Supporting Information

Agarperoxinols A and B: Two Unprecedented Tricyclic 6/6/7 Rearranged Humulene-Type Sesquiterpenoids and Attenuated the Neuro-inflammatory in LPS-stimulated Microglial Models

Chi Thanh Ma^{a,b}, Sang Bin Lee^b, In Ho Cho^c, Jae Sik Yu^b, Tianqi Huang^d, Tae Min Lee^b, Tu Loan Ly^e, Sung Won Kwon^c, Jeong Hill Park^c, Hyun Ok Yang^{b,*}

^a Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41-43 Dinh Tien Hoang st., dist. 1, Ho Chi Minh city 700000, Vietnam.

^b Department of Integrative Biological Sciences and Industry & Convergence Research Center for Natural Products, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.

^c Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

^d Korea Institute of Science and Technology (KIST) School, Korea University of Science and Technology (UST), 5 Hwarang-ro 14-gil, Wolgok 2(i)-dong, Seongbuk-gu, Seoul 02792, Republic of Korea.

^e Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh city, 19 Nguyen Huu Tho st., dist. 7, Ho Chi Minh city 700000, Vietnam.

*Corresponding author: Hyun Ok Yang Department of Integrative Biological Sciences and Industry, Sejong University 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea Tel: +82-02-3408-1959 Fax: +82-02-3408-4336 E-mail: hoyang@sejong.ac.kr

Table of Contents

2
3
4
5
5
5
5

Index of Tables

Index of Figures

Figure S1. ¹ H NMR spectrum of agarperoxinol A (1) in CDCl ₃ (500 MHz)	11
Figure S2. ¹³ C NMR spectrum of agarperoxinol A (1) in CDCl ₃ (500 MHz)	11
Figure S3. HSQC spectrum of agarperoxinol A (1) in CDCl ₃ (500 MHz)	12
Figure S4. HMBC spectrum of agarperoxinol A (1) in CDCl ₃ (500 MHz)	12
Figure S5. COSY spectrum of agarperoxinol A (1) in CDCl ₃ (500 MHz)	13
Figure S6. NOESY spectrum of agarperoxinol A (1) in CDCl ₃ (500 MHz)	13
Figure S7. UV spectrum of agarperoxinol A (1)	14
Figure S8. Experimental ECD spectrum of agarperoxinol B (2)	14
Figure S9. Optical rotation of agarperoxinol A (1)	14
Figure S10. MS spectrum of agarperoxinol A (1)	14
Figure S11. ¹ H NMR spectrum of agarperoxinol B (2) in CDCl ₃ (800 MHz)	15
Figure S12. ¹³ C NMR spectrum of agarperoxinol B (2) in CDCl ₃ (800 MHz)	16
Figure S13. HSQC spectrum of agarperoxinol B (2) in CDCl ₃ (800 MHz)	16
Figure S14. HMBC spectrum of agarperoxinol B (2) in CDCl ₃ (800 MHz)	17
Figure S15. COSY spectrum of agarperoxinol B (2) in CDCl ₃ (800 MHz)	17
Figure S16. NOESY spectrum of agarperoxinol B (2) in CDCl ₃ (800 MHz)	18
Figure S17. MS spectrum of agarperoxinol B (2)	18
Figure S18. UV spectrum of agarperoxinol B (2)	19
Figure S19. Experimental ECD spectrum of agarperoxinol B (2)	20
Figure S20. Optical rotation of agarperoxinol B (2)	20
Figure S21. The Inhibition of p-p38 and p38 phosphorylation protein expressed	by
agarperoxinol B on LPS-activated microglial cells	20

Experimental Procedures

1. Plant Material

The agarwood chips of *A. malaccensis* was purchased from Industrial Plantation Co. (Vientiane, Laos) in January 2010. A voucher specimen (AM-2010-01) was authenticated by Professor Jeong Hill Park (Natural Products Research Institute, Seoul National University) and deposited at the Herbarium of the Natural Product Research Institute, Seoul National University, Korea.

2. Extraction and Isolation

The agarwood chips of *A. malaccencis* (9.0 kg) was ground and extracted with MeOH 70% under reflux (20 L X 3h, 3 times). The extraction was evaporated under reduced pressure to obtain a crude extract (864 g), which was suspended in water and successively partitioned with diethyl ether, EtOAc, n-BuOH, achieving 225, 155, and 289 g of residue, respectively.

