Environ Health Perspect

DOI: 10.1289/EHP11532

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Evidence Synthesis of Observational Studies in Environmental Health: Lessons Learned from a Systematic Review on Traffic-Related Air Pollution

Hanna Boogaard, Richard W. Atkinson, Jeffrey R. Brook, Howard H. Chang, Gerard Hoek, Barbara Hoffmann, Sharon K. Sagiv, Evangelia Samoli, Audrey Smargiassi, Adam A. Szpiro, Danielle Vienneau, Jennifer Weuve, Frederick W. Lurmann, and Francesco Forastiere

Table of Contents

List of main modifications to the OHAT approach for the traffic review.

Table S1. Comparison of main similarities and differences between the modified OHAT assessment and the "narrative" assessment.

Table S2. Summary of number of up- and downgrading factors used in the modified OHAT confidence assessment between TRAP and selected health outcomes.

Table S3. Summary of "narrative" assessment between TRAP and selected health outcomes.

Figure S1. Meta-analysis of associations between traffic-related air pollutants and asthma onset in children.

Table S4. Confidence rating for TRAP and asthma onset in children using the modified OHAT assessment.

"Narrative" assessment for TRAP and asthma onset in children.

References

List of main modifications to the OHAT approach for the traffic review. ^{adapted from 1}

- In contrast to OHAT guidance², all types of cohort studies (not only prospective) and case-control studies based on incident cases were given an initial rating of moderate because three key study design features were often met (exposure precedes the outcome, individual-level data, comparison group). Similar to the OHAT approach², the Panel decided to start with an initial rating of low confidence for cross-sectional studies because one cannot typically assert that the exposure precedes the outcome. Ecologic studies were excluded from consideration in the traffic review. Note that in original GRADE guidance³, all observational studies start at low confidence, but this disregards typical and potentially critical differences in quality across observational study designs.
- The decision to downgrade because of unexplained inconsistency was considered if heterogeneity was high (operationalized as I²>75%, see Woodward⁴) and applied after reviewing the potential sources of heterogeneity, including risk of bias, and considering the direction of the effect estimate rather than its magnitude. Note that thresholds for the interpretation of *I*² can be misleading, since its value also depends on the magnitude, direction and precision of the effect estimates from the individual studies.⁵ The OHAT methods provides slightly different thresholds, e.g., between 50 and 90 as substantial; and 75 to 100 as considerable heterogeneity.² This distinction was considered less useful by the Panel because the thresholds are not mutually exclusive, reflecting the challenges of thresholds for the interpretation of *I*². Of note, inconsistency was less of a concern for a group of studies all reporting associations, albeit with inconsistent magnitude, as the purpose of the assessment was to identify the presence of an association rather than to estimate its magnitude. This purpose may differ for other applications in environmental health.
- In its assessment of imprecision, the Panel considered the number of the participants included in the meta-analysis and the width of the 95% confidence intervals if the interval clearly included unity. The decision to downgrade because of imprecision was considered if the criterion for study power was met, but the effect estimate was imprecise with a wide 95% confidence interval and the confidence interval clearly included unity. For ratio measures (like relative risks), a wide (imprecise) confidence interval was defined as a difference on the log scale >0.1 from the upper to the lower 95% confidence limit.^{6,7}
- To upgrade for exposure response, at least two large studies should have evaluated the actual form of the relationship (e.g., using splines or quantile analyses) and documented a monotonic exposure–response function. The Panel did not accept a statement of no deviation from linear if the linear association was null.
- The Panel considered upgrading for consistency across populations when there was clear evidence of an association across different populations, specifically in different geographical areas and between different time periods. In addition, the Panel upgraded the confidence when results were based on different study designs supported the same conclusions.
- We did not use two grading factors—indirectness and large magnitude of effect—in the process of downgrading and upgrading of confidence in the body of evidence. Indirectness was not applicable because we included only studies of human exposure to TRAP in direct association with the health outcomes. Large magnitude of effect was unlikely to be meaningful, based on experiences in the systematic reviews informing the World Health Organization Air Quality Guidelines, where large or very large effect sizes (i.e., large RR > 2 or very large RR > 5 as defined in the OHAT approach) never occurred.^{8,9} Large RRs were not observed in our review either.

