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S.1 OS-ET analysis

S.1.1. Au-water-2Li

For the Au-water-2Li interface, the cDFT-MD simulations are performed. The
energy gap distributions are sampled and key structures of diabatic states of
OS-ET at Au-water-2Li interfaces are shown in Fig. S1. With the presence of
Li cations, the reorganization energy is calculated to be 7.60 eV with a reaction
energy of 3.63 eV. The Marcus energy barrier (4.15 eV) is even higher than
the Au-water-2K system (2.93 eV). Such a difference can be ascribed to the
different solvation properties of Li and K: Li is strongly hydrated compared
to K and has a higher solvation energy.[1] This indicates that the interactions
between Li cations and surrounding water molecules are stronger than K-H2O,
leading to a higher reorganization energy and thus a high Marcus barrier.

1
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Fig. S1: The energy gap distributions (a) and key structures of diabatic states
(b) of OS-ET at Au-water-2Li interfaces.

S.1.2. Constant electrode potential corrections and
Fermi levels for interfacial models

We have estimated the impact of constant potential corrections within the
capacitor model.[2] The resulting energy corrections are quite small as shown in
Table S1. For the 2K system, the Fermi level difference between the initial (2K-
CO2) and final states (2K-CO2 anion) is only 0.28 eV; even if we consider the
maximum charge difference of 1e, the energy correction within the capacitor
model is only 0.14 eV. For the water system, the Fermi level difference is even
smaller (0.08 eV) with a negligible energy correction of 0.04 eV. Comparing
the water-CO2 and 2K-CO2, the Fermi level difference is also very small, 0.28
eV; water-CO2 anion and 2K-CO2 anion show the Fermi level difference of
0.08 eV.

Adding cations to the solution with neutral CO2 should make the surface
more negative, which is observed. In the water case, the Fermi level is changed
only by 0.08 with a variance of 0.25 comparing the water-CO2 and water-CO2

anion systems, meaning that it is basically the same. It is also possible that the
Fermi level of the water-CO−

2 system is determined by CO−
2 rather than the

surface, which defines the Fermi level in the water-CO2 system. The analysis of
the density of states (DOS) and projected density of states (PDOS) supports
this assertion as there is a clear overlap between CO−

2 PDOS and total DOS in
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Table S1: Fermi levels of OS-ET structures.

OS-ET 2K-CO2 2K-CO2 anion Water-CO2 Water-CO2 anion
Fermi levels (eV) -4.15±0.19 -4.43±0.22 -4.43±0.19 -4.35±0.25

water-CO−
2 system, which is not observed for the water-CO2 system (Fig. S13

and S14). These observations support the recent arguments[3] that the Fermi
level is not the correct quantity for determining the electrode potential in
outer-sphere reactions and that the electrode inner potential should instead
be used to characterize the electrode potential.

S.1.3. Clarifications on Marcus theory, energy gap, and
reaction free energy

Marcus theory can be derived in several but equally valid ways. The linear
response approximation is the central assumption behind the famous Marcus
barrier equation.

∆A‡
Marcus =

(∆A+ λ)2

4λ
(S1)

∆A‡
Marcus arises only when the diabatic energy curves are harmonic along

the energy gap coordinate: this condition is met when the energy gap distribu-
tions are Gaussian, which is equivalent to the linear response approximation as
well as the second cumulant expansion.[4, 5] In these cases, the iconic Marcus
barrier can be obtained by simulating the initial and final states only. How-
ever, in the non-linear Marcus theory, thermodynamic integration at multiple
points along the reaction coordinate (energy gap) is required.[6] Studying the
non-linear effects would be very interesting, but here we restrict to the linear
response theory.

