A role of intermolecular interaction modulating thermal diffusivity in organosuperelastic and organoferroelastic cocrystals

Subham Ranjan¹, Ryota Morioka², Meguya Ryu³, Junko Morikawa²*, and Satoshi Takamizawa¹*

¹Department of Materials System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan

²School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan

³ National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3, 1-1-1 Umezono, Tsukuba 305-8563, Japan

E-mail: <u>morikawa.j.aa@m.titech.ac.jp</u> ; <u>staka@yokohama-cu.ac.jp</u>

Table of contents:	Page
Experimental Section	S3-S4
Crystallographic studies	S5
Thermal diffusivity studies	S6-S11
Estimated molecular movements	S11
Hirshfeld surface analysis	S12-S14
Supporting references	S15

Other supporting material

Shear stress-induced deformation behaviors under the microscope:

Movie S1. Shear stress-induced mechanical deformation on $(0\overline{1}1)$ plane of cocrystal 1 by a pair of tweezers.

Movie S2. Shear stress-induced mechanical deformation on (001) plane of cocrystal **2** by a pair of tweezers.

EXPERIMENTAL SECTION

Materials

1,4-diiodotetrafluorobenzene, 1,2-bis(4-pyridyl)ethane, and pyrene were procured from Sigma–Aldrich and were used without any additional purification.

Preparation of Single Crystals of cocrystals

For the preparation of cocrystal **1**, 1,4-diiodotetrafluorobenzene, and 1,2-bis(4-pyridyl)ethane in an equimolar ratio of 1:1 was dissolved in dichloromethane. Further, to prepare cocrystal **2**, 1,4-diiodotetrafluorobenzene and pyrene in an equimolar ratio of 1:1 was dissolved in ethanol. Slow evaporation of the respective solution yielded colorless block-shaped single crystals of cocrystals 1 and 2.

Microscopic Observation. The mechanical deformation of crystals was initially investigated by applying force with tweezers and was recorded by an optical microscope (SZ61, Olympus Co.) with inbuilt polarizing plates and a digital camera.

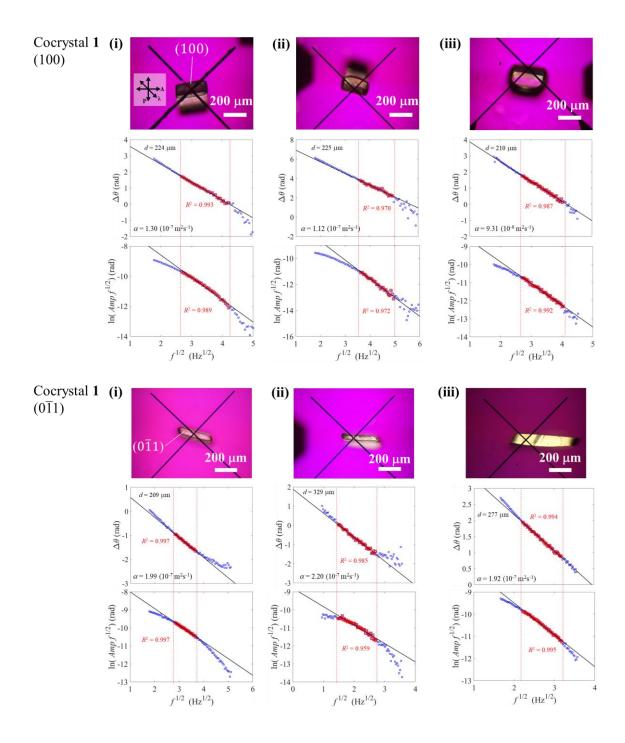
Force Measurements.

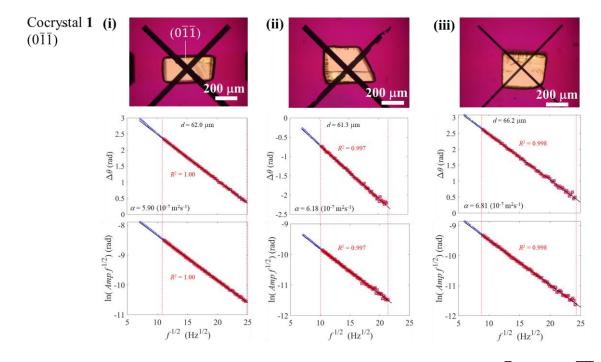
The shear test was carried out using a Universal testing machine at room temperature. A crystal was attached to a glass base and then the shear stress was applied on the crystal face $(0\overline{1}1)$ in cocrystal **1** and (001) in cocrystal **2** using a glass jig at a displacement rate of 3 µm sec⁻¹. The deformation behavior was observed using a polarized light microscope. The detailed calculations can be found in previous works.^{1,2}