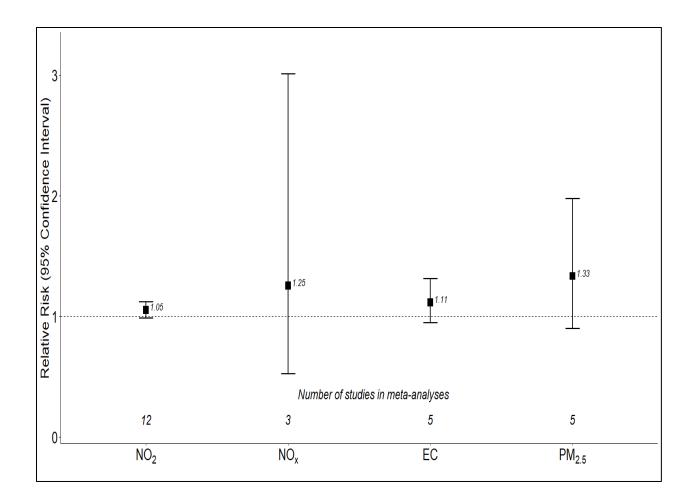
		Modified OHAT assessment	"Narrative" assessment			
	Main purpose	To assess confidence in the	To assess confidence in the			
		quality of the body of	presence of an association			
		evidence				
	Inclusion of studies	All studies, though can be	All studies—both the meta-			
		heavily geared towards the	analytic results and results of			
		studies entering a meta-	studies that were not			
		analysis	included in meta-analysis			
	Formal rating scheme	Formal rating scheme of up-	No formal rating scheme, and			
		and downgrading of certain	factors differ in how they are			
		factors with equal weighting	considered and weighted			
	Number, location, and sample size	Partial	Yes			
	Study design	Yes	Yes			
	Study population (generalizability)	Partial	Yes			
	Magnitude and direction of the association	Partial ^a	Yes			
	Risk of bias	Yes	Yes			
	Confounding	Yes	Yes			
	Selection bias	Yes	Yes			
	Exposure assessment	Yes	Yes			
ors	Outcome assessment	Yes	Yes			
Factors	Missing data	Yes	Yes			
Ш.	Selective reporting	Yes	Yes			
	Consistency of the findings (e.g., across					
	populations, age groups, time periods,					
	study designs and pollutants)	Partial	Yes			
	Unexplained inconsistency	Yes	Yes			
	Imprecision (chance)	Yes	Yes			
	Publication bias	Yes	No			
	Exposure-response	Yes	Yes			
	Residual confounding	Yes	Yes			

Table S1. Comparison of main similarities and differences between the modified OHAT assessment and the "narrative" assessment.^{adapted from 1}

^a The OHAT approach² has an upgrading factor for "large magnitude of effect" that applies only if the effect size is large or very large (i.e., large RR > 2 or very large RR > 5) because residual confounding is then less likely. Large magnitude of effect was unlikely to be meaningful, based on experiences in the systematic reviews informing the World Health Organization Air Quality Guidelines, where large or very large effect sizes (i.e., large RR > 2 or very large RR > 5 as defined in OHAT) never occurred.^{8,9} Large RRs were not observed in our review either. Table S2. Summary of number of up- and downgrading factors used in the modified OHAT confidence assessment between TRAP and selected health outcomes.