The ether fraction (30 g) was fractionated by a silica gel column (230-400 mesh, 300 g) and eluted with *n*-hexane/EtOAc (gradient, 40:1 \rightarrow 1:1, v/v) to obtain 7 fractions (Et1-Et7). Fraction Et3 (3.36 g) was separated by silica gel column chromatography (230-400 mesh, 100g), eluting with *n*-hexane/EtOAc (gradient, 95:5 \rightarrow 7:3, v/v) to achieve 9 sub-fractions (Et3a-Et3i). Sub-fraction Et3b (250 mg) was separated by semi-preparative RP-HPLC (MeOH-H₂O, 65:35, v/v) to obtain two fractions Et3b1 and Et3b2. Compound 1 (3.44 mg) was isolated from fraction Et3b1 by semi-preparative RP-HPLC (t_{*R*} = 11.0 min, CH₃CN-H2O, 55:45, v/v) and fraction Et3b2 was further purified by semi-preparative RP-HPLC to yield compound 2 (8.26 mg) (t_{*R*} = 9.95 min, CH₃CN-H₂O, 50:50, v/v).

3. Crystallographic data

Table S1. Crystal data and structure refinement for 1

Empirical formula	$C_{15}H_{24}O_4$
Formula weight	268.34
Temperature/K	291(6)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	8.9468(3)
b/Å	16.8211(6)
c/Å	10.2017(4)
α/°	90
β/°	109.839(4)
γ/°	90
Volume/Å ³	1444.19(9)
Z	4
$\rho_{calc}g/cm^3$	1.234
µ/mm ⁻¹	0.715
F(000)	584.0
Crystal size/mm ³	0.3 imes 0.1 imes 0.02
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	10.518 to 153.188
Index ranges	$-10 \le h \le 11, -20 \le k \le 21, -12 \le l \le 12$
Reflections collected	15045
Independent reflections	2999 [$R_{int} = 0.0527, R_{sigma} = 0.0259$]
Data/restraints/parameters	2999/0/180
Goodness-of-fit on F ²	1.056
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0447, wR_2 = 0.1297$
Final R indexes [all data]	$R_1 = 0.0540, wR_2 = 0.1393$
Largest diff. peak/hole / e Å-3	0.18/-0.14

Table S2. Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters (Å ² ×10 ³) for 1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ}
tensor

Atom	x	У	Z	U(eq)
01	10439.5(13)	5570.2(9)	3144.1(13)	74.8(4)
02	8137.5(11)	4723.5(7)	3940.3(10)	53.3(3)
03	4276.7(13)	5247.2(8)	3323.6(13)	65.7(3)
O4	3222.5(16)	5850.5(9)	2447.7(17)	81.0(4)
C1	4884.0(18)	3017.1(11)	1475.2(18)	63.3(4)
C2	6489.8(19)	3179.7(11)	1376.2(18)	62.1(4)
C3	7598.1(16)	3621.9(10)	2275.3(16)	55.9(4)
C4	9128.2(19)	3833.3(13)	2053(2)	69.1(5)
C5	9032(2)	4634.3(13)	1333.9(18)	71.4(5)
C6	8903.2(18)	5370.0(12)	2160.7(17)	64.5(4)
C7	7662.0(17)	5344.4(10)	2899.2(15)	55.5(4)
C8	5979.2(17)	5193.6(10)	1857.6(15)	55.4(4)
С9	4853.8(15)	4761.4(9)	2447.5(15)	52.2(3)
C10	5602.9(15)	4042.3(9)	3380.9(14)	48.9(3)
C11	4746.5(16)	3239.5(10)	2880.0(17)	55.9(4)
C12	7355.1(15)	3971.2(9)	3541.6(14)	49.6(3)
C13	7684(2)	6103.9(12)	3702(2)	75.8(5)
C14	2991.7(19)	3293.4(13)	2743(2)	73.7(5)
C15	5510(2)	2592.8(12)	3961(2)	73.8(5)

Table	S3.	Anisotropic	Displacement	Parameters	(Å ² ×10 ³)	for	1.	The	Anisotropi	c
displac	ceme	nt factor exp	onent takes the	form: $-2\pi^2$ [h]	² a* ² U ₁₁ +2	hka*	b*l	J ₁₂ +	.].	

