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Supplementary discussion 

 

Chapter I/ Fitting of osmotic potential curves 

 

As may be appreciated from Extended Data Fig.1b,d and f, the relationship between osmotic 

potential and concentration of various biologically important macromolecules departs markedly from 

linearity. The point of this supplementary discussion is to establish an empirical effective measure for 

quantifying departure from linearity, so that different solutes and temperatures may be compared.  

PEG offers a good avenue to evaluate how departure from linearity varies as a function of 

physiological parameters, such as temperature, solvent composition (D20 or H2O) and polymer size, 

since PEG has no solubility limit and does not phase separate across physiological temperatures (Fig. 

4a).  

The osmotic potential of dilute solutions is classically modelled by van’t Hoff’s law (equation 

1), with 𝑖𝑖 the van’t Hoff factor, 𝑅𝑅 the gas constant, and 𝑇𝑇 the temperature in Kelvins: 

    −𝛹𝛹𝜋𝜋(𝐶𝐶,𝑇𝑇) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     (1) 

In the more general case, −𝛹𝛹𝜋𝜋 is fit to the polynomial equation 2, where α & β are termed the 

first and second virial coefficients, respectively 1–3: 

−𝛹𝛹𝜋𝜋(𝐶𝐶,𝑇𝑇) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1 +  𝛼𝛼𝛼𝛼 + 𝛽𝛽𝐶𝐶2 + ⋯ )     (2) 

Note that equation (2) converges to equation (1) in dilute solutions, where molecules are 

sparsely distributed, and that equation (2) departs markedly from linearity at high solute 

concentrations, where the 𝐶𝐶2 and 𝐶𝐶3 components become dominant. At first, we thus attempted to 

use equation 2 to model our osmotic potential curves in order to employ the value of the virial 

coefficients as an empirical measure of departure from linearity (i.e. the higher the value of the virial 

coefficients, the larger the departure from linearity). For this, we constrained the values of the viral 

coefficient to be positive.  

A priori, is appears plausible that the virial coefficients might vary as a consistent function of 

solute identity and temperature. Note, however, that a modest temperature 10K decrease, from 310K 

to 300K elicits a two-fold increase in osmotic potential of BSA (Fig.1a). This is already challenging to 

reconcile with equation 2, which is linear with respect to temperature (in Kelvin) and instead predicts 

a ~3% decrease in osmotic potential with temperature decrease, rather than the observed increase. 



As can be appreciated in Supplementary Figure 1, the osmotic potential of PEG 35KDa 

solutions as a function of concentration is poorly fit by equation (1) at 290K, and better described by 

equation (2). For this latter, note that the higher the order of the polynomial (i.e. the more virial 

coefficients allowed in the model), the better the fit.  

By extensively and systematically measuring the osmotic potential of PEG solutions for 

different PEG sizes and different temperature (raw data in Extended Data Fig.1d), the variation in the 

values of the virial coefficients as a function of these parameters can be determined by simultaneously 

by fitting all datasets to equation 2 (see Supplementary Figure 2). We performed this analysis by 

considering the development of Equation 2 to the 2nd or 3rd order (that is, considering 1st or 2nd 

virial coefficients). 

As can be observed in Supplementary Figure 2, there is no clear trend of the value of the virial 

coefficients as a function of PEG size nor temperature. If equation 2 was valid to model the interaction 

of PEG with the solvent in the ranges considered in our experiments, the virial coefficients would be 

expected to show consistent increase with PEG size, as larger PEG sizes display a stronger departure 

from linearity, which is amplified at lower temperature (Extended Data Fig.1d). Similarly, as can be 

observed in Supplementary Figure 1, Equation 2 fails to model the osmometry curves of BSA as a 

function of concentration, which exhibit a much stronger departure from linearity than PEG. 

 

 

Supplementary Figure 1: Osmotic potential of indicated solutions fitted to various models.  



We thus considered an alternative way to model our curves, and, following the work of 

Fullerton and colleagues4,5, fitted our data to equation (3), with 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠  the effective interaction term 

(Equation 3 corresponds to Equation 1 in the main text). Note that a priori, 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠  and 𝐴𝐴 may be functions 

that vary with solute identity and temperature. 