	Modified OHAT rating for TRAP	Meta-analyses				asing confidence	Factors increasing confidence			
Health outcome		N	Pollutants	Risk of bias	Unexplained inconsistency	Imprecision	Publication bias	Monotonic exposure- response function	Consideration of residual confounding	Consistency across populations
Birth outcomes			I					I		
Term low birth weight	Moderate	6	NO ₂ , NO _x , CO, EC, PM ₁₀ , PM _{2.5}	4 (NO _x , CO, EC, PM _{2.5})	0	2 (CO, PM ₁₀)	0	3 (NO ₂ , NO _x , PM _{2.5})	2 (EC, PM _{2.5})	0
Term birth weight	Low	4	NO ₂ , NO _x , EC, PM _{2.5}	4	2 (NO ₂ , NO _x)	0	0	3 (NO ₂ , NOx, PM _{2.5})	0	0
Small for gestational age	Moderate	4	NO ₂ , EC, PM ₁₀ , PM _{2.5}	2 (EC, PM _{2.5})	0	1 (EC)	0	0	0	0
Preterm birth	Low	5	NO ₂ , NO _x , NO, EC, PM _{2.5}	2 (NO, EC)	2 (NO ₂ , NO _x)	2 (NO _x , PM _{2.5})	0	0	0	0
Respiratory outcomes -	— Children									
Asthma onset ^a	High	4	NO ₂ , NO _x , EC, PM _{2.5}	1 (NO _x)	1 (NO _x)	3 (NO _x , EC, PM _{2.5})	0	1 (NO ₂)	0	0
Asthma ever ^b	Moderate	6	NO ₂ , NO _x , CO, EC, PM ₁₀ , PM _{2.5}	0	0	3 (EC, PM ₁₀ , PM _{2.5})	0	0	0	1 (NO ₂)
Active asthma ^b	Moderate	4	NO ₂ , NO _x , EC, PM ₁₀	0	0	3 (NO _x , EC, PM ₁₀)	0	0	0	1 (NO ₂)
ALRIª	Moderate	2	NO ₂ , EC	0	0	1 (EC)	0	0	0	0
Respiratory outcomes -	– Adults									
Asthma onset ^a	Moderate	1	NO ₂	0	0	0	0	0	0	0
ALRIª	Very low	1	NO ₂	0	1	1	0	0	0	0
COPD ^a	Low	3	NO ₂ , NO _x , PM _{2.5}	0	2 (NO ₂ , PM _{2.5})	3	0	0	0	0

	Modified OHAT rating for TRAP	Γ	Meta-analyses			easing confidence	Factors increasing confidence			
Health outcome		N	Pollutants	Risk of bias	Unexplained inconsistency	Imprecision	Publication bias	Monotonic exposure- response function	Consideration of residual confounding	Consistency across populations
Cardiometabolic outcor	nes							I	I	
Ischemic heart disease events ^a	Moderate	5	NO ₂ , NO _x , EC, PM ₁₀ , PM _{2.5}	0	0	2 (NO ₂ , PM _{2.5})	0	2 (PM ₁₀ , PM _{2.5})	0	0
Coronary events ^a	Low	1	NO ₂	0	0	1	0	1	0	0
Stroke events ^a	Low	5	NO ₂ , NO _x , EC, PM ₁₀ , PM _{2.5}	0	0	4 (NO ₂ , EC, PM ₁₀ , PM _{2.5})	0	2 (PM ₁₀ , PM _{2.5})	0	0
Diabetes ^{a, b}	Moderate	7	NO ₂ (2x), NO _x , EC, PM ₁₀ , PM _{2.5} (2x)	0	1 (NO ₂)	6 (NO ₂ , NO _x , EC, PM ₁₀ , PM _{2.5} (2x))	0	1 (NO ₂)	1 (NO ₂)	0
Mortality			. ,					I	1	
All-cause	High	7	NO ₂ , NO _x , EC, PM ₁₀ , PM _{2.5} , Cu, Fe	1 (Cu)	0	3 (NO _x , PM ₁₀ , Fe)	0	5 (NO ₂ , NO _x , EC, PM ₁₀ , PM _{2.5})	0	1 (NO ₂)
Circulatory	High	5	NO ₂ , NO _x , EC, PM ₁₀ , PM _{2.5}	0	1 (NO _x)	2 (NO _x , PM ₁₀)	0	3 (NO ₂ , EC, PM _{2.5})	0	1 (PM _{2.5})
Respiratory	Moderate	5	NO ₂ , NO _x , EC, PM ₁₀ , PM _{2.5}	0	1 (NO _x)	3 (NO _x , PM ₁₀ , PM _{2.5})	0	1 (NO ₂)	0	0
Lung cancer	High	4	NO ₂ , EC, PM ₁₀ , PM _{2.5}	1 (PM ₁₀)	0	2 (EC, PM ₁₀)	0	2 (NO ₂ , PM _{2.5})	0	0
Ischemic heart disease	High	4	NO ₂ , NO _x , EC, PM _{2.5}	0	0	1 (NO _x)	0	1 (NO ₂)	0	0
Stroke	Moderate	3	NO ₂ , NO _x , PM _{2.5}	0	0	1 (NO _x)	0	0	0	0
COPD	Low	1	NO ₂	1	0	0	0	0	0	0
TOTAL		87		16 (18%)	11 (13%)	44 (51%)	0 (0%)	25 (29%)	3 (3%)	4 (5%)


ALRI = acute lower respiratory infection; COPD = chronic obstructive pulmonary disease; ^aIncidence. ^bPrevalence.

