that mutations were 
clonal without doing the target enrichment and capture for all the SNVs across all the tumors.” 
We speculate by “all the tumors” the reviewer meant paired PT and PDX samples. Target 
enrichment and sequencing of paired PT and PDX does not inform the clonality of a mutation; the 
presence of a mutation in both PT and PDX does not suggest the mutation is clonal. A subclonal 
mutation in the PT can be clonal or subclonal in the PDX, despite being present in both samples.  

We respectfully bring the reviewer’s attention to the fact that computational methods for inferring 
mutation clonality from DNA sequencing data have been established for more than 10 years. 
Examples include ABSOLUTE, published in 2012 (Carter et al. Nat Biotech, 2012. PMID: 
22544022); Pyclone, first introduced in 2012 and formally published in 2014 (Shah et al. Nature, 
2012. PMID: 22495314. Roth et al. Nat Methods, 2014. PMID: 24633410). These methods infer 
mutation clonality based on mutation variant allele fraction while controlling for copy number 
alteration and tumor purity. They do not need sequencing data from multiple samples. In our data, 
we found 88% of PT clonal mutations were observed in the PDX, while only 22% of PT subclonal 
mutations were observed in the PDX (first paragraph in the ‘evolutionary pattern’ section). We 
explicitly reported these numbers in the manuscript because the contrast (88% vs. 22%) is in 
accord with the expectation that clonal mutations are more likely to pass on than subclonal 
mutations, thus providing support for our inference of mutation clonality.  

We agree with the reviewer that having a germline sample is important for identifying somatic 
mutations but disagree that a germline sample is absolutely required for mutation calling. There 
are scenarios where it is simply impossible to get germline samples, particularly for model 
systems. For instance, no germline sample is available for established cancer cell lines included 
in Cancer Cell Line Encyclopedia (CCLE), and yet CCLE, including its mutation data, is a vital 
resource for the cancer research community. None of the PDX models profiled by PPTC (Rokita 
et al. Cell Rep, 2019) has the matched germline. But these models have been yielding critical 
preclinical insights that guide clinical trials on childhood cancer. We respectfully point out to the 
reviewer that only 4 of the 23 PT/PDX pairs do not have germline samples, and none of the 4 
pairs showed the clonal selection pattern. Thus, the lack of germline samples should have a very 
small impact on our core messages including the PT/PDX similarity and the evolutionary patterns.    

In the revision, we have annotated PT/PDX pairs in each figure whenever they do not have 
matched germline. This annotation is to remind readers of this caveat. The affected figures are 
Fig. 2c, 4a. 

6. The clonal selection has been reported previously but there is no biologic or mechanistic data 
presented here to indicate that it is related to antitumor immunity rather than a stochastic event 
or some other mechanism. Indeed, if a minor clone overtakes the PDX, it is predicted to be more 
proliferative than in the patient but this does not prove anti-tumor immunity in the patient. 

We are glad the reviewer agrees with us on the one key piece of data leading to our main 
conclusion. We kindly point the reviewer to Fig 4c,d,e for the evidence leading to our conclusion 
of anti-tumor immunity in patients. Briefly, we show in Fig 4c,d,e that patient tumors that undergo 
clonal selection have stronger expression of gene signatures related to innate immunity and 
antigen presenting cells, and their corresponding PDXs express more clonal neoantigens. 
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Reviewer #3 (Remarks to the Author): expertise in clone sweeping and genomics analysis 

The authors generated patient-derived xenografts (PDXs) data from 65 pediatric tumors with 
various cancer types. Mutation similarity between the patient tumor (PT) and PDX was analyzed. 
The number of PDX datasets that were generated in this study is very large, and it will be a great 
resource. Also, the pattern of evolution in PDX is still largely unknown, so the findings are 
potentially useful. However, the results need to be more carefully interpreted. 

We thank the reviewer for acknowledging the value of this resource and the novelty of our study. 