In this work, we follow the cumulant expansion route based on Zwanzig’s
linear response theory[4, 5], but, as stressed above, this is formally equal to
the Gaussian energy gap or harmonic diabatic energy approximations. Within
this linear response approximation and cumulant expansion, the reorganiza-
tion energy can be computed exactly[4, 5] from the energy gap variance: this is
equation 4a in Methods. Similarly, equation 4b in Methods arises from cumu-
lant expansion and hence the linear response theory[4, 5], and the reaction
free energy is given in terms of the energy gap expectation value and vari-
ance through the reorganization energy. Hence, both the reaction energy and
reorganization energy depend on the energy gap distributions.

S.1.4. Constrained DFT, electron transfer, and Marcus
theory

Constrained DFT (cDFT)[7] is a method for building charge/spin localized
or diabatic states with a user-defined charge and/or spin state, being a use-
ful tool for widening the scope of ground-state DFT to excitation processes,
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correcting for self-interaction energy in current DFT functionals, excitation
energy, and electron transfer (ET) as well as parametrizing model Hamiltoni-
ans, for example. cDFT works by specifying an additional constraining term to
the KS functional, and the role of this constraint is to enforce a user-specified
charge/spin state on the chosen regions of atoms.

For ET during CO2-to-CO
−
2 , two diabatic or charge-localized states are

generated using constrained DFT as implemented in the GPAW code.[8] The
CO2 and CO−

2 diabatic states are constructed by forcing the CO2 molecule to
carry either zero or -1 charge, respectively.

Marcus theory has served as the standard theoretical framework for ET
reactions for a considerable time. Marcus theory assumes weak coupling
between the electronic states of the reactants and products, and assumes a
linear response approximation, implying that the surrounding environment of
the molecules undergoing ET responds linearly to the event. In this approx-
imation, the free energy profiles of the two ET states can be represented as
intersecting parabolas. Two key parameters define the reactant and product
free energy curves: the driving force (∆A), which represents the energy differ-
ence between the reactant and product states, and the reorganization energy
(λ), which quantifies the energy cost associated with rearranging the reactant
or product to reach equilibrium. The Marcus expression for the ET rate is
derived from these free energy profiles using classical transition-state theory.

S.2 Enhanced sampling

DFT molecular dynamics (DFT-MD) simulations with slow-growth (SG) sam-
pling approach[9, 10] as implemented in VASP, are performed to evaluate the
kinetic barriers of IS-ET for the CO2-to-CO

δ−
2 (ads) reaction. In SG-DFT-MD,

a suitable collective variable (namely ξ) is chosen as the reaction coordinate
and is linearly changed from the characteristic value of the initial state to the
final state with a transformation velocity ξ̇. The work required to perform the
transformation from the initial to the final state can be computed as:

Winitial-to-final =

∫ ξ(final)

ξ(initial)

(
∂F

∂ξ

)
· ξ̇dt (S2)

where F is the time-dependent free energy and ∂F
∂ξ can be computed using

SG-DFT-MD through the blue-moon ensemble sampling with the SHAKE
algorithm.[11] At the limit of infinitesimally small ∂ξ, the needed work
(Winitial−to−final) corresponds to the adiabatic free energy difference between
the final and initial states. In the SG sampling, ∂ξ=0.001 Å was adopted and
applied at each SG-DFT-MD step after testing the shorter step size for the
“slow-growth”.

The reaction barriers and reaction energies can be obtained by computing
the free energy profiles after thermodynamic integration,[11, 12] which was
carried out using in-house codes/scripts to post-process the output data to
smoothen the data by using a running mean.
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S.3 Charge transfer analysis for IS-ET at
Au-water interfaces

Bader charge analysis[13, 14] is applied to evaluate the electron transfer
between different parts of the system. The analysis results during SG-DFT-MD
simulations for IS-ET at Au-water interfaces without any cations, are shown
in Fig. S2, indicating that CO2 would be partially reduced by receiving 0.31 e
from Au and water solvents if the inner-sphere reduction could occur.

Fig. S2: Bader charge analysis results for IS-ET during SG-DFT-MD at Au-
water interfaces.

