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Package instalation

To be done once. scellpam is currently in CRAN and should be installed/compiled without
problems.

# install.packages("scellpam")

Load packages

library(scellpam)
library(Seurat)
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scellpam workflow

Step 0: set debug to get messages

Turn off/on informative messages from the package

# Debugging set to ON for biological part and for the dissimilarty
# calculation and PAM
ScellpamSetDebug(TRUE,TRUE)

Step 1: Data load/storage

Read c.10x data from S4 object created by Seurat package stored in a .rds file and write it
to binary. The load of Seurat package is implicitly done by this load but the user can do it
before.

q <- readRDS("c.10x.rds")

This function from the scellpam package gets the groups (different groups or samples) present
inside the Seurat object q as q@meta.data$orig.ident.

WARNING: even we (the authors of scellpam) have tried to be compatible with Seurat as
much as possible, this function might not work, depending on the internal organization of the
Seurat object.

Gr <- GetSeuratGroups(q)

Find variable features to filter dataset by genes. This is done using the Seurat function but
the user may choose another procedure.

q <- FindVariableFeatures(q, selection.method = "vst", nfeatures = 5000)

Identify 100, 500, 1000, 2000, 3000, 4000 and 5000 highly variable genes and store it in a list
of seven elements.

vlchoices = c(100, 500, 1000, 2000, 3000, 4000, 5000)
variable_list <- list()
for (v in 1:length(vlchoices))
{

variable_list[[v]] <- head(VariableFeatures(q), vlchoices[v])
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}

All results are now accessible as variable_list[[1]] to [[7]] (or variable_list$'100',
etc.)

Step 2: Write the data to scellpam binary format (what we have called jmatrix)

Parameters:

- mtype: its default value is sparse, since it is generated from a matrix (q@assays$RNA@counts)
that we know to be sparse. But you could store it in binary as full, it you want.

- ctype: can be set to rawn or to log1n for raw normalization or log(c+1) normalization.

- valuetype: its default value if ‘float’ but you can used double if you suspect yu need higher
precision. To calculate dissimilarity matrix and later PAM clustering, float should be enough
and used memory is reduced in half.

- transpose: the binary matrix must be transposed. This is a requirement to calculate dis-
similarity matrix later.

- comment: use a sensible comment. It will help when you get information about the generated
binary matrix.

- For raw counts normalization:

outname_base_rawn <- "Wang_rawn_trasp"
outname_all_rawn <- paste0(outname_base_rawn, "_fall.bin")
dgCMatToJMat(

q@assays$RNA@counts,
outname_all_rawn,
ctype = "rawn",
transpose = TRUE,
comment = "Wang data with all genes, normalized to sum of raw counts

by cell. After normalization, matrix is transposed to have cells
as rows and genes as columns"

↪

↪

)

- For log1 normalization:

outname_base_log1 <- "Wang_log1n_trasp"
outname_all_log1 <- paste0(outname_base_log1, "_fall.bin")
dgCMatToJMat(
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q@assays$RNA@counts,
outname_all_log1,
ctype = "log1n",
transpose = TRUE,
comment = "Wang data with all genes, normalized to sum of log2 by

cell. After normalization, matrix is transposed to have cells as
rows and genes as columns"

↪

↪

)

To store in a text file or print in the console the information about a stored binary files:

JMatInfo(outname_all_rawn,
paste0(outname_base_rawn, "_fall_Info.txt")) # rawn

JMatInfo(outname_all_log1,
paste0(outname_base_log1, "_fall_Info.txt")) # log1n

If you execute simply JMatInfo(outname_all_rawn) you get the information in the console,
namely:

- File: Wang_log1n_trasp_fall.bin

- Matrix type: SparseMatrix

- Number of elements: 1980585256

- Data type: float

- Endianness: little endian (same as this machine)

- Number of rows: 71032

- Number of columns: 27883

- Metadata: Stored names of rows and columns.

- Metadata comment: “Wang data with all genes, normalized to sum of log2 by cell. After
normalization, matrix is transposed to have cells as rows and genes as columns”

- Binary data size: 1433012656 bytes, which is 18.0882% of the full matrix size (which would
be 7922341024 bytes).

Last line show the advantage of having used sparse for this matrix.