Atom	U ₁₁	U_{22}	U_{33}	U_{23}	U ₁₃	U_{12}
01	52.2(6)	103.9(10)	57.0(6)	16.1(6)	3.8(5)	-21.7(6)
O2	43.3(5)	68.3(6)	37.7(5)	4.2(4)	-0.1(4)	-8.5(4)
O3	57.3(6)	74.7(7)	61.8(7)	-0.9(5)	15.7(5)	16.3(5)
O4	67.9(7)	75.5(8)	101(1)	19.6(7)	30.8(7)	21.8(6)
C1	48.1(7)	69.3(10)	64.5(9)	-14.3(8)	8.5(6)	-4.7(7)
C2	54.1(8)	70(1)	60.6(8)	-10.8(7)	17.2(7)	2.7(7)
C3	41.8(6)	66.1(9)	56.6(8)	0.4(7)	12.4(6)	5.9(6)
C4	45.7(7)	93.3(12)	69.7(10)	-6.1(9)	21.6(7)	1.7(8)
C5	51.2(8)	111.8(15)	51.3(8)	2.3(9)	17.7(7)	-10.1(8)
C6	50.0(8)	87.1(12)	47.4(8)	13.7(7)	4.6(6)	-11.4(7)
C7	50.5(7)	64.9(9)	42.8(7)	5.6(6)	5.1(6)	-6.5(6)
C8	47.5(7)	65.1(9)	44.0(7)	5.1(6)	3.1(6)	3.7(6)
C9	41.8(6)	61.9(8)	44.8(7)	-2.9(6)	4.1(5)	4.5(6)
C10	39.5(6)	60.4(8)	42.1(6)	-0.1(6)	7.6(5)	1.4(5)
C11	39.9(6)	63.1(9)	59.2(8)	-1.7(7)	9.7(6)	-2.5(6)
C12	37.3(6)	59.8(8)	43.9(6)	4.6(6)	3.5(5)	-1.1(5)
C13	78.7(11)	69.0(11)	70.4(10)	-6.6(9)	13.4(9)	-13.5(9)
C14	45.0(8)	90.3(12)	83.3(12)	-7.3(10)	18.4(8)	-9.0(8)
C15	63.5(9)	69.3(11)	82.5(12)	12.5(9)	16.7(8)	-4.3(8)

Table S4. Bond Lengths for 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C6	1.4398(17)	C5	C6	1.524(3)
O2	C7	1.4468(18)	C6	C7	1.540(2)
O2	C12	1.4365(18)	C7	C8	1.5409(19)
O3	O4	1.4649(17)	C7	C13	1.514(3)
O3	C9	1.4305(19)	C8	C9	1.522(2)
C1	C2	1.499(2)	C9	C10	1.545(2)
C1	C11	1.526(2)	C10	C11	1.551(2)
C2	C3	1.327(2)	C10	C12	1.5246(17)
C3	C4	1.504(2)	C11	C14	1.531(2)
C3	C12	1.501(2)	C11	C15	1.534(2)
C4	C5	1.523(3)			

Table S5. Bond Angles for 1.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C12	O2	C7	115.75(10)	C13	C7	C8	110.01(14)
C9	03	O4	107.99(12)	C9	C8	C7	115.39(12)
C2	C1	C11	113.77(13)	O3	C9	C8	113.69(13)
C3	C2	C1	124.34(15)	O3	C9	C10	103.61(12)
C2	C3	C4	122.23(16)	C8	C9	C10	114.27(11)
C2	C3	C12	121.47(14)	C9	C10	C11	114.60(11)
C12	C3	C4	116.25(14)	C12	C10	C9	110.05(12)
C3	C4	C5	112.10(14)	C12	C10	C11	110.01(12)
C4	C5	C6	117.03(15)	C1	C11	C10	109.54(13)
O1	C6	C5	110.01(15)	C1	C11	C14	109.62(13)
O1	C6	C7	110.00(13)	C1	C11	C15	110.06(15)
C5	C6	C7	116.78(14)	C14	C11	C10	110.80(13)
O2	C7	C6	107.35(13)	C14	C11	C15	107.47(15)
O2	C7	C8	111.25(12)	C15	C11	C10	109.32(12)
O2	C7	C13	105.40(13)	O2	C12	C3	112.93(12)
C6	C7	C8	111.43(12)	O2	C12	C10	110.23(12)
C13	C7	C6	111.22(14)	C3	C12	C10	112.47(11)

Table S6. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters

(Å2×10³) for 1.

