Supplementary Information

Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density

Lingxi Zhou^{1,†}, Yang-Fan Shao^{2,†}, Fang Yin², Jia Li^{2*}, Feiyu Kang^{2,3} and Ruitao Lv^{1,3*}

 ¹ State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 ² Institute of Materials Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

³ Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

[†] These authors contributed equally: Lingxi Zhou and Yang-Fan Shao.

* Corresponding authors. Email addresses:

li.jia@sz.tsinghua.edu.cn (J. Li)

lvruitao@tsinghua.edu.cn (R. Lv)

Contents

Supplementary Figure 1. Optical photo of Ti foam (TF, left) and as-prepared Ru/TiO _x (right)	6
Supplementary Figure 2. Morphology characterization of TF.	6
Supplementary Figure 3. SEM image of Ru/TiOx	7
Supplementary Figure 4. HRTEM image of Ru/TiOx	7
Supplementary Figure 5. Phase characterization of different samples.	8
Supplementary Figure 6. HAADF-STEM image of Ru/TiOx.	8
Supplementary Figure 7. SEM images of bare TiO ₂ /TF.	9
Supplementary Figure 8. HAADF-TEM images	9
Supplementary Figure 9. Overpotentials comparsion after <i>iR</i> correction	10
Supplementary Figure 10. OER activity in 0.5 M H ₂ SO ₄ .	10
Supplementary Figure 11. ECSA measurement of different samples.	11
Supplementary Figure 12. Specific OER activity of different samples	11
Supplementary Figure 13. Mass activity of different samples.	12
Supplementary Figure 14. Turnover frequency (TOF) of different samples.	12
Supplementary Figure 15. Tafel analysis.	13
Supplementary Figure 16. Hydrophilicity of TF and Ru/TiOx.	14
Supplementary Figure 17. Aerophobicity of TF and Ru/TiOx	14
Supplementary Figure 18. CVs of the as-prepared Ru/TiO _x .	15
Supplementary Figure 19. Electrocatalytic OER stability in 0.5 M H ₂ SO ₄	15
Supplementary Figure 20. Ru content before and after OER stability test	16
Supplementary Figure 21. PEMWE device	16
Supplementary Figure 22. PEMWE performance.	17
Supplementary Figure 23. Electrocatalytic OER performance in natural seawater	17
Supplementary Figure 24. O 1s XPS spectra of different samples	18
Supplementary Figure 25. Ti 2p and Ru 3p XPS spectra of different samples	18
Supplementary Figure 26. The Ru ⁿ⁺ /Ru ⁰ ratio.	19
Supplementary Figure 27. In-situ XPS device.	19
Supplementary Figure 28. In-situ XPS spectra of Ru/TiOx during the OER test.	20
Supplementary Figure 29. Variation of Ru ⁿ⁺ /Ru ⁰ , Ti ³⁺ /Ti ⁴⁺ and O _V /O _L	20
Supplementary Figure 30. Fitting of X-ray absorption results.	21
Supplementary Figure 31. SEM images of Ru/TiO _x before and after OER.	22

Supplementary Figure 33. SEM images of control samples before and after OER	24
Supplementary Figure 34. TEM images of control samples before and after OER	25
Supplementary Figure 35. pH-dependence experiment	25
Supplementary Figure 36. Calculated Pourbaix diagrams.	26
Supplementary Figure 37. Molecular dynamic simulation.	26
Supplementary Figure 38. Theoretical calculation models of P-TiO ₂ and V-TiO _x	27
Supplementary Figure 39. Theoretical calculation models of P-Ru/TiO ₂ and V-Ru/TiO _x	27
Supplementary Figure 40. Theoretical calculation models of RuO _x /TiO _x	
Supplementary Figure 41. Bader charge analysis.	
Supplementary Figure 42. Differential charge density analysis	29
Supplementary Figure 43. Atomic structures of V_{10} -RuO/TiO _x with adsorbed OER intermediates.	29
Supplementary Figure 44. Atomic structures of P-RuO _{1.6} /TiO ₂ with adsorbed OER intermediates	30
Supplementary Figure 45. Atomic structures of V_{20} -RuO/TiO _x with adsorbed OER intermediates.	30
Supplementary Figure 46. PDOS analysis.	31
Supplementary Figure 47. TDOS analysis	31