S.4 Structures and analysis for IS-ET at
Au-water-2Li interfaces

The inner-sphere CO2 activation is simulated at Au-water-2Li interfaces using
the SG-DFT-MD methods. Fig. S3 displays the free energy profiles and Li-O
(CO2) distances for the CO2 adsorption process. The Li+-O bond distances
(Fig. S3b) vary between 2.4 and 4.5 Å, and are on average longer than the
bond lengths of 1.98 ∼ 2.63 Å for the ionic LiCO2 solid.[15]

S.5 Charge transfer and bonding analysis for
CO2–K

+ interactions

Below we present the charge transfer and bonding analysis for the CO2

molecule in water and K+ electrolytes. We show the results for a representa-
tive geometry obtained from the middle of the 4ps the AIMD trajectories used
in Fig. 3 to study the distance between CO2 from the Au surface in pure water
and the electrolyte solution. We also analyze several other geometries and the
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Fig. S3: Key structures (a) and Li-O (CO2) distance for IS-ET during SG-
DFT-MD at Au-water-2Li interfaces.

results are qualitatively and quantitatively similar. These analyses are car-
ried out using GPAW with the setups provided in the computational methods
section.

S.5.1. Bonding analysis

To study the interactions between CO2 and K+ we turn to the electronic
localization function (ELF) which can distinguish between regions of covalent
bonds, lone-pairs, metallic bonds, ionic bonds, etc. based on the electronic
kinetic energy density.[16–18] In Fig. S4, we present the 2D ELF analysis on
the plane connecting the K+, O, and C in a configuration where CO2 and K+

are coordinated. The figure shows that there are no indications of covalent
bonding between CO2 and K. Instead, the lone pair from the oxygen atom is
directly pointed towards the cation. This strongly indicates that CO2 and K+

interaction is mediated by a short-range Coulombic interaction between the
positively charged K+ ion and oxygen lone pair belonging the oxygen atom
carrying a partial negative charge.

S.5.2. Charge transfer

The charge transfer effects between CO2 and water/electrolyte environments
are studied by computing the electron density difference as follows
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Fig. S4: ELF analysis of the interactions between CO2 and K+. Different
atoms and bond interactions are indicated. The color scale designates the non-
dimensional ELF index where blue areas and values close to unity correspond
to areas of high electron localization whereas yellow areas with values around
zero denote delocalized electrons or regions of very small electron density.

∆ρ(r) = ρ(r)CO2 at interface−ρ(r)CO2 in vacuum−ρ(r)interfacewithoutCO2 (S3)

The results in Fig. S5 show that there is minor charge reorganization within
individual molecules when CO2 is brought from the vacuum into the water or
electrolyte solution. The charge transfer between different atoms is quantified
by applying Bader charge partitioning on ∆ρ(r) and the results are tabulated
in Table S2. This analysis shows that charge transfer between different atoms
and molecules in the system is negligibly small and that the minor charge reor-
ganization can be understood as electronic polarization when CO2 is inserted
in water or the K+ electrolyte.

Table S2: Bader charge analysis on the charge density difference. Positive val-
ues indicate electron accumulation, negative values indicate electron depletion.

System CO2 in water CO2 in K+ solution
Atom ∆ q ∆ q
K+ – -0.000931

O1 in CO2 0.006031 0.001945
O2 in CO2 -0.002205 -0.009412
C in CO2 -0.001669 -0.004768

O atom from H2O near CO2 0.007921 0.006020
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Fig. S5: ∆ρ(r) plots for CO2 in water (left) and K+ solution. The black
(turquoise) isosurface corresponds to regions electron accumulation (depletion)
at the value 0.0015 e/Å3.