1. In this study, only a single section of PT was sequenced, and similarities of mutation, copy 
number, and transcriptomics profiles between PT and PDX were analyzed. However, the 
observed difference can be due to sampling error, i.e., subclone/clone used for the xenograft was 
not sequenced in the PT data. Sequencing more sections from the PT may change the amount 
of observed similarity between PT and PDX. Ideally, sequencing more than one sample is 
necessary for this type of data analysis. Actually, sequencing multi-sections is very common in 
the analysis of tumor evolution, as sampling errors due to sequencing a single sample are a well-
known problem. 

We agree with the reviewer that sampling can affect PT/PDX similarity. In the initial manuscript, 
we had briefly discussed the potential impact of sampling. Samples we receive are usually very 
small in size, some from biopsies. To preserve tumor tissue, we implant tumor tissue into 2-5 
mice. We rarely have an additional tumor block for sequencing. This problem is not unique to us. 
In a seminal paper by Stewart et al. (Nature, 2017. PMID: 28854174), the authors noted that “The 
biggest challenge of producing O-PDX tumors was procuring enough tissue. For biopsy 
specimens or small tumor samples, there is rarely enough tissue for injection.” (O-PDX stands for 
orthotopic PDX).  

Figure R5. Schematic of additional PDXs. For the revision, we identified additional PDXs that were directly 
established from the patient tumor. The ‘PT’ sample and the cellular origin of these PDXs each represent 

one sampling of the patient tumor.  

We took an alternative approach to address the reviewer’s comment. As we mentioned above, 
we implant tumor tissue into multiple mice. In some cases, we get multiple PDXs, each derived 
from a different section of the primary tumor (please also see Figure R5). In total, we identified 7 
more P1 PDXs (the tumor grown in mice after initial implantation) that were established from the 
same patient tumors. One PDX had to be excluded due to high mouse cell contamination, leaving 
the total to 6. Additionally, we identified a second tumor block for 1795_PDX (noted as 1795_PDX-
2). Comparing these additional PDXs to the matched PT, we indeed see variation in mutational 
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similarity as the reviewer suggested (Table R4), but the similarities are generally consistent. Copy 
number patterns between PDXs and the PT are highly correlated (Figure R6), corroborating our 
conclusion that copy number events are mostly early and are preserved in PDXs (see also Woo 
et al. Nat Genet, 2021. PMID: 33414553). We have added these new data to the manuscript 
(Supplementary Fig. 4g; Supplementary Fig. 9d).  

Shared PT PDX Similarity

1795_PDX 5 7 9 0.45 

1795-A_PDX 5 7 7 0.56 

1795_PDX-2 5 7 7 0.56 

1826_PDX 18 21 21 0.75

1826-A_PDX 20 21 26 0.74

1913_PDX 8 19 15 0.31

1913-A_PDX 8 19 23 0.24

1913-B_PDX 9 19 20 0.30

1932_PDX 4 6 5 0.57

1932-A_PDX 4 6 8 0.40

1932-B_PDX 4 6 7 0.44
Table R4. PT and PDX mutational similarity using different PDXs established from the same patient 

tumors. The first PDX in each group is the PDX sample analyzed in the initial dataset. A and B are 
additional P1 PDXs. 1795_PDX-2 is a second block of 1795_PDX. ‘Shared’ indicates the number of 

shared mutations between matched PT and PDX. ‘PT’ and ‘PDX’ columns indicate the total number of 
mutations detected in the PT and PDX, respectively.  

Figure R6. Copy number correlation between PT and PDXs. The correlation was calculated the same 

way as in Fig 5 in the manuscript.  

In practice, which section to take from patient tumor for the purpose of either engraftment or PT 
profiling is usually quite random. This randomness, or sampling error as the reviewer put it, is 
universal in genomic profiling of bulk tumors. The way to obtain reliable patterns over this 
randomness is to increase sample size. Multi-sector sequencing suggested by the reviewer 
increases the sample size on the single tumor level. While this can be very insightful for 
understanding a particular tumor, extending the insights to other tumors would require multi-sector 
sequencing of those tumors. This is challenging even impractical for pediatric cancer, especially 
if many tumors are needed for sufficient statistical power. Alternatively, one can look for patterns 
through a cohort, because even events of low probabilities will manifest if the cohort has a proper 
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sample size. Since these patterns transcend the identity of each sample, we would also expect 
to observe such patterns across multiple cohorts. 