Supplementary Table 1. Summary of electrocatalytic OER performance of the Ru/TiOx catalysts and state-of-the-
art electrocatalysts in acidic media
Supplementary Table 2. The mass loading (mg cm ⁻²) and weight percent (wt%) of noble metal in different samples
(by ICP-MS measurement and EDS) and atomic percent (at%) by XPS measurement
Supplementary Table 3. OER mass activity comparison between the as-synthesized Ru/TiOx catalyst and other
reported noble metal-based electrocatalysts in acidic media
Supplementary Table 4. TOF of Ru/TiOx with previously reported OER catalysts in acid
Supplementary Table 5. TOF of catalysts using different normalization methods
Supplementary Table 6. Comparison of the PEM electrolyzer performance with those previously reported 36
Supplementary Table 7. Concentrations of the major constituents in natural seawater
Supplementary Table 8. High resolution Ru 3d XPS peak fitting parameters of different samples before and after
OER
Supplementary Table 9. High resolution Ru 3d, Ti 2p and O 1s XPS peak fitting parameters of Ru/TiOx at applied
potential during 1.0-1.7 V vs. RHE
Supplementary Table 10. Summary of Ru K-edge adsorption energy (E0) and valence states for Ru foil, RuO2,
Ru/TiOx before and after OER
Supplementary Table 11. Structural parameters obtained from the curve-fitting analysis of the Ru K-edge EXAFS
spectra

Supplementary Table 12. Integrated COHP (ICOHP) value for adsorption *O of Ru-O in different models......41

Supplementary	y References	. 42
---------------	--------------	------

Supplementary Note 1:

Calculation of turnover frequency (TOF): The TOF value based on inductively coupled plasma mass spectrometry (ICP-MS) results (bulk TOF) and electrochemical active surface area (ECSA) values (ECSA TOF) were calculated and compared. The Bulk TOF value was calculated by following formula:

$$TOF = \frac{\# Total \, Oxygen \, Turn \, Overs \, per \, geometric \, area}{\# \, Active \, sites \, per \, geometric \, area} \tag{1}$$

Total oxygen turn overs per geometric area

$$= (j \frac{mA}{cm^2})(\frac{1C s^{-1}}{1000 mA})(\frac{1 \mod O_2}{4 \mod e^{-}})(\frac{6.022 \times 10^{23} O_2 atoms}{1 \mod O_2})(\frac{1 \mod e^{-}}{96485.3 C})$$
$$= 1.56 \times 10^{15} \left(\frac{O_2 s^{-1}}{cm^2}\right) \operatorname{per}\left(\frac{mA}{cm^2}\right)$$
(2)

Active sites per geometric area

$$= \left(\frac{\text{mass loading of } Ru\left(\frac{g}{cm^2}\right)}{Ru \, Mw\left(\frac{g}{mol}\right)}\right) \left(\frac{6.022 \times 10^{23} \, Ru \, atoms}{1 \, mol \, Ru}\right)$$
(3)

The ECSA TOF value was calculated by Equation (2) and the following formula:

$$TOF = \frac{\# Total \, Oxygen \, Turn \, Overs \, per \, geometric \, area}{\# \, Active \, sites \, per \, real \, area} \tag{4}$$

Active sites per real surface area:

$$= \left(\frac{number of active sites / unit cell}{unit cell volume}\right)^{2/3}$$
(5)

Supplementary Figure 1. Optical photo of Ti foam (TF, left) and as-prepared Ru/TiO_x

(right).

Supplementary Figure 2. Morphology characterization of TF. Scanning electron microscopy (SEM) image of pristine TF (**a**) and TF etched in the solution of HCl (18 wt%) at 363K for 15 min (**b**).

Supplementary Figure 3. SEM image of Ru/TiO_x with top-view (a) and side-view (b).

Supplementary Figure 4. High resolution transmission electron microscopy (HRTEM) image of Ru/TiO_x with body-part (**a**) and top-part (**b**). (Ru nanoparticles are circled in yellow)

Supplementary Figure 5. Phase characterization of different samples. a, X-ray diffraction (XRD) patterns of Ru/TiO_x , TiO_2 and TF. b, XRD patterns of annealed RuO_x/TiO_2 , commercial RuO_2/TiO_2 and commercial RuO_x/TiO_2 (com. denotes commercial).