Single-Crystal X-ray Structure Analysis. Single-crystal X-ray diffraction (SCXRD) data of the cocrystals 1 and 2 with parent (α_M) and deformed daughter (α_D) of the obtained single crystals were collected on a Bruker D8 VENTURE (PHOTON III 14) using a graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at room temperature (rt). Intrinsic phasing methods (SHELXT)³ were used to solve the structure, and full-matrix least-squares calculations on F^2 (SHELXL)^{4, 5} were used to refine it. Non-hydrogen atoms were refined anisotropically, while hydrogen atoms were fixed at calculated positions using a riding model approximation. Mercury CSD was used to measure Miller plane interplanar angles.

Thermal diffusivity analysis. The directional thermal diffusivity of the single crystals 1 and 2 were measured by μ -TWA method. The single crystal having a size of approximately 100 μ

m × 100 μ m × 100 μ m (thickness) was inserted between an ITO micro heater (area-size: 1 mm × 250 μ m) and a sputtered micro-thermocouple (TC) type sensor (area size: 20 μ m × 20 μ m) fabricated on borosilicate glass. The thermal contact was monitored using the originally made sample cell aligner with optics. The periodic Joule heating was applied from the heater and detected by the micro-TC heater. The detailed configuration of the measurement can be found in previous works.⁶ The detected signal was analyzed based on the principle of temperature wave propagation. The thermal diffusivity was estimated from its phase delay between the heater and sensor surfaces. The phase delay of the periodic temperature response can be written as follows.

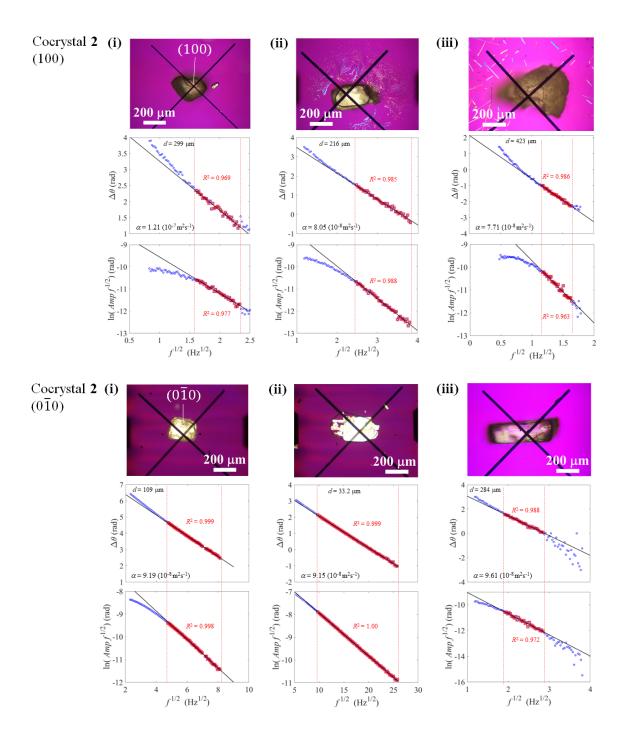

$$\Delta \theta = -\sigma + \tan^{-1} \left\{ \frac{-(1-b)^2 \exp(-2\sigma) \sin 2\sigma}{(1+b)^2 - (1-b)^2 \exp(-2\sigma) \cos 2\sigma} \right\} - \frac{\pi}{4}$$
$$\sigma = \sqrt{\frac{\pi f}{\alpha}} d$$
$$b = \frac{e_s}{e}$$


Here, α is the thermal diffusivity along the thickness direction, d is the thickness of the sample, f is the frequency of the applied temperature wave, e is the thermal effusivity of the sample, and e_s is the thermal effusivity of the substrate. At sufficiently high frequency (σ "1), the first term of the equation becomes dominant, and frequency dependency of the phase delay data can be analyzed by a linear function with the slope correlated with the thermal diffusivity along the thickness direction. The frequency of the temperature wave was typically set between 10 Hz - 1.4 kHz range under the thermally thick conditions for the measurement of frequency dependence of the phase delay.

