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Supplementary Discussion 

In the tissues of the naked mole-rat, HMW-HA is abundant and contributes to cancer 

resistance and possibly longevity of this exceptionally long-lived rodent1,2. Here we demonstrated 

that this evolutionary adaptation, unique to the naked mole-rat, can be “exported” to other species. 

The HMW-HA produced by naked mole-rat HAS2 gene conferred cancer resistance and increased 

lifespan of mice. nmrHAS2 mice accumulated HMW-HA in multiple major organs; these mice 

were resistant to spontaneous and chemically induced cancer and showed an extended median and 

maximum lifespan. nmrHAS2 mice also displayed improved healthspan including lower frailty 

scores and physical performance. This was accompanied by lower methylation age. The 

transcriptomes of aged nmrHAS mice had more youthful features when compared to the aging 

signature derived from the Tabula Muris Senis data3. The change conferred by nmrHAS2 was 

distinct from the transcriptomic changes triggered by known life-extending interventions including 

rapamycin, acarbose, growth hormone deletion, calorie restrictions and others. Interestingly, the 

nmrHAS2 altered the mouse transcriptome in a direction consistent with the transcriptomic 

signature of the long-lived species4. We therefore hypothesize that the presence of HMW-HA 

changes the transcriptome towards that of a longer-lived species (Fig. 4a). 

What is the molecular mechanism by which HMW-HA extends mouse lifespan and 

healthspan? Importantly, due to the high conservation of the HAS2 gene, we do not believe that 

the naked mole-rat sequence per se was critical for the pro-longevity effect of nmrHAS2. 

Expressing mouse HAS2 gene showed the same protective effects in vitro. Rather, the increased 

production of HMW-HA was important. The most striking difference we observed between the 

transcriptomes of the aged nmrHAS2 mice and their littermate controls was the downregulation of 

multiple pathways related to inflammation in most tissues we analyzed. Beneficial effects of 

HMW-HA have recently been reported for muscle stem cells and adipose tissues where HMW-

HA reduced inflammatory signaling and improved glucose homeostasis, respectively5,6. 

Interestingly, some of the effects were systemic in nature suggesting that even the tissues not 

displaying elevated HA levels can benefit from elevated HA elsewhere in the body5,6. Additionally, 

the plasma of aged nmrHAS2 mice also displayed reduced levels of multiple pro-inflammatory 

cytokines which indicates the systemic anti-inflammatory effect of HMW-HA. Age-associated 

chronic inflammation, so-called inflammaging, contributes to the pathogenesis of age-related 
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diseases7,8. It has been reported that individuals which have higher than age-average levels of 

inflammatory markers are more fragile and likely to be hospitalized9.  

The lifespan extension we observed in nmrHAS2 mice was significant but modest, while 

the healthspan improvement was more robust. While we observed strong expression of nmrHAS2 

across all tissues, HA accumulation was modest and did not reach the levels observed in the naked 

mole-rat. This is likely explained by the high activity of hyaluronidases in mouse tissues1,10. In the 

naked mole-rat high level of HA is achieved by both robust synthesis and very slow degradation1, 

yet in our model only the synthesis arm was modified. We hypothesize that if we were able to 

simultaneously attenuate HA degradation in nmrHAS2 mice we would achieve a greater lifespan 

extension. 

We then discovered two independent pathways by which HMW-HA conferred an anti-

inflammatory effect to the mice. First, HMW-HA had a direct immunomodulating effect on the 

immune cells of nmrHAS2 mice. Monocyte–macrophage lineage cells act as major effector cells 

in chronic inflammatory processes in aging-related diseases11. Macrophages are often divided into 

two subgroups: M1 and M212. Aging may modulate M1/M2 activation and polarization. Sustained 

activation of M1 macrophage is linked to tissue dysfunction, while M2 macrophage promotes 

tissue homeostasis13. HMW-HA has been shown to prime macrophages towards the M2 state14-16. 

We also observed the same phenotype when we primed the bone marrow-derived macrophages 

from nmrHAS2 mice with E. coli lipopolysaccharide. BMDMs from nmrHAS2 mice showed a 

much higher expression of HAS2 gene, which may potentially help them to produce more HMW-

HA and facilitates the alternative activation. HMW-HA was also shown to play an 

immunoregulatory role in vivo by binding to several immune cell types17. For instance, HMW-HA 

promotes the expression of FoxP3 in Treg cells by crosslinking CD44 which helps to maintain 

immunologic tolerance18. HMW-HA binds to CD44 and hSiglec-9 receptor which suppresses 

neutrophil extracellular trap formation and oxidative burst19. We observed that nmrHAS2 mice 

produced a lower level of inflammation after the LPS challenge which is consistent with previous 

reports that intraperitoneal injection of HMW-HA protects mice from LPS-induced sepsis20.  

The second, unexpected pathway, by which HMW-HA conferred its anti-inflammatory 

effect was through improved intestinal health. Aged nmrHAS2 mice were protected from leaky 

gut, and had healthier microbiomes. One of the major contributors to inflammaging is believed to 

be age-related deterioration of the intestinal barrier and translocation of gut bacterial products to 
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the bloodstream triggering an immune response21. Intestinal barrier failure is associated with 

aging-related systemic disorders such as obesity, metabolic disorder, brain dysfunction, and 

cancer22,23. Reduced thickness of the mucus layers was considered to be the cause of leaky gut24. 