Health outcome	"Narrative" assessment rating for TRAP	Summary "narrative" assessment
Birth outcomes		
Term low birth weight	Moderate	Sizable number of well-designed large birth cohorts, mostly in North America and Europe with high traffic specificity. Associations found for NO _X and PM _{2.5} ; indirect traffic measures showed mostly null associations.
Term birth weight	Low	Modest number of large birth cohort and case-control studies, mostly in North America and Europe and with high traffic specificity. Many studies had high risk of bias (mainly birth registries). Strongest associations with PM _{2.5} ; other pollutants, while trending in the expected direction, were much closer to the null; mostly null results for the indirect traffic measures.
Small for gestational age	Moderate	Modest number of well-designed large birth cohort and case-control studies, mostly in North America and Europe. Consistent associations across PM _{2.5} and PM ₁₀ , supported by distance to roadways studies.
Preterm birth	Low	Sizable number of large birth cohort and case-control studies, mostly in North America and Europe with high traffic specificity. Many studies had high risk of bias (mainly birth registries). Associations largely null for the main pollutants, though the few traffic-PM and distance to roadway studies support an association. Clear associations with NO ₂ exposure in the third trimester.
Respiratory outcomes — Children		
Asthma onset ^a	Moderate	NO ₂ estimate consistent with an association and positive but imprecise summary estimate for the other pollutants. Sizable number of well-designed large cohort studies in a variety of locations, with associations found for some pollutants and indirect traffic measures.
Asthma ever ^b	Moderate	Positive summary estimate for NO_2 ; NO_x estimate consistent with an association; largely positive but imprecise summary estimate for most other pollutants. Sizable number of well-designed large cross-sectional studies and some cohort studies in a variety of locations, with associations found for some pollutants and indirect traffic measures.
Active asthma ^b	Moderate	Positive summary estimate for NO ₂ and positive but imprecise summary estimate for the other pollutants. Sizable number of well-designed cross-sectional studies and some cohort studies in a variety of locations, with associations found for some pollutants and indirect traffic measures.
ALRIª	High	Positive summary estimate for NO ₂ and positive but imprecise summary estimate for EC. Sizable number of well-designed large cohort and case control studies along with a smaller number of cross-sectional studies in a variety of locations, supporting associations for multiple pollutants and indirect traffic measures.
Respiratory outcomes — Adults		
Asthma onset ^a	High	Positive summary estimate for NO ₂ . Sizable number of well-designed large cohort studies in a variety of locations, supporting associations for multiple pollutants.

Table S3. Summary of "narrative" assessment between TRAP and selected health outcomes. adapted from 1

ALRIª	Low	Two of the three studies found positive associations with NO ₂ , but there were large differences in the effect estimates. In all three studies the confidence intervals included unity. There was only limited evidence for an association with PM _{2.5} and indirect measures of traffic exposure.
COPD ^a	Low	Positive but imprecise summary estimate for NO ₂ and NO _x . Small number of well-designed large cohort studies, inconsistent associations across pollutants and indirect traffic measures.
Cardiometabolic outcomes		
lschemic heart disease events ^a	Moderate	Positive summary estimate with marginal overlap of the null for PM ₁₀ and evidence suggesting a monotonic exposure– response function. Evidence available for other meta-analyzed pollutants was suggestive for EC and PM _{2.5} , but overall less consistent. No evidence for an association with NO ₂ /NO _x .
Coronary events ^a	Low	Positive but imprecise summary estimate for NO ₂ and some evidence suggesting a monotonic exposure– response function for NO ₂ . Limited evidence for other pollutants from a small number of studies. Absence of consistent confound-ing by noise. Limited evidence from indirect traffic measures.
Stroke events ^a	Moderate	Positive but imprecise summary estimates for EC, PM ₁₀ , and PM _{2.5} , and evidence suggesting a monotonic exposure– response function for those pollutants. Additional evidence from studies not meta-analyzed but highly specific to traffic, and indirect traffic measures. Absence of consistent confounding by noise. No evidence for an association with NO ₂ /NO _x .
Diabetes ^{a, b}	Moderate	Positive summary estimate for NO ₂ and diabetes prevalence, supported by consistent positive but imprecise meta-analytic estimates for the other meta-analyzed pollutant–outcome pairs. Higher effect estimates in studies with more valid outcome assessment and more comprehensive confounder control. Indirect traffic measures positive in most studies.
Mortality		
All-cause	High	Sizable number of well-designed large cohort studies in a variety of locations, supporting associations for multiple pollut- ants and indirect traffic measures.
Circulatory	High	Sizable number of well-designed large cohort studies in a variety of locations, supporting associations for multiple pollutants and indirect traffic measures.
Respiratory	Moderate	Sizable number of well-designed large cohort studies in a variety of locations, with associations found only for some pollutants and indirect traffic measures.
Lung cancer	Moderate	Modest number of well-designed large cohort studies mostly in Europe, associations for some pollutants and indirect traffic measures.
Ischemic heart disease	High	Modest number of well-designed large cohort studies) mostly in Europe, supporting associations for multiple pollutants and indirect traffic measures.
Stroke	Low	Small number of well-designed large cohort studies, inconsistent associations across pollutants and indirect traffic measures.
COPD	Low	Small number of well-designed large cohort studies, inconsistent associations across pollutants and indirect traffic measures.