To demonstrate this, we show PT/PDX similarity from our study (Figure R7a), the study by 
Stewart et al. (Nature, 2017. PMID: 28854174) (Figure R7b), and the study by Murphy et al. (Nat 
Commun, 2019. PMID: 31862972) (Figure R7c). The Stewart et al. study examined 67 orthotopic 
childhood cancer PDXs, and the Murphy et al. study examined 45 subcutaneous childhood Wilms 
tumors. As the reviewer can see, the patterns are generally similar, with some pairs showing very 
low mutational similarity. We think this data support the idea that though every PT/PDX pair is 
subject to sampling randomness, when a large number of pairs are profiled, they can inform on 
the general patterns such as PT/PDX genetic similarity and evolutionary patterns. We indeed 
made recurrent observations with Stewart et al. For instance, we found high PT/PDX similarity in 
osteosarcoma (see Fig 4a), so did them; we found longer engraftment time associated with clonal 
selection (see Fig 3d), and they noted longer engraftment time in tumors (neuroblastoma) that 
show worst clonal preservation (please see our response to comment #5).     

Figure R7. PT/PDX mutational similarity. (a) from our cohort. (b) from Stewart et al. (c) from Murphy et al. 
Mutation data for the two other studies were downloaded from their published Supplementary tables.   

2. Three evolutionary patterns were identified, i.e., clone retention, clone sweeping, and branch 
seeding. However, this classification can be also affected by sampling errors of clones in PT.  

Please see our response above. We also kindly remind the reviewer that our evolutionary patterns 
are corroborated by their correlation with orthogonal data, including tumor telomere lengths (Fig. 
3g), engraftment time (Fig. 3d), and expression profiles (Fig. 4b-e).  

3. The low mutational similarity was concluded to be correlated with the high genetic 
heterogeneity of the PT without reporting clones within PT. Clones and clone phylogenies should 
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be inferred, which is a common practice. Please note that clone prediction from a single tumor 
sample is not reliable, so caution is necessary.  

We defined genetic heterogeneity of a tumor as the fraction of subclonal mutations over all 
mutations. Thus, more subclonal mutations would indicate higher genetic heterogeneity. We did 
not map out clones or clone phylogeny because of low mutation counts in childhood cancer (in 
our cohort, median, n=14; mean, n=23). Though in some cases the clonal structure is clear (see 
Fig 3a-c for examples), the low mutation counts make it often infeasible to distinguish distinct 
clones with high confidence. Thus, we used this more robust way to quantify a tumor’s genetic 
heterogeneity.   

We agree with the reviewer that with single biopsy, it is difficult to distinguish between early 
mutations and dominant mutations, the latter of which could be specific to one specimen. To test 
the reliability of our mutation clonality prediction, we again used the additional PDXs that matched 
the four PT samples (Table R4). Our rationale is, if a PT clonal mutation passes on to one PDX, 
the mutation should also pass on to other PDXs due to its “clonal” nature. For the reviewer’s 
convenience, Figure R8 below shows the mutation dynamic between the PT and the original PDX. 
With the additional PDXs, we observed the following: 

- In case 1795, 4 PT clonal mutations were observed in the original PDX (1795_PDX). All these 
4 PT clonal mutations were also found in the additional PDX (1795-A_PDX). 

- In case 1795, all 7 clonal mutations of the original PDX block (1795_PDX) were also observed 
in the second tumor block of the PDX (1795_PDX-2). The subclonal mutation was not 
observed in the second block.     

- In case 1826, 17 PT clonal mutations were observed in the original PDX (1826_PDX), and all 
17 were also observed in the additional PDX (1826-A_PDX).  

- In case 1913, 6 PT clonal mutations were observed in the original PDX (1913_PDX), and all 
6 were also observed in the two additional PDXs (1913-A_PDX and 1913-B_PDX).  