Supplementary Figure 6. Aberration-corrected high angle annular dark field-scanning TEM (HAADF-STEM) image of Ru/TiO_x with [100] axis (**a**) and corresponding fast Fourier transforms (FFT) results (**b**). **c**, [010] axis and d) corresponding FFT results.

Supplementary Figure 7. SEM images of bare TiO_2/TF with different magnifications

(**a,b**).

Supplementary Figure 8. HAADF-TEM image of bare TiO_2/TF (a) and corresponding FFT results (b).

Supplementary Figure 9. Overpotentials of different samples to reach 10 mA cm⁻² (**a**) and 100 mA cm⁻² (**b**) before (smooth) and after (grid filled) *iR* correction. (Error bar: standard error of three repeated measurements).

Supplementary Figure 10. Electrocatalytic oxygen evolution reaction (OER) activity in 0.5 M H₂SO₄. a, Linear sweep voltammetry (LSV) curves and b, comparison of overpotentials at 10 and 100 mA cm⁻² for Ru/TiO_x, commercial RuO₂/TiO₂, commercial RuO₂/TF and bare TF. Here com. denotes commercial. (Error bar: standard error of three repeated measurements).

Supplementary Figure 11. ECSA measurement of different samples. a-c, Cyclic voltammetry (CV) curves of Ru/TiO_x (a), annealed Ru/TiO_x (b) and commercial RuO₂/TiO₂ (c). d, linear relationships between capacitive current and scan rate, the C_{dl} are absolute value of the slope of the liner fits to the data.

Supplementary Figure 12. Specific OER activity of different samples. a, Normalized linear sweep voltammetry curves to ECSA. **b**, The normalized OER current densities of catalysts (at 1.5 V vs. RHE) to the electrode geometrical area (j_{geo}) and ECSA (j_{ECSA}).

Supplementary Figure 13. Mass activity of different samples. **a**, Mass activity of Ru/TiO_x, annealed RuO_x/TiO₂, commercial RuO₂/TiO₂ and commercial IrO_2/TiO_2 catalysts as function of applied potential in 0.5 M H₂SO₄. **b**, The corresponding mass activity values at potential of 1.45 and 1.50 V vs. RHE.

Supplementary Figure 14. Turnover frequency (TOF) of different samples. a, Potential-dependent TOF curves. **b**, The corresponding bar graph of the ECSAnormalized current density (blue) and TOF values (red) at the overpotential of 300 mV.

Supplementary Figure 15. Chronoamperometry responses of activity stabilized $Ru/TiO_x(\mathbf{a})$, annealed $RuOx/TiO_2(\mathbf{c})$, com. $RuO_2(\mathbf{e})$ and com. $IrO_2(\mathbf{g})$ in 0.5 M H₂SO₄. The corresponding steady-state polarization curves (Tafel plots) of $Ru/TiO_x(\mathbf{b})$, annealed $RuOx/TiO_2(\mathbf{d})$, com. $RuO_2(\mathbf{f})$ and com. $IrO_2(\mathbf{h})$ constructed from OER current densities sampled from steady-state chronoamperometry responses.

Supplementary Figure 16. Hydrophilicity of TF and Ru/TiO_x. The contact angles

of the water droplets on TF (a-c) and Ru/TiOx (d-f).

Supplementary Figure 17. Aerophobicity of TF and Ru/TiO_x. The bubble contact

angles on the surfaces of TF (a) and Ru/TiO_x (b).

Supplementary Figure 18. CVs of the as-prepared Ru/TiO_x up to 550 mA cm⁻² for 50 cycles (**a**) and polarization curves of Ru/TiO_x before and after 50 CV cycles (**b**).

Supplementary Figure 19. Electrocatalytic OER stability in 0.5 M H₂SO₄. Chronoamperometric curve obtained at a current density of 10 mA cm⁻² for the asprepared Ru/TiO_x and the annealed RuO_x/TiO₂ in 0.5 M H₂SO₄. A photograph of a homemade H-type cell is shown in the inset, in which the anode and cathode sides are separated by a Nafion 117 membrane.