Domain	$\alpha_{\rm M}$ (cocrystal 1)	α_D (cocrystal 1)	$\alpha_{\rm M}$ (cocrystal 2)	α_D (cocrystal 2)
<i>T</i> /K	296(2)	296(2)	296(2)	296(2)
Empirical formula	$C_{18}H_{12}I_2F_4{N_2}^*$	$C_{18}H_{12}I_2F_4{N_2}^*$	$C_{22} H_{10} I_2 F_4$	$C_{22}H_{10}I_2F_4$
	(Mother Domain)	(Daughter Domain)	(Mother Domain)	(Daughter Domain)
Crystal system	triclinic	triclinic	monoclinic	monoclinic
Space group	ΡĪ	ΡĪ	$P2_{1}/c$	$P2_{1}/c$
a /Å	5.03760(10)	5.03720(10)	8.3909(5)	8.3940(7)
b /Å	9.9157(3)	9.9139(3)	18.3230(11)	18.3051(13)
c /Å	10.6198(3)	10.6213(3)	13.1994(9)	13.1815(9)
α /°	64.7690(10)	64.7660(10)	90	90
β /°	82.1290(10)	82.1070(10)	105.330(2)	105.310(2)
γ /°	87.8810(10)	87.9050(10)	90	90
$V/Å^3$	475.21(2)	475.11(2)	1957.2(2)	1953.5(3)
Z	2	2	4	4
$\rho_{calcd} [g \ cm^{-3}]$	2.048	2.048	2.050	2.054
F(000)	276	276	1136	1136
μ [mm ⁻¹]	3.35	3.351	3.255	3.261
index ranges	$-5 \leq h \leq 5, -11 \leq k$	$-5 \leq h \leq 5, -11 \leq k$	$-9 \le h \le 9, -20 \le k$	$-10 \leq h \leq 10, -23 \leq$
	$\leq 11, -12 \leq l \leq 12$	$\leq 11, -12 \leq l \leq 12$	\leq 21, -15 \leq 1 \leq 15	$k \le 22, -16 \le l \le 17$
Refs collected	1662	1662	3443	4466
Goodness of fit	1.026	1.118	1.071	1.014
$R_1(I>2\sigma \text{ (all data)})$	0.0157	0.0162	0.0359	0.0460
w $R_2(I>2\sigma \text{ (all data)})$	0.0405	0.0366	0.0894	0.1117
CCDC No.	2256404	2256405	2256406	2256407

 Table S1. Crystallographic data of mother and daughter domain of cocrystals 1 and 2.

*Unique part is half composition.



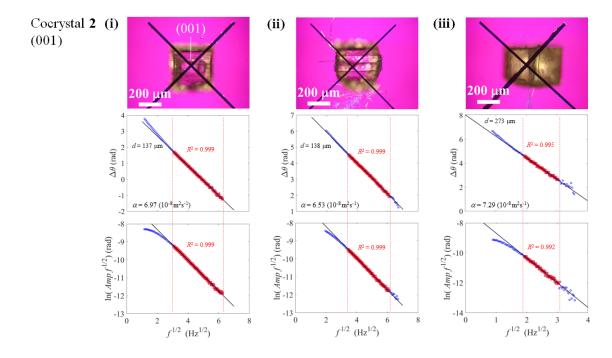


Figure S1. Frequency dependency of phase delay measured along [100], $[0\overline{1}1]$, and $[0\overline{1}1]$, directions of cocrystal **1**. The measurements were conducted in triplicate, which is represented by (i), (ii), and (iii) in the individual case.

Table S2. Summary of measured thermal diffusivity of cocrystal **1** along [100], $[0\overline{1}1]$, and $[0\overline{1}1]$ directions. Errors of the mean were calculated as 95% confidence intervals.