- In case 1932, 3 PT clonal mutations were observed in the original PDX (1932_PDX), and all 
3 were also observed in the two additional PDXs (1932-A_PDX and 1932-B_PDX). 

- 17 subclonal mutations were identified across the 4 PTs. Only 2 of the 17 were observed in 
the additional PDXs, in stark contrast to the PT clonal mutations.   

Figure R8. Mutation dynamic for the 4 PT/PDX pairs where more than one P1 PDXs were characterized. 
The figures were taken from Supplementary Fig. 5c. PDX here refers to the PDX used in the initial analysis.  

Despite a small sample size, these results strongly support our prediction of mutation clonality. 
We gently remind the reviewer that across all PT/PDX pairs, we observed 88% of PT clonal 
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mutations in the PDX, compared to only 22% of PT subclonal mutations (see first paragraph in 
the ‘evolutionary pattern’ section in the initial submission). This is consistent with the expectation 
that clonal mutations in the PT more likely pass to the PDX.  

We have made other intriguing observations from this new data. Both 1913 and 1932 were 
classified as clone sweeping, i.e., PDX main clone was derived from a PT subclone. The evidence 
for this classification is that in both cases, a PT subclonal mutation became a clonal mutation in 
the PDX (LRP2 for 1913, and BMP4 for 1932). Interestingly, the same LRP2 mutation was 
identified in the two additional 1913 PDXs, and the mutation appears to be clonal (VAF 0.44 and 
0.45 in PDXs vs. 0.09 in PT). Similarly for 1932, the BMP4 mutation was observed in the two 
additional PDXs, also with much higher VAF (0.37 and 0.38 in PDXs vs. 0.12 in PT). Thus, the 
clone expansion (so is the evolutionary pattern) seems to be very consistent in these cases. This 
conclusion also holds for 1795 and 1826, both of which were classified as clone retention. The 
additional PDXs for the two cases well preserve the clonal PT mutations, supporting the 
evolutionary pattern that was defined based on the initial PDX sample. These observations 
address Reviewer’s comment #2.    

Moreover, 7 PDX specific clonal mutations were also found in the two additional PDXs in 1913. 
This observation provides definitive evidence that these mutations preexist in the primary patient 
tumor, because the statistical odds for PDXs grown in different mice to acquire 7 identical 
mutations would be extremely small (virtually impossible given the size of the genome).   

We have added these new results and data to the revised manuscript (Supplementary Fig. 4g).  
We thank the reviewer for the excellent question that prompted us to do these analyses.   

4. Observed similarities of mutation, copy number, and transcriptomics profiles between PT and 
PDX are often not properly interpreted. For example, chemotherapy-related signatures were 
expected to be observed for PDXs when their corresponding PTs have those signatures, because 
mutations that occurred in PTs are inherited in their PDXs. To test if mice without treatment 
accumulate mutations under the chemotherapy-related mutational processes, mutations that are 
unique only in PDXs should be compared with those from PTs. But, only a few datasets have a 
sufficient number of mutations that are unique to PDXs, so I think mutational processes in PDXs 
cannot be elucidated from these datasets.  

We thank the reviewer for understanding the challenge with rare cancer research. We appreciate 
the reviewer’s arguments about mutational signatures. In our manuscript, we were very cautious 
with interpreting the mutation signatures. In the fourth paragraph of the section “mutational 
similarity between PT and PDX,” we stated that “The consistency in demonstrating chemotherapy 
signatures was not necessarily driven by shared mutations between PTs and PDXs. For 585 
and 1957, PTs and PDXs had little overlap in somatic mutations (Fig. 2c). Thus, these data 
suggest the related mutations in these PDXs were inherited from the seeding PTs.” By “not 
necessarily driven,” we acknowledge in some PT/PDX pairs, the signature consistency is driven 
by shared mutations, but meanwhile we point out that some cases are exceptions such as 585 
and 1957. By “…related mutations in these PDXs were…” we confine our conclusion to the 
aforementioned PDXs, namely 585 and 1957.  