Supplementary Figure 20. Ru content of different electrocatalyst before and after OER stability test. Ru content in electrocatalyst before and after OER stability test determined by inductively coupled plasma-mass spectrometry (ICP-MS) (**a**) and X-ray photoelectron spectroscopy (XPS) (**b**).

Supplementary Figure 21. Optical photo (**a**) and schematic diagram (**b**) of the protonexchange membrane water electrolyzers (PEMWE).

Supplementary Figure 22. a, Polarization curves of PEMWE utilizing the assynthesized Ru/TiO_x or commercial RuO₂ as an anode and commercial Pt/C as a cathode. b, The corresponding stability test of the PEMWE at 500 mA cm⁻².

Supplementary Figure 23. Electrocatalytic OER performance in natural seawater.

LSV curve (**a**) and chronoamperometric curve obtained at a current density of 100 mA cm^{-2} for Ru/TiO_x in natural seawater (**b**).

Supplementary Figure 24. O 1s XPS spectra of different samples. XPS spectra of

 TiO_2/TF (up) and Ru/TiO_x (down).

Supplementary Figure 25. Ti 2*p* and Ru 3*p* XPS spectra of different samples. Highresolution Ti 2*p* and Ru 3*p* XPS image of Ru/TiO_x (up) and annealed RuO_x/TiO₂ (down).

Supplementary Figure 26. The Ru^{n+}/Ru^0 ratio obtained for Ru/TiO_x , annealed RuO_x/TiO_2 and commercial RuO_2/TiO_2 .

Supplementary Figure 27. The schematic diagram of the in-situ XPS analysis of Ru/TiO_x.

Supplementary Figure 28. In-situ XPS spectra of Ru/TiO_x during the OER test. In-situ Ru 3*d* (a), Ti 2*p* & Ru 3*p* (b) and O 1*s* (c) XPS spectra recorded of the asprepared Ru/TiO_x at applied potential during 1.0-1.7 V vs. RHE.

Supplementary Figure 29. Variation of Ru^{n+}/Ru^0 , Ti^{3+}/Ti^{4+} and O_V/O_L (oxygen vacancy/lattice oxygen) ratio from in-situ XPS measurement.

Supplementary Figure 30. Fitting of X-ray absorption results. The EXAFS curves of the Ru *K*-edge experimental data (denoted as Exp) and fitting results (denoted as Fit) of Ru/TiO_x before and after OER in k^3 -weighted *k*-space (**a**,**b**) and *R* space (**c**,**d**).

Supplementary Figure 31. SEM images of Ru/TiO_x before and after OER stability

tests. SEM images of Ru/TiO_x (**a**,**b**) and Ru/TiO_x after the chronoamperometric test under 10 mA cm⁻² for 900 h (**c**,**d**) and 100 mA cm⁻² for 50 h (**e**,**f**).

Supplementary Figure 32. TEM images of Ru/TiO_x before and after OER stability

tests. TEM images of Ru/TiO_x (**a**,**b**) and Ru/TiO_x after the chronoamperometric test under 100 mA cm⁻² for 50 h (**c**,**d**).

Supplementary Figure 33. SEM images of control samples before and after OER stability tests. a,b, SEM images of annealed RuO_x/TiO_2 before and after OER under 100 mA cm⁻² for 50 h. c,d, SEM images of commercial RuO_x/TiO_2 before and after the chronoamperometric test under 100 mA cm⁻² for 50 h.

Supplementary Figure 34. TEM images of control samples before and after OER stability tests. TEM images of Ru/TiO_x (a,b) and Ru/TiO_x after the chronoamperometric test under 100 mA cm⁻² for 50 h (c,d).

Supplementary Figure 35. pH-dependence experiment. a, OER activity of Ru/TiO_x with varying pH. b, pH dependence on the OER potential at different current densities for Ru/TiO_x .

Supplementary Figure 36. Calculated Pourbaix diagrams of Ti (a) and Ru (b)

systems.