ALRI = acute lower respiratory infection; COPD = chronic obstructive pulmonary disease; ^aIncidence. ^bPrevalence.

Figure S1. Meta-analysis of associations between traffic-related air pollutants and asthma onset in children.^{adapted from 1}

The following increments were used: $10 \ \mu g/m^3$ for NO₂, $20 \ \mu g/m^3$ for NO_x, $1 \ \mu g/m^3$ for EC and $5 \ \mu g/m^3$ for PM_{2.5}. Effect estimates cannot be directly compared across the different traffic-related pollutants because the selected increments do not necessarily represent the same contrast in exposure.

D. H. to d	High ++++ Moderate + Low ++ Very low +	++	Factors decreasing co confidence	onfidence "0" if no conce	rn; if serious concerr	Factors increasing sufficient to upgra				
Pollutant	Study design	Initial confidence rating (# studies)	Risk of Bias	Unexplained inconsisten cy	Imprecision	Publication bias	Monotonic exposure- response	Consideration of residual confounding	Consistency across populations	Final confidence rating
NO2	Cohort Rationale	+++ (N = 12) Cohort design initially rated as moderate	O One study at high RoB and exclusion did not alter substantially the summary estimate.	0 Moderate heterogeneity (<i>l</i> ² = 73%). Plausible reasons to explain inconsistency.	0 Sample size met and estimate consistent with an association.	0 No evidence found.	+1 Clear evidence of plausible shape of ERF (Lavigne 2018; Tetreault 2016).	0 Confounding in both directions possible.	0 Variability too large to assess consistency.	++++ (High)
NOx	Cohort Rationale	+++ (N = 3) Cohort design initially rated as moderate	-1 2/3 studies high RoB.	 -1 High heterogeneity (<i>l</i>² = 90%) due to magnitude and direction. 	-1 Sample size met but confidence interval wide and clearly includes unity.	0 No formal evaluation possible.	0 No evidence of plausible shape of ERF.	0 Confounding in both directions possible.	0 Too few studies to assess consistency.	+ (Very low)
EC	Cohort Rationale	+++ (N = 5) Cohort design initially rated as moderate	One study at high RoB but exclusion increased the summary estimate.	0 Low heterogeneity (/ ² = 47%). Plausible reasons to explain inconsistency.	-1 Sample size met but confidence interval wide and clearly includes unity.	0 No formal evaluation possible.	0 No evidence of plausible shape of ERF.	O Confounding in both directions possible.	0 Too few studies to assess consistency.	++ (Low)
PM _{2.5}	Cohort Rationale	+++ (N = 5) Cohort design initially rated as moderate	0 Few studies at high RoB and exclusion did not alter substantially the summary estimate.	0 Moderate heterogeneity (<i>l</i> ² = 67%). Plausible reasons to explain inconsistency.	-1 Sample size met but confidence interval wide and clearly includes unity.	0 No formal evaluation possible.	0 No evidence of plausible shape of ERF.	0 Confounding in both directions possible.	0 Too few studies to assess consistency.	++ (Low)

Table S4. Confidence rating for TRAP and asthma onset in children using the modified OHAT assessment.^{adapted from 1}

"Narrative" assesment for TRAP and asthma onset in children.^{adapted from 1}

The evidence base included mostly cohort studies from Europe and North America (23 out of a total of 25 studies, mostly birth cohorts); 19 were traditional cohorts with detailed individual information (sample size ranging from 184 to 14,085 children for the ESCAPE pooled cohorts), while six were large cohorts based on administrative data (including up to 761,172 children) with limited information on lifestyle factors. Traditional cohorts usually assessed asthma onset with questionnaires. Most studies used air pollutants estimated with land use regression and dispersion models.