Atom	x	у	Z	U(eq)
H1	10603	5309	3857	112
H4	2200(40)	5740(20)	2610(40)	139(11)
H1A	4647	2456	1307	76
H1B	4093	3312	748	76
H2	6725	2956	635	75
H4A	9382	3425	1491	83
H4B	9979	3848	2947	83
H5A	8118	4625	483	86
H5B	9969	4691	1067	86
H6	8597	5810	1492	77
H8A	5509	5701	1489	66
H8B	6071	4886	1085	66
H9	3941	4573	1667	63
H10	5548	4150	4308	59
H12	7836	3602	4314	60
H13A	6889	6076	4138	114
H13B	7466	6548	3074	114
H13C	8711	6170	4402	114

2908	3427	3630	111
2486	2791	2437	111
2481	3697	2075	111
6553	2474	3944	111
4867	2122	3742	111
5587	2778	4871	111
	2908 2486 2481 6553 4867 5587	290834272486279124813697655324744867212255872778	290834273630248627912437248136972075655324743944486721223742558727784871

Figure S1. ¹H NMR spectrum of agarperoxinol A (1) in CDCl₃ (500 MHz)

Figure S2. ¹³C NMR spectrum of agarperoxinol A (1) in CDCl₃ (500 MHz)

Figure S3. HSQC spectrum of agarperoxinol A (1) in CDCl₃ (500 MHz)

Figure S4. HMBC spectrum of agarperoxinol A (1) in CDCl₃ (500 MHz)

Figure S5. COSY spectrum of agarperoxinol A (1) in CDCl₃ (500 MHz)

Figure S6. NOESY spectrum of agarperoxinol A (1) in CDCl₃ (500 MHz)

Figure S7. UV spectrum of agarperoxinol A (1)

Figure S8. Experimental ECD spectrum of agarperoxinol B (2)

Figure S9. Optical rotation of agarperoxinol A (1)

No.	Sample Name	Optical Rotation Monitor	Specific O.R.	Path Length[mm]	Concentration[w/v%]	Water content[%]	S.D.	C.V.	Comment
1	compound 40	-0.0041	-28.0690	10	0.1450	0	3.3480	11.9276	
2	compound 40-1	-0.0039	-26.8966						
3	compound 40-2	-0.0046	-31.7241						
4	compound 40-3	-0.0037	-25.5172						
5	compound 40-4	-0.0048	-33.1034						
6	compound 40-5	-0.0038	-26.2069						
7	compound 40-6	-0.0031	-21.3793						
8	compound 40-7	-0.0042	-28.9655						
9	compound 40-8	-0.0040	-27.5862						
10	compound 40-9	-0.0043	-29.6552						
11	compound 40-10	-0.0043	-29.6552						

Figure S10. MS spectrum of agarperoxinol A (1)

Qualitative Compound Report

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)
Cpd 1: C15H24O4	0.177	268.1673	16175	C15H24O4	268.1675	-0.73
Compound Label	RT	Algorithm		Mass		
Cpd 1: C15H24O4	0 177	Find By Form	ula	268 1673		

400 450 500 550 600 650 700 750 800 850 900 950 Counts vs. Mass-to-Charge (m/z)

Qualitative Compound Report

Figure S11. ¹H NMR spectrum of agarperoxinol B (2) in CDCl₃ (800 MHz)

Figure S12. ¹³C NMR spectrum of agarperoxinol B (2) in CDCl₃ (800 MHz)

Figure S13. HSQC spectrum of agarperoxinol B (2) in CDCl₃ (800 MHz)

Figure S15. COSY spectrum of agarperoxinol B (2) in CDCl₃ (800 MHz)

Figure S17. MS spectrum of agarperoxinol B (2)

