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Supplementary Figure S1: Full time course profile of the reverse phase HPLC purification of the active S. 

venezuelae extract 

The MeOH gradient is indicated in blue. The multi wavelength scan is given in orange. Fractions (indicated at 

the bottom) were obtained by automatic peak detection. The fraction used in the further purification is indicated 

in pink. A part of this spectrum is shown with the corresponding viability data in figure 1.  
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Supplementary Figure S2: Structure analysis of aerugine and aeruginol  

1H NMR (400 MHz), 13C NMR, COSY, HSQC and HMBC spectra were recorded in DMSO-d6. A Summary of 
1H NMR and 13C NMR data for extracted aerugine and aeruginol. B Interpretation of COSY and HMBC data 

of aerugine and aeruginol. Details are found in the “raw data 1” section.  
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Supplementary Figure S3: Synthesis of aerugine and aeruginol 

A Synthesis of aerugine (1) by condensation of ʟ-cysteine and 2-hydroxybenzonitrile to (1a) following methyl 

ester formation (1b) and reduction to the alcohol. B Synthesis of aeruginol via the reduction of IQS. 
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Supplementary Figure S4: Physicochemical properties of aerugine and aeruginol 

The table summarizes key compound features of relevance for toxicological prediction models. Below some 

explanations and reference points are given. The effective membrane permeability (Peff) refers to the rate at 

which compounds are able to cross biological membranes. This parameter has been used for assessing intestinal 

absorption. The model used here to predict the permeability of compounds was suggested by Winiwarter et al. 

(Winiwarter et al., 1998). Membrane permeability is predicted from the compound’s LogD5.5 (LogP at pH 5.5), 

the topological surface area and hydrogen bond donor counts. A low Peff value is associated with poor membrane 

permeability. The model parameterization is as follows: permeable molecules (reaching the cytosol independent 

of transporters) (Cooper, 2000), such as benzene (hydrophobic), ethanol (small polar but uncharged) and 

nicotine have predicted values (in -LogPeff) of  2.5, 3.37 and 3.44 respectively; impermeable molecules 

(requiring a transporter to enter the cytosol) such as glucose, glutamate and dopamine have predicted values of 

5.81, 5.16 and 4.77 respectively. 

The blood brain barrier passage was predicted as suggested by Liu et al. (Liu et al., 2014) and used and explained 

in Marques et al. and de Souza-Fagundes et al. (de Souza-Fagundes et al., 2018; Marques et al., 2020). This 
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model assigns scores to compounds. The scores do not predict the extent of permeation, but categorize 

compounds as “not passing the BBB” or as being permeable. At physiological pH, 7.4, prediction of the major 

microspecies using ChemAxon version 17.1.23 shows that both aerugine and aeruginol exist as non-ionised 

compounds. They are predicted to pass the blood brain barrier (=yes).  

The term “membrane affinity” describes the distribution of a compound from an aqueous solution to 

phospholipid membranes. The values for membrane affinity at 37°C are predicted using a simple regression 

model based on the compound logP (Endo et al., 2011; Pearce et al., 2017). The predicted value is a 

phosphotidylcholine: water partition coefficient at pH 7.4, with the general rule being that the higher the logP 

the higher the membrane affinity. The affinity values predicted for aerugine and aeruginol are in a similar range 

as the predicted values of benzene (2.3) and ethanol (1.4). Rotenone has an even higher membrane affinity (4.0). 

Dopamine, glutamate and glucose have a low membrane affinity, which is reflected in their predicted values of 

-0.5, -2.9 and -2.5 respectively. 
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Supplementary Figure S5: Proposed biosynthesis of watasemycin and aerugine.  

A Biosynthetic gene cluster of watasemycin of Streptomyces venezuelae ATCC 10712 investigated via 

antiSMASH. Homologs of the pyochelin gene cluster of Pseudomonas aeruginosa are indicated in brackets; 

black arrows: genes encoding biosynthetic enzymes, white arrows: genes with transport and regulatory 

functions. B Proposed mechanism: the PchA homolog Sven0506 is involved in production of salicylic acid, 

which is loaded with help of the lone adenylation domain Sven0510 on the nonribosomal peptide synthetase 

(NRPS) module Sven0512. The MTe domain of Sven0512 is nonfunctional. Condensation with cysteine gives 

the thiazoline ring. C This is transferred and condensated with a second cysteine and methylated via module 

Sven0517. The reductase Sven0516 generates a thiazolidine ring and further methylation leads to watasemycin. 

Aerugine is presumably produced by hydrolysis of the thiazolidine ring. Gene cluster and mechanism adapted 

and modified from Inahashi et al. (Inahashi et al., 2017) 
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Supplementary Figure S6: Thiazoline and thiazole related natural products of different environmental and 

human-associated bacteria 

Thiazoline/thiazole-containing compounds were extracted from literature. Their highly homologous 

biosynthetic pathways suggest that aerugine or aeruginol could be produced as potential “shunt” products. 