We kindly note for the reviewer that for 585 and 1957, PTs and PDXs have very low mutational 
similarity: only 3% overlap for both pairs. However, 89% of mutations in 585_PDX and 77% of 
mutations in 1957_PDX are attributable to chemo-signatures SBS31 and SBS35 (Fig. 2b). Thus, 
it is impossible that the shared mutations drive the signatures.  
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To further demonstrate this, we repeated the mutational signature analysis on four samples with 
≥10 PDX specific mutations (Figure R9). Fig R9a shows mutation signatures using all PDX 

mutations, and R9b shows mutation signatures using only PDX specific mutations. It is clear that 
both sets of mutations strongly indicate the presence of chemo-signatures in 1959_PDX and 
585_PDX. The other two PDXs (529 and 1979) do not show conspicuous mutation signatures (no 
signature has weight > 0.25).   

In the revision, we soften our statement and removed the sentence “The observation of 
chemotherapy-related signatures in PDXs is significant because the tumor-bearing mice were 
never treated with chemotherapy.” We also revised the sentence in Discussion related to 
mutational signatures to inform readers about the reproducibility of the chemo-signatures using 
PDX unique mutations. We have added Fig R9 to the revised manuscript (Supplementary Fig 9d).  

Figure R9.  Mutation signatures using all PDX mutations (a), or PDX specific mutations (b). We limited 
our analysis to the four PDXs that have at least 10 PDX specific mutations.  

5. The evolutionary patterns were concluded to correlate with PDX engraftment time. However, 
the number of unique mutations within PDX is expected to increase as the engraftment time. The 
mutation rate should be computed and compared. 

The reviewer raised an excellent point. To test this possibility, we correlated PDX engraftment 
time with PDX unique mutations. We didn’t observe a significant correlation (rho=0.3, p=0.18. 
Figure R10a). We then repeated the analysis by controlling for the number of mutations in PT 
(assume they are the baseline for each PDX); again, no significant correlation was observed 
(rho=0.34, p=0.13. Figure R10b).  

We noticed in the paper by Stewart et al. (Nature, 2017. PMID: 28854174), the authors reported 
that "Osteosarcoma had the best clonal preservation in O-PDX models and neuroblastoma had 
the worst. Neuroblastomas also had the longest engraftment time ...” This observation 
corroborates our finding that clonal selection is associated with prolonged engraftment time (Fig 
3b), even though their observation was made on orthotopic grafting. Interestingly, we also 
observed excellent mutational similarity for osteosarcomas in our dataset (Fig 4a).   

We have added Fig. R10 in the revised manuscript (Supplementary Fig. 5e,f). We thank the 
reviewer for raising this great question.  
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Figure R10. The correlation between engraftment time (week) and the PDX private mutations in PT-PDX 

paired samples (a) and Wilms Tumor (b). Each dot represents one PDX sample. The correlation 
coefficient was calculated by Spearman’s correlation. 

6. Line178: The loss of PT clonal mutations can be also expected through copy number 
alteration (deletion). To reject this possibility copy number analysis is necessary. 

Loss of PT clonal mutations is a feature of the ‘branch seeding’ evolutionary pattern. There are 3 
PT/PDX pairs demonstrating this pattern, and we in total identified 13 clonal mutations unique to 
the 3 PTs. On the absolute copy number level, no clonal mutation was in deleted regions in the 
PDX. We have clarified this in the revised manuscript.  

7. Line 213: How were major clones identified? 

The ‘major clones’ in this context (paragraph starting at line 213 in initial submission) are to 
introduce the biological concept for our next analysis (Fig. 4b). It is a wording choice, not a 
technical term. We apologize for the confusion. However, the distribution of mutant allele fraction 
(Fig. 3b-c) shows clear clonal structure in group 2 samples. 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors did a nice job responding to reviews and as a result, have improved the rigor of the 

manuscript. Before publication, the sequencing data should be deposited into dbGAP or other 

repository and the accession number listed in the manuscript. Otherwise, we have only minor 

comments below. 