Direction	Sample	Thickness (µm)	$\begin{array}{c} \alpha_{\Delta\theta} \\ (10^{-7} \mathrm{m}^2 \mathrm{s}^{-1}) \end{array}$	$lpha_{\Delta\theta}$ ave $(10^{-7} \mathrm{m}^2 \mathrm{s}^{-1})$	f _{min} -f _{max} (Hz)	σ_{\min} - σ_{\max}	$\mathrm{R}^{2}\left(lpha_{\Delta\theta} ight)$
	1	224	1.30 ± 0.04		7.18-17.7	2.95-4.64	0.993
[100]	2	225	1.12 ± 0.08	1.12 ± 0.17	13.2-24.5	4.33-5.90	0.970
	3	210	0.931 ± 0.035		7.39-16.3	3.32-4.92	0.987
	4	209	1.99 ± 0.05		8.05-13.6	2.36-3.06	0.997
$[0\bar{1}1]$	5	329	2.20 ± 0.09	2.04 ± 0.13	2.19-7.33	1.84-3.37	0.985
	6	277	1.92 ± 0.05		4.93-10.1	2.48-3.56	0.994
	7	62.0	5.90 ± 0.03		124-609	1.59-3.53	1.00
$[0\overline{1}\overline{1}]$	8	61.3	6.18 ± 0.09	6.30 ± 0.43	107-457	1.43-2.95	0.997
	9	66.2	6.81 ± 0.08		81.3-581	1.28-3.43	0.998

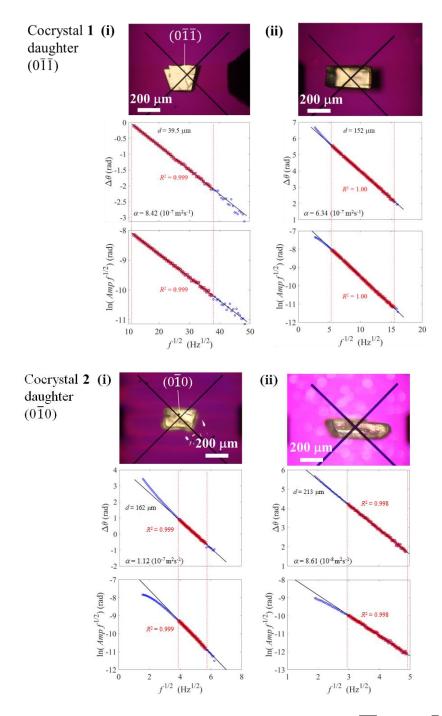
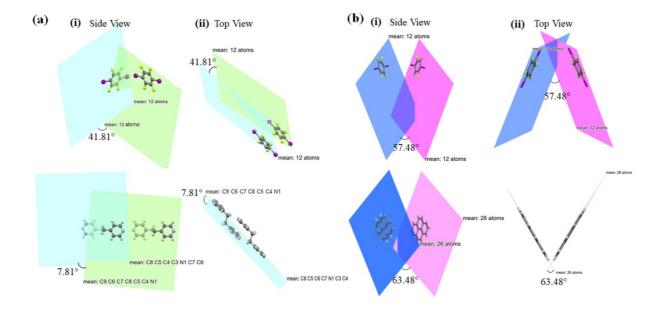


Figure S2. Frequency dependency of phase delay measured along [100], $[0\overline{1}0]$, and [001] directions of cocrystal **2**. The measurements were conducted in triplicate, which is represented by (i), (ii), and (iii) in the individual case.

Table S3. Summary of measured thermal diffusivity of cocrystal **2** along [100], $[0\overline{1}0]$, and [001] directions.


Direction	Sample	Thickness (µm)	$\begin{array}{c} \alpha_{\Delta\theta} \\ (10^{-7} \mathrm{m}^2 \mathrm{s}^{-1}) \end{array}$	$lpha_{\Delta heta}$ ave $(10^{-7} \mathrm{m}^2 \mathrm{s}^{-1})$	f _{min} -f _{max} (Hz)	σ_{\min} - σ_{\max}	$\mathrm{R}^{2}\left(lpha _{\Delta heta } ight)$
	10	299	1.21 ± 0.07		2.60-5.42	2.46-3.55	0.969
[100]	11	216	0.805 ± 0.032	0.929 ± 0.226	6.16-14.5	3.35-5.13	0.985
	12	423	0.771 ± 0.036		1.37-2.67	3.16-4.41	0.986
	13	109	0.919 ± 0.007		22.6-65.9	3.02-5.16	0.999
$[0\bar{1}0]$	14	33.2	0.915 ± 0.006	0.932 ± 0.024	94.7-665	1.89-5.02	0.999
	15	284	0.961 ± 0.041		3.68-8.10	3.12-4.62	0.988
	16	137	0.697 ± 0.006		9.55-39.0	2.84-5.74	0.999
[001]	17	138	0.653 ± 0.006	0.693 ± 0.035	12.0-37.1	3.31-5.83	0.999
	18	273	0.729 ± 0.017		3.77-9.16	3.48-5.42	0.995