S.6 AM+–CO2 distance analysis during OS-ET

The distance analysis of AM+–O (CO2) during OS-ET in cDFT-MD is per-
formed in all of the simulation systems, including CO2 and CO2 anion at
Au-water-2K interfaces and Au-water-2Li interfaces. For each system, 10 ps
cDFT-MD is carried out, and Fig. S6 shows that there is very minor direct
coordination between cations and CO2. It should be noted that the reference
values for coordination interaction, e.g., 2.94 Å for K–O and 2.63 Å for Li–O,
originate from the crystalline KCO2 and LiCO2.[15]

S.7 Analysis of MD trajectories

Here we specify the technical details for analyzing the MD trajectories.

S.7.1. Vibrational spectra

The vibrational spectra are computed from velocity-velocity autocorrelation
functions as[19]

Cvv(t) =
∑
i

Ci
vv(t) =

∑
i

⟨vi(t) · vi(t = 0)⟩ (S4)

where i denotes atom i, vi is the velocity, and ⟨X⟩ is the thermodynamic
expectation value of X obtained by MD sampling. The vibrational frequencies
are then obtained from the spectral density of Cvv(t) as

Ivv(ω) ∝
∫ τ

0

dtCi
vv(t) cos(ωt) (S5)
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Fig. S6: Distance analysis during cDFT-MD at Au-water-2K interfaces includ-
ing K-O (CO2) (a) and K-O (CO2 anion) (b), and at Au-water-2Li interfaces
including Li-O (CO2) (c) and Li-O (CO2 anion) (d).

The spectral density Ivv contains only the vibrational peak positions and
cannot be used for computing absolute (IR or Raman) intensities. As such, Ivv
contains information about both IR and Raman active modes which is actually
beneficial in the present case to enable comparing the simulations with both
IR and Raman measurements.

S.7.2. Rotational dynamics

The water rotational dynamics are computed from either the bond direction
or dipole direction autocorrelation functions following Ref. 20. The direction-
direction autocorrelation function Cdd for water molecules is

Cdd(t) =
∑
w

Cw
dd(t) =

∑
w

⟨Pl (d
w(t) · dw(0))⟩ (S6)

where Pl is Legendre polynomial of degree l, w denotes a single water
molecule, and dw is any vector joining any points of a water molecule – we used
O-H and dipole directions. The different degrees of Pl correspond to different
ranks of the rotational dynamics which in turn depend on the experimental
technique used for measuring the rotational dynamics. l = 2 corresponds to
the relaxation of orientational correlation in Raman or magnetic resonance
measurements whereas l = 1 corresponds to dielectric relaxation times.[21]
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As we are interested in electron transfer kinetics where the dynamic solvent
corrections or properties are related to dielectric relaxation times[22–24], we
have used l = 1.

The orientational relaxation time constant, τdd is computed as a time
integral over the corresponding correlation function[20]

τdd =

∫ t

0

dtCdd(t) (S7)

which be used to characterize the solvent dynamics.

S.7.3. Computation of autocorrelation functions

Correlation functions can be computed as a convolution between quantities at
different points in time.[25] The convolution can be conveniently achieved using
fast Fourier transforms. This is particularly convenient for autocorrelation
functions as the autocorrelation in the Fourier space is just the square modulus
of the Fourier transformed time-dependent quantity of interest (here dw(t) or
vi(t)) and the autocorrelation is recovered after an inverse Fourier transform.
This procedure is efficiently implemented Numpy[26] in the correlate-function
which we employed in all autocorrelation function calculations.

For computing the vibrational spectra, Cvv(t) is smoothened using a
Blackman-Harris filter as implemented in Scipy.[27] To define individual water
molecules, i.e. which hydrogen and oxygen atoms are connected in different
water molecules, we used the neighborlist and connected functionalities in
ASE.[28]

The used scripts can be obtained from https://gitlab.jyu.fi/mamimela/
compel/-/tree/master/scripts.

S.7.4. Orientational dynamics of water

The Cdd spectra are shown in Fig. S7 and the calculated orientational
relaxation time constants are summarized in Table S3.