Qualitative Compound Report

Compound Table

Compound Label	RT	RT Mass 3 0.18 252.1735		Formula	Tgt Mass	Dift (ppm)	
Cpd 1: C15H24	03 0.18			C15H24O3	252.1725	3.68	
Compound Label	RT	Algorithm		Mass			

Qualitative Compound Report

MS Zoomed Spectrum													
x10 4 Cpd 1: C15H24O3: +ESI Scan (0.132-0.261 min, 9 scans) Frag=100.0V Compound47.d Subtract													
1.2- (M++)+													
1-													
0.8													
0.6													
0.4	275.1	597											
0.2		a).			I		527.3339 (2M+Na)+						
	a di seri di s			10 and 10 kg	and the last	1	(Zivi i ida)						
اللسالة 0	العربانية والتناجع والمعادية	المارعات بقادلوا ورواليه	a shale	فجسة التعا بباتيتهم	معرفل مرابقين وفعاليه الالتحدام ومرور بمالمها	ليرو وبالبين والمحمد ومعادها والاسالان	يعياء جوالفعطا لفعاقب كالمعامر بالهنا						
لىلىغال ₀ 2	240 260 28	30 300 32	0	340 360) 380 400 420 Mass to Charge	440 460 480	500 520 540						
لىلىنىڭ ₀ 2 MS Spectru	240 260 28 m Peak List	30 300 32	0	340 360 Counts v) 380 400 420 s. Mass-to-Charge	440 460 480 (m/z)	500 520 540						
لیلیسال ₀ 2 MS Spectru <i>m/z</i>	240 260 28 m Peak List <i>Calc m/z</i>	30 300 32	0 :	340 360 Counts v) 380 400 420 s. Mass-to-Charge Formula	440 460 480 (m/z)	500 520 540						
0 2 2 MS Spectru <u>m/z</u> 182.9855	240 260 28 m Peak List <i>Calc m/z</i>	Diff(ppm)	0 :	340 360 Counts v Abund 34867	itelingedentilitelite adhe jue 380 400 420 s. Mass-to-Charge Formula	440 460 480 (m/z)	500 520 540						
0 2 MS Spectru <i>m/z</i> 182.9855 184.9862	240 260 28 m Peak List <i>Calc m/z</i>	Diff(ppm)	z	Abund 340 360 Counts v 34867 11442	telle a Lotilla ki, ohe he 0 380 400 420 s. Mass-to-Charge Formula	440 460 480 (m/z)	500 520 540						
0 22 MS Spectru <i>m/z</i> 182.9855 184.9862 252.1733	im Peak List Calc m/z 252.172	Diff(ppm) 5.28	0 3	Abund 340 366 Counts v 34867 11442 292	Ichergedrafficher oder hen 0 380 400 420 s. Mass-to-Charge Formula C15 H24 O3	440 460 480 (m/z) Ion	500 520 540						
0 182.9855 184.9862 252.1733 253.1808	m Peak List Calc m/z 252.172 253.1798	Diff(ppm) 5.28 3.8	2 2 1 1	Abund 34867 34867 34867 11442 292 12909	Telescolor Control (Control (Contro) (Contro) (Control (Control (Contro) (Control (Contro) (Contro	440 460 480 (m/z) Ion M*+ (M+H)+	500 520 540						
0 Ludu 2 MS Spectru 182.9855 184.9862 252.1733 253.1808 270.2055	m Peak List Calc m/z 252.172 253.1798 270.2064	Diff(ppm) 5.28 3.8 -3.17	2 2 1 1 1	Abund 34867 11442 292 12909 778	Technological Control of the law 0 380 400 420 s. Mass-to-Charge Formula	440 460 480 (m/z) Ion M*+ (M+H)+ (M+NH4)+	500 520 540						
0 Liziji MS Spectru <i>m/z</i> 182.9855 184.9862 252.1733 253.1808 270.2055 275.1597	Lutter Lutter 240 260 24 Im Peak List Calc m/z 252.172 253.1798 270.2064 275.1618	5.28 3.8 3.8 3.8 -3.17 -7.64	2 1 1 1 1	Abund 34867 11442 292 12909 778	International Activity Annu International Activity 0 380 400 420 s. Mass-to-Charge Formula	440 460 480 (m/z) Ion M*+ (M+H)+ (M+NH4)+ (M+Nka)+	500 520 540						
0 IIIII MS Spectru <i>m/z</i> 182.9855 184.9862 252.1733 253.1808 270.2055 275.1597 291.1356	In. Lutter, U.L.k. 240 260 21 Im Peak List Calc m/z 252.172 253.1798 270.2064 275.1618 291.1357	Diff(ppm) 5.28 3.8 -3.17 -7.64 -0.23	2 0 1 1 1 1 1 1	Abund 34867 Abund 34867 11442 292 12909 778 2727 411	International Control Contro Control <thcontrol< td="" th<=""><td>440 460 480 (m/z) Ion M*+ (M+H)+ (M+H4)+ (M+Na)+ (M+K)+</td><td>500 520 540</td></thcontrol<>	440 460 480 (m/z) Ion M*+ (M+H)+ (M+H4)+ (M+Na)+ (M+K)+	500 520 540						
0 MS Spectru m/z 182.9855 184.9862 252.1733 253.1808 270.2055 275.1597 291.1356 504.3426	In Little 11.4 240 260 21 Im Peak List Cake m/z 252.172 253.1798 270.2064 275.1618 291.1357 504.3445	Diff(ppm) 5.28 3.8 -3.17 -7.64 -0.23 -3.94	2 1 1 1 1 1 1 1	Adv. Lulkov 340 360 Counts v 34867 11442 292 12909 778 2727 411 158	International International 0 380 440 420 s. Mass-to-Charge Energia Energia Energia C15 H24 03 C15 H25 03 C15 H28 N 03 C15 H24 Na 03 C15 H24 Na 03 C15 H24 K 03 C15 H24 K 03 C15 H24 K 03 C15 H24 K 03 C15 H24 K 03 C15 H24 K 03 C15 H24 K 03	440 460 480 (m/z) Ion M*+ (M+H)+ (M+N4)+ (M+Na)+ (M+K)+ 2M*+	500 520 540						
0 IIIII MS Spectru <i>m/z</i> 184.9852 252.1733 253.1808 270.2055 275.1597 291.1356 504.3426 522.3749	In Little 11 Lik 240 260 21 Im Peak List Cak m/z 252.172 253.1798 270.2064 275.1618 291.1357 504.3445 522.3789	Diff(ppm) 5.28 3.8 -3.17 -7.64 -7.63	2 0 1 1 1 1 1 1 1 1 1 1	Links Second Secon	International International 0 380 400 420 s. Mass-to-Charge Formula 15 124 03 C15 H24 03 03 15 C15 H28 N 03 03 C15 H24 Na 03 03 15 124 Ka 03 C15 H24 Na 03	440 460 480 (m/z) Ion M*+ (M+H)+ (M+NH4)+ (M+Na)+ (M+K)+ 2M*+ (2M+NH4)+	500 520 540						