−𝛹𝛹𝜋𝜋(𝐶𝐶,𝑇𝑇) =
𝐴𝐴(𝑇𝑇) × 𝐶𝐶

1 − 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 (𝑇𝑇) × 𝐶𝐶
 (3) 

 

As can be observed in Supplementary Figure 1, Equation (3) fits well the osmometry curves of 

PEG 35kDa, and is markedly better at fitting the osmotic potential of BSA, which exhibits a much 

stronger departure from linearity than PEG. 

Since PEG measurements were performed at multiple temperatures, we thought to constrain 

the fits to avoid fitting two parameters (𝐴𝐴(𝑇𝑇) and 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 (𝑇𝑇)) with only one curve. Indeed, an interesting 

limit case of equation (3) is when 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 (𝑇𝑇) × 𝐶𝐶 ≪ 1. In these conditions, 𝐴𝐴 tends to 𝑖𝑖𝑖𝑖𝑖𝑖 (that is the 

van't Hoff equation, equation 1), thus, we hypothesized that A should be linear with temperature, and 

thus fitted simultaneously all curves from different temperatures to equation 4.  

−𝛹𝛹𝜋𝜋(𝐶𝐶,𝑇𝑇) ≈
𝐴𝐴′𝑇𝑇 × 𝐶𝐶

1 − 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 (𝑇𝑇) × 𝐶𝐶
 (4) 

Supplementary Figure 2: Variation of the value of virial coefficient as a function of temperature 
and PEG size. This analysis was performed by considering a model of order two or three (that is 
one or two virial coefficients). 



 

In this case, 𝐴𝐴′ is a constant that is identical for all the datasets from a given macromolecule, 

meaning that for three datasets at three different temperatures, only four parameters are considered, 

rather than six. This provided similar results to fitting each curve to equation 3, albeit with better 

goodness of fits (for our PEG data set of 8 molecular weights and 3 temperatures, so 24 datapoints, 

Spearman correlation of 0.9948 and p<0.0001 between the values of  𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠  obtained by fitting each 

curve independently or all curves simultaneously).  

As can be observed in Supplementary Figure 3, fitting our dataset to Equation (4) provided 

much more consistent results as a function of PEG size and temperature compared with Equation (2). 

We found that 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠  scales quasi-linearly with PEG size, and the slope of this curve is higher at lower 

temperature. Note also that 𝐴𝐴′ scales quasi-linearly with PEG size, which is expected: A’ is related to 

𝑖𝑖, the van’t Hoff factor, which is expected to increase with PEG size.  Thus, throughout this paper, we 

systematically fit our data using equation (4) and used 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠  as an empirical measure of the impact of 

the solute upon the solvent. 

 Note that equation 4 can be rearranged as equation 5. This highlights the two contributions 

to the osmotic potential:  𝐴𝐴′𝑇𝑇𝑇𝑇 models the effect of an ideal solute on the solvent, whereas 1
1−𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒

𝑠𝑠 (𝑇𝑇)𝐶𝐶
 

models the extent of the unfavourable interactions at the solute:solvent interface. 

−𝛹𝛹𝜋𝜋(𝐶𝐶,𝑇𝑇) ≈ 𝐴𝐴′𝑇𝑇𝑇𝑇 ×
1

1 − 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 (𝑇𝑇)𝐶𝐶
 (5) 

 

 

 

Supplementary Figure 3: Variation of the value of 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠  as a function of temperature and PEG size. 
This analysis was performed by considering equation 4. 



Chapter II/ Other frameworks for modelling polymer phase behaviour and 
their application to biomolecular condensation in cells.  