It has been shown that the colonic mucus layer decreased in aging mice, suggesting an association 

with bacterial penetration and immune activation25,26. Interestingly, we found that elevated 

production of hyaluronan increased the number of mucin-producing goblet cells in both small 

intestine and colon, suggesting old nmrHAS2 are protected from leaky gut due to increased mucin 

formation. The increase in goblet cells in nmrHAS2 mice was significant, but very mild, and did 

not resemble a pathological over-proliferation of goblet cells observed in a disease state such as 

cystic fibrosis27. 

Studies in Drosophila showed that with aging intestinal stem cell (ISC) lose their stemness, 

are no longer able to differentiate into functional intestinal cells and undergo hyperproliferation 

associated with a loss of barrier function28-30. While the hyperproliferation of ISCs has not been 

unequivocally demonstrated in mammals28,31, in mammals aging may be similarly associated with 

the loss of stemness by the ISCs. Indeed, it was found that the regenerative capacity of ISCs from 

old mice31 and old human28 was diminished in vitro. Consistent with these prior reports, we 

observed that ISCs from aged wild type mice formed fewer intestinal organoids. Remarkably, there 

was no such decrease observed for nmrHAS2 mice. Interestingly, the decline in the formation of 

organoids in the wild type mice could be rescued by adding HMW-HA to the culture media, 

indicating that the presence of HMW-HA promotes stemness of aged ISCs. It was reported that 

intraperitoneal injection of HA to mice promotes Lgr5+ stem cell proliferation and crypt fission 

through CD44 and TLR432,33. Collectively, our results suggest that HMW-HA produced by 

nmrHAS2 transgene improves the maintenance of ISCs resulting in a healthier gut barrier during 

aging. Consequently, the healthier gut barrier function inhibits the shift of the gut microbiome 

towards proinflammatory commensals and reduction of beneficial microbes, slowing down the 

onset of inflammaging. 

The resistance of nmrHAS2 mice to both spontaneous and induced cancer may be driven 

by both cell-autonomous mechanisms resulting from anti-proliferative signaling of HMW-HA 

through the CD44 receptor34, and by its systemic anti-inflammatory effect35. Indeed, it was 

reported that HMW-HA blocks melanoma cell proliferation by signaling through CD44 to promote 

G1/G0 arrest36. HMW-HA also suppresses the growth of murine astrocytoma cell lines, glioma 
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and colon carcinoma xenografts37. HMW-HA has also been reported to reduce the migratory and 

invasive capacity of aggressive cancer cells38,39. On the other hand, chronic inflammation plays an 

important role in the development of cancer7. Many studies have shown that inflammatory cells 

can promote the occurrence and development of tumors by facilitating cancer cell proliferation, 

angiogenesis, and tumor invasion40-42. The anti-inflammatory properties of HMW-HA discussed 

above may potentially reduce the chronic inflammation during aging and prevent cancer initiation.  

Additional pro-longevity effects of HMW-HA can be linked to its antioxidant and 

cytoprotective properties. Indeed, HMW-HA was reported to enhance cellular oxidative stress 

resistance43,44. Consistent with these observation fibroblasts from nmrHAS2 mice showed 

resistance to oxidative stress. 
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Supplementary Table 1. Primer sequences used for quantitative RT-PCR 

Gene Forward primer Reverse primer 

actb 5'-GGCTGTATTCCCCTCCATCG-3' 5'-CCAGTTGGTAACAATGCCATGT-3' 

HAS2 5'-GCCTCATCTGTGGAGATGGT-3' 5'-GAGTTTCTGTACATTCCCAGAGG-3' 

Il1b 5'-CCGTGGACCTTCCAGGATGA-3' 5'-GGGAACGTCACACACCAGCA-3' 

Il6 5'-AGTTGCCTTCTTGGGACTGA-3' 5'-TCCACGATTTCCCAGAGAAC-3' 

tnfa 5'-CATCTTCTCAAAATTCGAGTGACAA-3' 5'-TGGGAGTAGACAAGGTACAACCC-3' 

arg1 5'-GCTCAGGTGAATCGGCCTTTT-3' 5'-TGGCTTGCGAGACGTAGAC-3' 

Il12b 5'-AGACCCTGCCCATTGAACTG-3' 5'-GAAGCTGGTGCTGTAGTTCTCATATT-3' 

nos2 5'-TTCACCCAGTTGTGCATCGACCTA-3' 5'-TCCATGGTCACCTCCAACACAAGA-3' 

Il10 5'-GAGAGCTGCAGGGCCCTTTGC-3' 5'-CTCCCTGGTTTCTCTTCCCAAGACC-3' 

Hyal1 5’-CATGCCTGAACCTGACTTCT-3’ 5’-GTAGCAGTCAGGGAAGCCATA-3’ 

Hyal2 5’-CACCTGCCCATGCTGAAGGA-3’ 5’-TCAGGAAAGAGGTAGAAGCC-3’ 

 

 

 