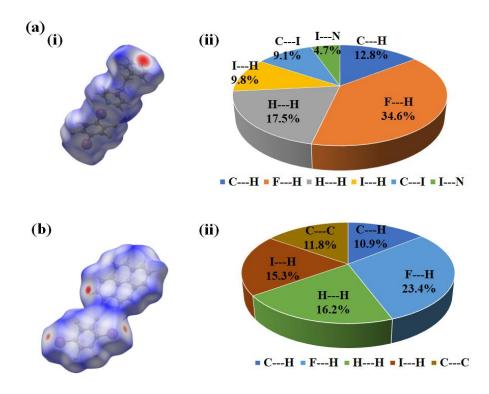
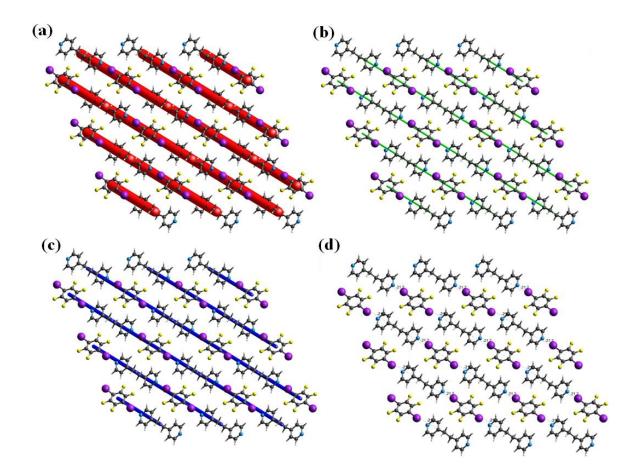

Figure S3. Frequency dependency of phase delay measured along $[0\overline{11}]$, and $[0\overline{10}]$ directions of the daughter domain of cocrystal **1** and **2**, respectively. The measurements were conducted in duplicate, represented by (i) and (ii) in individual cases.

Table S4. Summary of measured thermal diffusivity of daughter domain of cocrystal 1 and 2 along $[0\overline{11}]$, and $[0\overline{10}]$ directions, respectively.


Direction	Sample	Thickness (µm)	$\begin{array}{c} \alpha_{\Delta\theta} \\ (10^{-7} \mathrm{m}^2 \mathrm{s}^{-1}) \end{array}$	$\begin{array}{c} \alpha_{\Delta\theta} \text{ ave} \\ (10^{-7} \text{m}^2 \text{s}^{-1}) \end{array}$	f _{min} -f _{max} (Hz)	σ_{\min} - σ_{\max}	${ m R}^2\left({lpha}_{\Delta heta} ight)$
Cocrystal 1	19	39.5	8.42 ± 0.06		138-1394	0.90-2.85	0.999
daughter [011]	20	152	6.34 ± 0.03	7.38 ± 1.44	29.8-235	1.85-5.19	1.00
Cocrystal 2	21	162	1.12 ± 0.01		15.4-31.8	3.36-4.83	0.999
daughter [010]	22	213	0.861 ± 0.010	0.991 ± 0.179	8.97-23.8	3.85-6.27	0.998

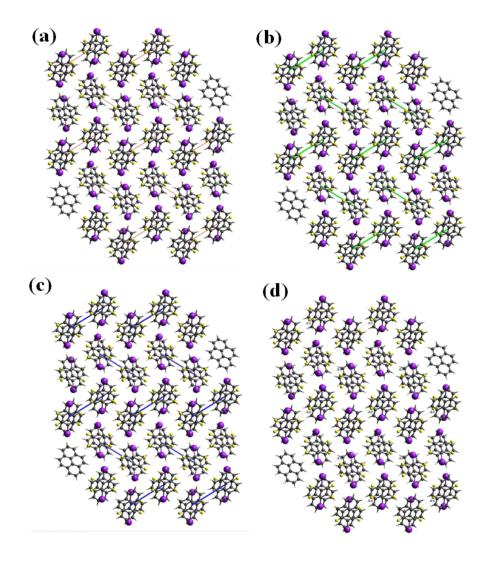

Figure S4. Estimated molecular movements (a) cocrystal **1**, (b) cocrystal **2**. Light blue and light green colored planes indicate the α_M and α_D domains of cocrystal **1**, and dark blue and light purple coloured planes indicate the α_M and α_D domains of cocrystal **2**, respectively.