Table S3: The calculated orientational relaxation time constants (fs) are sum-
marized, including the CO2 and CO−

2 in Au-water and Au-water-2K systems
with cDFT-MD trajectories.

cDFT-MD trajectory CO2 CO−
2

Au-water 4565 4439
Au-water-2K 4719 4562

https://gitlab.jyu.fi/mamimela/compel/-/tree/master/scripts
https://gitlab.jyu.fi/mamimela/compel/-/tree/master/scripts
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Fig. S7: Time dependence of orientational correlation function Cdd for the
rotation of dipole vectors of water molecules for CO2 (left) and CO−

2 (right).

Fig. S8: Simulated vibration spectra of CO2 and CO−
2 during cDFT-MD for

Au-water-2K (a) and Au-water-2Li (b) interfaces.

S.8 Evaluation of electric field effect

Here, to explore the possible electric field effect, we build a large (4 × 3)
supercell model with the same number of K+ cations at Au-water interfaces,
thus constructing the weaker average electric field compared to the (2 × 3)
supercell used in previous simulations.

S.8.1. Simulation models and parameter comparison

The (2 × 3) and (4 × 3) models are shown in Fig. S9, and lattice parameters
are summarized into Table S4. For (2 × 3) and (4 × 3) models, where CO2

molecules are coordinated by cations, the electric field effect can be qualita-
tively studied by computing and comparing the reaction barriers via SG-AIMD
simulations on IS-ET CO2 reductions.
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Fig. S9: Top and side view of (2 × 3) model (a) and (4 × 3) model (b).

Table S4: Parameter comparison of (2 × 3) and (4 × 3) simulation models.

Simulation models Lattice (Å3) Total atoms Water Cations
(2 × 3) model 8.32 × 8.82 × 40 173 42 2
(4 × 3) model 16.64 × 8.82 × 40 350 87 2

Table S5: The final states of *COδ−
2 in (2 × 3) and (4 × 3) simulation models

are compared with structure features summarized below.

Simulation models C-O bond (Å) O-C-O angle (◦) C-Au (Å) Charge (e)
(2× 3) model 1.23&1.25 130 2.12 0.81
(4× 3) model 1.20&1.21 155 2.44 0.31

S.8.2. SG-AIMD results in (4 × 3) supercell with cation
coordination

For the (4 × 3) supercell models with CO2 coordinated by cations, the reaction
barrier for IS-ET is obtained via SG-AIMD simulations on the CO2 adsorp-
tion as shown in Fig. S10. The final states of *COδ−

2 in (2 × 3) and (4 ×
3) simulation models are compared with structure features summarized into
Table S5.
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Fig. S10: The key structures (top) and integrated free energy profile (bottom)
of CO2 adsorption in the (4 × 3) supercell model with cation coordination.
The maximum evolves quite close to the ending point of the curve.

S.8.3. SG-AIMD results in (4 × 3) supercell without
cation coordination

In the (4 × 3) supercell models, we are able to tune the positions of CO2,
which could be either coordinated or non-coordinated by cations, and thus the
short-range coordination effect can be differentiated from the electric field by
studying the IS-ET kinetics. The basic model for cation-non-coordinated CO2

in (4 × 3) supercell is shown in Fig. S11, and the free energy profile along with
key structures of SG-AIMD is shown in Fig. S12.
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Fig. S11: The (4 × 3) supercell model without cation coordination.

Fig. S12: The key structures (top) and integrated free energy profile (bottom)
of CO2 adsorption in the (4 × 3) supercell model without cation coordination.
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Fig. S13: Density of states (DOS) and projected density of states (PDOS)
analysis in water-CO−

2 system (a) and water-CO2 system (b). Near the Fermi
level (E-Ef = 0 eV), the overlap between CO−

2 PDOS and total DOS is marked
by yellow in a, and that between CO2 PDOS and total DOS is marked by gray
in b.

Fig. S14: Density of states (DOS) and projected density of states (PDOS)
analysis in water-CO−

2 system (a, b, and c) and water-CO2 (d, e, and f) with
various sampling points during OS-ET simulations.
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