The evidence base provides moderate evidence of an association between TRAP and asthma onset in children. The summary estimates for the association between TRAP and asthma onset in children were positive, both in administrative cohorts and in traditional cohorts with extensive confounding adjustment. However, estimates from administrative cohorts were lower and more precise. Confidence intervals of NO₂ estimates marginally overlapped the null, and imprecise summary estimates for the other pollutants were found. All summary estimates were heterogeneous. Factors like type of cohort (traditional or administrative) and age at which asthma onset was assessed, which differed widely between studies, might have contributed to this heterogeneity. Nonetheless, the consistent associations in substantially different populations lent further support to the confidence in the presence of the observed associations with asthma onset in children. Moreover, the fact that the majority of studies with pollutants not meta-analyzed (e.g., PM₁₀, PM_{coarse}, UFPs, and PM_{2.5} from traffic emissions) also reported positive associations, provided additional support. The presence of a positive association was further supported by positive monotonic exposure-response relationships from two Canadian administrative cohorts.^{10,11} Furthermore, all the assessed studies were carefully screened for traffic specificity, increasing the likelihood that the associations found pertain to traffic emissions. On the other hand, indirect traffic measures provided limited evidence of an association.

The Panel's assessment of the level of confidence in the presence of an association was moderate. Effect estimates for most traffic-related air pollutants were highly heterogeneous, and all confidence intervals of the summary estimates included unity, which suggests that some uncertainties remain regarding the association between TRAP and asthma onset in children.

References

- 1. HEI (Health Effects Institute). 2022. Systematic review and meta-analysis of selected health effects of long-term exposure to traffic-related air pollution. Special Report 23. Boston, MA, US: Health Effects Institute.
- OHAT (Office of Health Assessment and Translation). 2019. Handbook for conducting a literature-based health assessment using OHAT approach for systematic review and evidence integration. National Toxicology Program, National Institute of Environmental Health Sciences, U.S. Department of Health and Human Services.
- 3. Schünemann H, Brożek J, Guyatt G, Oxman AD, editors. 2013. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. Hamilton, ON: The GRADE Working Group.
- 4. Woodward M. 2013. Epidemiology: Study Design and Data Analysis. Third Edition. Chapman and Hall/CRC. doi:10.1201/b16343.
- 5. Rücker G, Schwarzer G, Carpenter JR, Schumacher M. 2008. Undue reliance on *l*² in assessing heterogeneity may mislead. BMC Med Res Methodol 8:79; doi:10.1186/1471-2288-8-79.
- 6. Rothman KJ, Greenland S. 2019. Planning study size based on precision rather than power: Epidemiology 30:599-603. Doi:10.1097/EDE.000000000000876.
- Zhang Y, Coello PA, Guyatt GH, Yepes-Nuñez JJ, Akl EA, Hazlewood G, et al. 2019. GRADE guidelines: 20. Assessing the certainty of evidence in the importance of outcomes or values and preferencesinconsistency, imprecision, and other domains. J Clin Epidemiol 111:83-93. Doi:10.1016/j.jclinepi.2018.05.011.
- 8. Chen J, Hoek G. 2020. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ Int 143:105974; doi:10.1016/j.envint.2020.105974.
- Huangfu P, Atkinson R. 2020. Long-term exposure to NO₂ and O₃ and all-cause and respiratory mortality: A systematic review and meta-analysis. Environ Int 144:105998. Doi:10.1016/j.envint.2020.105998.
- Lavigne E, Belair MA, Duque DR, Do MT, Stieb DM, P. Hystad, et al. 2018. Effect modification of perinatal exposure to air pollution and childhood asthma incidence. Eur Respir J 51:1701884. Doi:10.1183/13993003.01884-2017.
- 11. Tétreault LF, Doucet M, Gamache P, Fournier M, Brand A, Kosatsky T, et al. 2016. Childhood exposure to ambient air pollutants and the onset of asthma: An administrative cohort study in Québec. Environ Health Perspect 124:1272-82. Doi:10.1289/ehp.1509838.