Figure S5. The relative contribution of intermolecular interactions to the Hirshfeld surface area (a & b) (i) fingerprint, and (ii) intermolecular interactions of cocrystal **1** and **2**, respectively.

Figure S6. Energy framework along bc plane of cocrystal **1**. (a) Electrostatic, (b) dispersion, (c) total energy and (d) total interaction energy value are coloured in red, green, blue, and black, respectively. Tube size indicates the respective energy.

Figure S7. Energy framework along ac plane of cocrystal **2**. (a) Electrostatic, (b) dispersion, and (c) total energy and (d) total interaction energy values are coloured in red, green, blue, and black, respectively. Tube size indicates the respective energy.

References

- S. Takamizawa and Y. Miyamoto, Superelastic organic crystals, *Angew. Chem. Int. Ed.*, 2014, **126**, 7090-7093.
- S. H. Mir, Y. Takasaki, E. R. Engel and S. Takamizawa, Ferroelasticity in an organic crystal: a macroscopic and molecular level study, *Angew. Chem. Int. Ed.*, 2017, 56, 15882-15885.
- 3. G. M. Sheldrick, SHELXT–Integrated space-group and crystal-structure determination, *Acta Crystallogr. A: Found. Adv.*, 2015, **71**, 3-8.
- 4. G. M. Sheldrick, A short history of SHELX, *Acta Crystallogr. A*, 2008, **64**, 112-122.
- 5. G. M. Sheldrick, Crystal structure refinement with SHELXL, *Acta Crystallogr. C Struct. Chem.*, 2015, **71**, 3-8.
- M. Ryu, S. Takamizawa and J. Morikawa, Thermal diffusivity of organosuperelastic soft crystals during stress-induced phase transition, *Appl. Phys. Lett.*, 2021, **119**, 251902.

Post-acceptance modifications (Acceptance date: Oct. 15, 2023)

Page, Action, Details:

Oct. 22, 2023

Page S4, Correction, The first row equation was corrected:

Original:
$$\Delta \theta = -\sigma + \tan^{-1} \left\{ \frac{(1-b)\exp(-2\sigma)\sin 2\sigma}{(1+b)+(1-b)\exp(-2\sigma)\cos 2\sigma} \right\}$$

After modification:
$$\Delta \theta = -\sigma + \tan^{-1} \left\{ \frac{-(1-b)^2\exp(-2\sigma)\sin 2\sigma}{(1+b)^2-(1-b)^2\exp(-2\sigma)\cos 2\sigma} \right\} - \frac{\pi}{4}$$

Page S5, Addition, A footnote was added to Table S1: *Unique part is half composition.

Page S7, S9 and S11, Correction, The symbols in the first row in Tables S2-S4 were changed

from *kd* to σ .:

Original:

Direction	Sample	Thickness (µm)	$\begin{array}{c} \alpha_{\Delta\theta} \\ (10^{-7} \mathrm{m}^2 \mathrm{s}^{-1}) \end{array}$	$lpha_{\Delta\theta}$ ave $(10^{-7} \mathrm{m}^2 \mathrm{s}^{-1})$	f _{min} -f _{max} (Hz)	k d_{\min} - k d_{\max}	${\rm R}^2\left(\alpha_{\Delta\theta} \right)$
After modi	ification:						
Direction	Sample	Thickness (µm)	$\begin{array}{c} \alpha_{\Delta\theta} \\ (10^{-7} \mathrm{m}^2 \mathrm{s}^{-1}) \end{array}$	$lpha_{\Delta\theta \text{ ave}}$ (10 ⁻⁷ m ² s ⁻¹)	f _{min} -f _{max} (Hz)	σ_{\min} - σ_{\max}	$\mathrm{R}^{2}\left(lpha_{\Delta heta} ight)$

Page S11, Correction, The $\alpha_{\Delta\theta ave}$ value in the second row in Table S4 was changed from 7.40

to 7.38.

Original:

Cocrystal 119daughter20	19	39.5	8.42 ± 0.06		138-1394	0.90-2.85	0.999
	152	6.34 ± 0.03	7.40 ± 1.44	29.8-235	1.85-5.19	1.00	
After modifi	cation:						
Cocrystal 1	19	39.5	8.42 ± 0.06		138-1394	0.90-2.85	0.999
daughter $[0\overline{1}\overline{1}]$	20	152	6.34 ± 0.03	7.38 ± 1.44	29.8-235	1.85-5.19	1.00