Figure 2a – line 133 reports a Wilcoxon rank sum test p-value of treated vs. treatment-naïve 

mutation rates, but this box plot does not report any associated test statistics or p-values. Also, 

were differences within tumor type tested for? It seems more appropriate to run analyses similar 

to what is shown in Figure 4A and 4B, where samples are compared within tumor type. 

Figure 2b – The tumor types not present with the updated mutational signatures analysis should 

be removed from the legend for clarity. 

Reviewer #2 (Remarks to the Author): 

A quick review of the literature found resources (published and online) for over 500 PDXs have 

been published or made available representing more than 2 dozen different tumor types. The 

models and their associated data are all freely available to the community and many of the models 

have more in depth characterization. Indeed, all the associated data are freely available so the 

authors could have easily incorporated the larger cohort to boost their claims. 

Reviewer #3 (Remarks to the Author): 

I think the sequencing depths and methods (300x for WES and 4x for WGS) are the standard. In 

addition, targeted deep sequencing (5000-7000x) was performed to validate detected mutations, 

which is also a common practice. I do not see any issues with the sequencing. 

All concerns were addressed including Reviewer #2, and the manuscript was improved. I do not 

have further concerns. 



Reviewer #1 (Remarks to the Author)

1. The authors did a nice job responding to reviews and as a result, have improved the rigor of 
the manuscript. Before publication, the sequencing data should be deposited into dbGAP or 
other repository and the accession number listed in the manuscript. Otherwise, we have only 
minor comments below.

The sequencing data have been deposited to European Genome-Phenome Archive (EGA. 
Accession number EGAS00001006710). This information is available in “Data Availability.”

2. Figure 2a – line 133 reports a Wilcoxon rank sum test p-value of treated vs. treatment-naïve 
mutation rates, but this box plot does not report any associated test statistics or p-values. Also, 
were differences within tumor type tested for? It seems more appropriate to run analyses similar 
to what is shown in Figure 4A and 4B, where samples are compared within tumor type. 

We have added cancer type specific comparisons to Figure 2a. Figure legend has also been 
updated to include the details. 

3. Figure 2b – The tumor types not present with the updated mutational signatures analysis 
should be removed from the legend for clarity.

Done.

Reviewer #2 (Remarks to the Author)

A quick review of the literature found resources (published and online) for over 500 PDXs have 
been published or made available representing more than 2 dozen different tumor types. The 
models and their associated data are all freely available to the community and many of the 
models have more in depth characterization. Indeed, all the associated data are freely available 
so the authors could have easily incorporated the larger cohort to boost their claims.

The two links direct to the same data portal (CSTN, Childhood Solid Tumor Network data 
portal). This portal has been published in Stewart et al. Nature, 2017 (citation under 
“Resources” tab on the site home page). In our paper and previous rebuttal, we have repeatedly 
compared our results with those from Stewart et al., including engraftment rate, PT/PDX 
similarity, etc. (ref 21). Some important observations from Stewart et al., such as better clonal 
preservation in osteosarcoma, longer engraftment time in models with low clonal preservation, 
are also consistent with our data. 

An important distinction between CSTN PDXs and our PDXs is that ours are subcutaneous 
PDXs, whereas CSTN models are orthotopic models, as we emphasized in the title and 
“Introduction” of the manuscript. This distinction should not be trivialized. 

CSTN currently has 281 orthotopic PDX models (far less than 500), a significant increase from 
the original cohort reported in Stewart et al. (n=67). While most molecular data are indeed 
available for browsing (but not batch downloading), data for the newly added >210 models have 
never been peer reviewed. Without publication and peer review, it is unclear if sequencing data 
for these newly added models have been subject to the same processing and quality control 
criteria. Based on these reasons, we refrain from comparing our data with the data at CSTN. 



Reviewer #3 (Remarks to the Author)

I think the sequencing depths and methods (300x for WES and 4x for WGS) are the standard. In 
addition, targeted deep sequencing (5000-7000x) was performed to validate detected 
mutations, which is also a common practice. I do not see any issues with the sequencing.

We thank this reviewer for endorsing us. 
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