Step 4: Filtering genes

Build seven filtered versions with appropriate file names:
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fvals = c("100", "500", "1000", "2000", "3000", "4000", "5000")

- For raw counts normalization:

for (f in 1:length(fvals)) {
outname_now <- paste0(outname_base_rawn, "_f", fvals[f], ".bin")
# The list of genes to be kept is at variable_list[[1]] to [[7]].
# The namesat value cols is because we transposed the matrix before
# binary writing.
FilterJMatByName(outname_all_rawn, variable_list[[f]], outname_now,

namesat = "cols")
}

- For log1 normalization:

for (f in 1:length(fvals)) {
outname_now <- paste0(outname_base_log1, "_f", fvals[f], ".bin")
# The list of genes to be kept is at variable_list[[1]] to [[7]].
# The namesat value cols is because we transposed the matrix before
# binary writing.
FilterJMatByName(outname_all_log1, variable_list[[f]], outname_now,

namesat = "cols")
}

Step 5: Calculating the distance/dissimilarity matrices, applying PAM and calculation of
silhouette

WARNING: this is calculated in two nested loops for all reasonable metrics/dissimilarities
(Pearson, L1 and L2), for several possible numbers of genes (from 100 to all) and twice, one
for the data with raw normalization and other for the data with log1 normalization, which is
very slow. All results are kept in Rdata files to be analyzed to choose the best option, but you
may have additional information that rules out some possibilities. In such case, cut the lists
of possible_metrics and fvals.

options(nwarnings = 20000)
possible_metrics = c("Pearson", "L1", "L2")

The raw data now include also the file with all genes (no filtering).
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fvals = c("100", "500", "1000", "2000", "3000", "4000", "5000", "all")

- For raw counts normalization:

for (met in 1:length(possible_metrics)) {
for (f in 1:length(fvals)) {

inname_now <- paste0(outname_base_rawn, "_f", fvals[f], ".bin")

dt <- possible_metrics[met]

outname_now <-
paste0("Wang_rawn_f", fvals[f], "_dis", dt, ".bin")

comment_now <-
paste0(

"Dissimilarity matrix with ",
dt,
" dissimilarity for Wang data rawcount-norm. and filtered

keeping ",↪

fvals[f],
" genes."

)

# Calculating the distance/dissimilarity matrices.
# Clear the warnings buffer.
warning("First warning")
assign("last.warning", NULL, envir = baseenv())

# The parameters are count file name, distance file name,
# type of distance/dissimiarity, comment to be stored in the
# distance matrix and nthreads. Use of nthreads=0 (default value)
# makes the program chooses the number of threads accordingly to
# the number of cores in your machine.
CalcAndWriteDissimilarityMatrix(

inname_now,
outname_now,
distype = dt,
comment = comment_now,
nthreads = 0

)

# The warnings are stored in files, just in case.
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warnfile_now <-
paste0("DissimilarityWarningslog1_", dt, "_", fvals[f], ".log")

save(last.warning, file = warnfile_now, ascii = TRUE)

# Apply PAM.
L = ApplyPAM(

outname_now,
k = 30,
init_method = "BUILD",
max_iter = 1000,
nthreads = 0

)
save(L, file = paste0("Wang_rawn_f", fvals[f], "_", dt, ".rda"))

# Calculate and save abundance matrices.
M = BuildAbundanceMatrix(L$clasif, Gr)
save(M, file = paste0("Wang_rawn_f", fvals[f], "_", dt,

"_inicl.Rdata"))↪

# Calculate and save Silhouette of the cluster. This may help in
# the choice of the best combination of parameters (normalization
# mode, distance/dissimilarity used and number of genes kept).
S = CalculateSilhouette(L$clasif, outname_now, nthreads = 0)
save(S,

file = paste0("Wang_rawn_f", fvals[f], "_", dt,
"_silhouette.Rdata"))↪

}
}

- For log1 normalization:

for (met in 1:length(possible_metrics)) {
for (f in 1:length(fvals)) {

inname_now <- paste0(outname_base_log1, "_f", fvals[f], ".bin")

dt <- possible_metrics[met]

outname_now <- paste0("Wang_log1n_f", fvals[f], "_dis", dt, ".bin")
comment_now <-

paste0(
"Dissimilarity matrix with ",
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dt,
" dissimilarity for Wang data log1-norm. and filtered keeping ",
fvals[f],
" genes."

)

# Calculating the distance/dissimilarity matrices.
# Clear the warnings buffer.
warning("First warning")
assign("last.warning", NULL, envir = baseenv())
CalcAndWriteDissimilarityMatrix(inname_now,

outname_now,
distype = dt,
comment = comment_now)

warnfile_now <-
paste0("DissimilarityWarningslog1_", dt, "_", fvals[f], ".log")

save(last.warning, file = warnfile_now, ascii = TRUE)

# Apply PAM.
L = ApplyPAM(

outname_now,
k = 30,
init_method = "BUILD",
max_iter = 1000,
nthreads = 0

)
save(L, file = paste0("Wang_log1n_f", fvals[f], "_", dt, ".rda"))

# Save abundance matrices.
M = BuildAbundanceMatrix(L$clasif, Gr)
save(M, file = paste0("Wang_log1n_f", fvals[f], "_", dt,

"_inicl.Rdata"))↪

# Calculating Silhouette.
S = CalculateSilhouette(L$clasif, outname_now, nthreads = 0)
save(S,

file = paste0("Wang_log1n_f", fvals[f], "_", dt,
"_silhouette.Rdata"))↪

}
}
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