Structures were described in the following references: Watasemycin, (Sasaki et al., 2002) thiazostatin, (Shindo 

et al., 1989) ulbactin G, (Igarashi et al., 2016) yersiniabactin, (Drechsel et al., 1995) pyochelin, (Seipke et al., 

2011) enantiopyochelin, (Youard et al., 2007) and pulicatins B and C. (Lin et al., 2010)  
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Supplementary Figure S7: Viability endpoints measured on d6 LUHMES treated with aerugine  

Cultures of differentiated LUHMES neurons were exposed on d6 to serial dilutions of aerugine for 24 h. The 

cell viability (V), neurite area (NA) were assessed 24 h later by calcein-AM & H-33342 staining and high 

content imaging. Resazurin reduction and LDH release were measured subsequently. Data are presented as 

means ± SEM of at least three biological replicates 
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Supplementary Figure S8: Images of d6 LUHMES cells after aerugine exposure for 8 h  

LUHMES neurons (d6) were treated with 10 µM aerugine. After the indicated incubation times, they were 

stained with H-33342 & the mitochondrial membrane potential indicator tetramethylrhodamin-methylester 

(TMRE). Representative images after exposure to aerugine are shown. Cells reacted similarly to purified 

aerugine. Scale bar represents 50 µm. Arrows indicate an intact neurite without functional mitochondria. Images 

are enlargements of micrographs presented in Fig. 2. 
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Supplementary Figure S9:  No interaction of aerugine with the mitochondrial respiratory chain 

A The effect of aerugine on respiratory function was analysed in d3 LUHMES cells. The oxygen consumption 

rate of the individual technical replicates is shown. The oxygen consumption rate is normalised to the last 

measurement before injection. The injections of aerugine, control and the subsequent assay tool compounds are 

indicated (FCCP: 1.5 µM; oligomycin: 1 µM; rotenone + antimycin A: 0.5 µM +0.5 µM). B Several parameters 

were derived from the oxygen consumption rate. The data is presented as means ± SD of four replicates 

(obtained from one cell batch). Statistical analysis was performed using a one-way ANOVA with Dunnett‘s 

multiple comparisons test. * = p < 0.0001. C Delp et al. (2019) determined the dependence of LUHMES cells 

on glycolysis and their mitochondria for ATP production in two different media conditions. Since the cells 

become more dependent on their mitochondria when supplied with galactose instead of glucose, mitochondrial 

toxicants are 100-1000fold more cytotoxic under these conditions. (Delp et al., 2019) Under both conditions, 

the overall cellular ATP content was similar, and the numbers indicate the contributions of glycolysis vs 
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mitochondrial metabolism in producing ATP in the two different media. D Aerugine toxicity was assessed in 

d3 LUHMES cells cultured in glucose and in galactose medium. Cell viability was assessed by calcein-AM & 

H-33342 staining and automated fluorescence microscopy. Double positive cells were counted as viable, H-

33342 mono-positive cells were counted as dead. 
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Supplementary Figure S10: Neurotoxicity of aerugine analogues  

Cultures of differentiated LUHMES neurons were exposed on d6 to serial dilutions of dihydro-aeruginoic acid 

(DHAA), dihydro-aeruginealdehyde (dhIQS), aeruginealdehyde (IQS) and aerugine (structures are given).  The 

cell viability (V) and neurite area (NA) were assessed 24 h later by calcein-AM & H-33342 staining and high 

content imaging. Data are presented as means ± SEM of at least three biological replicates. All compounds were 

measured in the same three cell lots. 
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Supplementary Figure S11: Toxicity of aerugine on LUHMES neurons in various differentiation stages 

Cultures of LUHMES neurons were used on d0 (proliferating, blue), d2 (immature, black) or d6 (mature, red) 

for cytotoxicity testing. Cells were exposed to 9 serial dilutions of synthetic aerugine. The cell viability was 

assessed 24 h later by calcein-AM & H-33342 staining and high content imaging. Data are presented as means 

± SEM. The average EC50s and their respective SEMs are given in the table below. The sigmoidal fits of the 

individual experiments were shown in figure 3. 
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Supplementary Figure S12: DFP prevents aerugine-induced cell death in d6 LUHMES, but not loss of 

neurites  

LUHMES cultures (d6) were used under standard conditions to assess the cytotoxicity of aerugine (10 µM) in 

the presence of 5 µM qVD (modified valyl-aspartate). qVD prevented cell death, but neurite integrity was still 

lost. Arrow heads indicate a disintegrating neurite (chains of calcein-positive blebs). The image is an 

enlargement of a micrographs presented in Fig. 4. 

. 
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Supplementary Figure S13: Degeneration scores of GABAergic neurons in C. elegans 

L4 larval stage worms of Punc-25 C. elegans (containing fluorescently labelled γ-aminobutyric acid neurons) 

were treated for 2 days with aerugine. The labelled neurons of 20-30 worms per condition were analyzed and 

scored for specific neurodegeneration. Each worm was assigned a degeneration score (0 for wild type and 1-4 

for increasing severity). In degeneration score 1, dendrites are thinning. When the dendrites turn to blebs 

(irregular protrusions of the dendrites), degeneration score 2 is reached. If more than 4 blebs occur, degeneration 

score 3 is indicated. Degenerating cell bodies occur in degeneration stage 4. These scores were assessed to 

quantify the GABAergic neurodegeneration caused be aerugine in vivo. 
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Spectral data 1: Spectral data of structure elucidation: 1H NMR, 13C NMR, COSY  spectra, HSQC spectra, 

HMBC spectra of aerugine and aeruginol 

 

 

1H NMR in d6-DMSO (400 MHz) of extracted aerugine. 
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COSY spectrum in d6-DMSO of extracted aerugine. 
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HSQC spectrum in d6-DMSO of extracted aerugine. 
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HMBC spectrum in d6-DMSO of extracted aerugine. 
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13C NMR in d6-DMSO of extracted aerugine. 
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1H NMR in d6-DMSO 800 MHz of extracted aeruginol. 
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COSY spectrum in d6-DMSO of extracted aeruginol. 
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HSQC spectrum in d6-DMSO of extracted aeruginol. 
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HMBC spectrum in d6-DMSO of extracted aeruginol. 
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13C NMR in d6-DMSO of extracted aeruginol. 
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1H NMR in CD3OD of synthetic (R)-aerugine. 
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13C NMR in CD3OD of synthetic (R)-aerugine. 
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1H NMR in CD3OD of synthetic (S)-aerugine. 
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13C NMR in CD3OD of synthetic (S)-aerugine. 
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