 

Most theoretical frameworks for phase separation consider entropic and enthalpic effects from the 

standpoint of the polymer. For example, Flory-Huggins solution theory (FHT) was developed to 

describe the thermodynamics of polymer-solvent mixtures, expressing the free energy of mixing in 

terms of solvent and polymer volume fractions, temperature and a single interaction parameter χ to 

describe the strength of solvent-polymer interactions compared with average solvent-solvent and 

polymer-polymer interactions6. This lattice model considers the entropic and enthalpic drivers of 

polymer behaviour, with the value of χ predicting whether the mixture is homogeneous or forms two 

coexisting phases, and was subsequently extended to mixtures of two or more polymers by Scott and 

Tompa7,8. FHT has been successfully used to model the phase behaviour of, and fit data from, 

macromolecular solutions in vitro, where condensation is examined as a function of the concentration 

of the specific protein(s) under investigation (e.g. 9), but makes several critical assumptions that limit 

its direct applicability to proteins and their interactions within cells: 

• FHT assumes the polymer is made from identical (non-polar) monomers. This is not true for any 

proteins in cells, as the cytosol is composed from a mixture of thousands of different proteins, 

whose relative abundance varies by several orders of magnitude.  

• Under the FHT mean field approximation, all polymer segments interact equally. This is not true 

for any natural polypeptides which are composed from amino acid residues with differing 

chemical properties (charged vs uncharged, hydrophilic vs hydrophobic, bulky vs small, aromatic 

vs aliphatic etc), and whose activity is further modulated by site-specific post-translational 

modifications such as phosphorylation.  

• FHT assumes ideal polymer chain behaviour, and does not take into account chain connectivity - 

interactions between different polymer regions or any resulting topological constraints. Such 

interactions occur in almost all cellular proteins, leading to secondary and tertiary structures that 

are quite specific to the primary amino acid sequence, with most soluble proteins in the cytoplasm 

adopting compact globular structures.  

• χ is used to describe all interactions in the system, and so cannot adequately account for specific 

interactions critical to the behaviour of specific proteins in biological systems (e.g. electrostatic 

interactions, hydrophobic interactions and hydrogen bonding). Indeed, the physics of 



hydrophobic surface hydration itself are not sufficiently well understood that the free energy 

change can be predicted reliably 10. 

• FHT considers a homogenous solvent, whereas the cytosol is a highly complex, heterogeneous and 

crowded environment, in which the activity of hydration water has been experimentally 

distinguished from bulk solvent by multiple independent methods. These heterogeneities and 

spatial constraints are not taken into consideration by FHT 10–12.  

• FHT assumes that polymers and solvent molecules can move freely and do not impose constraints 

on each other’s mobility. This is not the case for water molecules hydrating proteins and other 

macromolecules, which have reduced translational and rotational entropy compared with bulk 

solvent. Moreover, the free energy of solvent-sidechain interactions differs enormously between 

hydrophobic and polar/charged amino acid residues, and also varies with context 10. 

Overall then, while FHT can accurately describe the phase behaviour of dilute binary polymer blends, 

it does not describe the unique behaviours of water as a solvent, nor does it capture the behaviour of 

complex macromolecular mixtures found in biological systems without substantial modifications and 

extensions that try to account for specific interactions and factors such as chain connectivity and 

molecular crowding. The review by Zaslavsky and Uversky13 provides a more detailed perspective on 

these themes, highlighting that reversible condensation of natively folded proteins does not occur in 

any solvent besides water and its importance to this process.  

More recent attempts to model the thermodynamics of protein condensation in cells have explicitly 

considered changes in free energy of the solvent in a more granular fashion than FHT 14, but in general, 

models of cellular phase separation focus on the enthalpic driving force generated by weak, 

multivalent interactions between macromolecules. Solvent entropy rarely receives the same level of 

consideration even though water is the most abundant molecular species in any biological system and 

thus a major factor determining its thermodynamical equilibria. To our knowledge, the multitude of 

different theoretical frameworks that aim to describe liquid-liquid phase separation of proteins do not 

predict the non-linear relationship between BSA concentration and osmotic potential, for example, 

nor the interaction with temperature we observe across the physiological range. By focussing on the 

solvent and employing the Fullerton empirical model that explicitly considers the interaction between 

polymers and water4,5, as described above, our work provides a framework for understanding the 

effects of temperature on the behaviour of concentrated polymer solutions and the impact of 

manipulations of solvent thermodynamics, e.g., heavy water. Given the concentrated, colloidal 

intracellular environment, we hope that this approach will aid our understanding of the physiological 

drivers and functions of phase separation in cells. 
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