--- End Of Report ---

Figure S18. UV spectrum of agarperoxinol B (2)

Figure S19. Experimental ECD spectrum of agarperoxinol B (2)

Figure S20. Optical rotation of agarperoxinol B (2)

No.	Sample Name	Optical Rotation Monitor	Specific O.R.	Path Length[mm]	Concentration[w/v%]	Water content[%]	S.D.	C.V.	Comment
1	compound 47	0.0129	108.2744	10	0.1200	1.1	10.8725	10.0416	
2	compound 47-1	0.0138	116.2791						
3	compound 47-2	0.0129	108.6957						
4	compound 47-3	0.0106	89.3158						
5	compound 47-4	0.0132	111.2235						
6	compound 47-5	0.0137	115.4365						
7	compound 47-6	0.0140	117.9643						
8	compound 47-7	0.0131	110.3809						
9	compound 47-8	0.0104	87.6306						
10	compound 47-9	0.0137	115.4365						
11	compound 47-10	0.0131	110.3809						

Figure S21. The Inhibition of p-p38 and p38 phosphorylation protein expressed by agarperoxinol B on LPS-activated microglial cells.

Protein levels were determined by using Western blot analysis. The relative intensity of pp38/p38 bands were calculated by densitometry. Values are mean±SEM (n=5); ***p<0.001 compared to control group.