Supplementary Figure 37. The total energy of V_{10} -TiO₂ (**a**), P-Ru/TiO₂ (**b**), V_{10} -Ru/TiO_x (**c**) and V_{20} -Ru/TiO_x (**d**) as a function of molecular dynamic (MD) time at a temperature of 300 K. (V_{10} and V_{20} denotes 1 and 2 oxygen vacancies, respectively; P denotes perfect structure without oxygen vacancy)

Supplementary Figure 38. Theoretical calculation models of P-TiO2 and V-

TiO_x. Top view and side view of P-TiO₂ (\mathbf{a} , \mathbf{b}) and V₁₀-TiO_x (\mathbf{c} , \mathbf{d}), respectively. (The blue and red balls represent Ti and O atoms, respectively).

Supplementary Figure 39. Theoretical calculation models of P-Ru/TiO₂ and V₁₀-Ru/TiO_x. Top view and side view of P-Ru/TiO₂ (a,b) and V₁₀-TiO_x (c,d),

respectively. (The gray, blue and red balls represent Ru, Ti and O atoms, respectively).

Supplementary Figure 40. Theoretical calculation models of RuO_x/TiO_x. Top

view and side view of P-RuO/TiO₂ (**a**,**b**), P-RuO_{1.6}/TiO₂ (**c**,**d**), V₁₀-RuO/TiO_x (**e**,**f**) and V₂₀-RuO/TiO_x (**g**,**h**), respectively. (The gray, blue and red balls represent Ru, Ti and O atoms, respectively).

Supplementary Figure 41. Bader charge of interfacial Ru atom for different structures.

Supplementary Figure 42. Side view and top view of the differential charge density of V_{10} -RuO/TiO_x (**a**,**b**) and P-RuO_{1.6}/TiO₂ (**c**,**d**). Electron accumulation and depletion are shown in cyan and yellow, respectively. (isovalue is $0.01|e|/Bohr^3$).

Supplementary Figure 43. Atomic structures of V_{10} -RuO/TiO_x with adsorbed OER intermediates. Side view (**a-c**) and top view (**d-f**) of V_{10} -RuO/TiO_x with adsorbed intermediate *O (**a,d**), *OH (**b,e**), and *OOH (**c,f**) on the interfacial Ru site.

Supplementary Figure 44. Atomic structures of P-RuO_{1.6}/TiO₂ with adsorbed OER intermediates. Side view (**a-c**) and top view (**d-f**) of P-RuO_{1.6}/TiO₂ with adsorbed intermediate *O (**a,d**), *OH (**b,e**), and *OOH (**c,f**) on the interfacial Ru site.

Supplementary Figure 45. Atomic structures of V₂₀-RuO/TiO_x with adsorbed OER intermediates. Side view (**a-c**) and top view (**d-f**) of V₂₀-RuO/TiO_x with adsorbed intermediate *O (**a,d**), *OH (**b,e**), and *OOH (**c,f**) on the interfacial Ru site.

Supplementary Figure 46. Projected density of states (PDOS) and band center

of Ru d-state for V_{2O} -RuO/TiO_x.

Supplementary Figure 47. Total density of states (TDOS) for P-RuO_{1.6}/TiO₂

(a), V_{10} -RuO/TiO_x (b) and V_{20} -RuO/TiO_x (c).

Samples	Electrolyte	η_{10}	Stability	Reference
Ru/TiO _x	0.5 M H ₂ SO ₄	174	900h @ 10 mA cm ⁻² ;	This work
			50h @ 100 mAcm ⁻²	
RuO_2/TiO_2	0.5 M H ₂ SO ₄	208	<1h @ 100 mA cm ⁻²	This work
IrO ₂ /TiO ₂	0.5 M H ₂ SO ₄	236	$<10h @ 100 \text{ mA cm}^{-2}$	This work
Ni-RuO ₂	0.1 M HClO ₄	214	$200h @ 10 \text{ mA cm}^{-2}$	¹ <i>Nat. Mater.</i> 22 , 100 (2023)
Ru@V-RuO ₂ /C	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	176	25h @ 10 mA cm ⁻²	² <i>Adv. Mater.</i> 35 , 2206351 (2023)
C RuO, RuSe	0.5 M H-SO.	212	50h @ 20 mA cm ⁻²	$^{3}Cham$ 8 1, 15 (2022)
C-RuO ₂ -RuSe	0.5 W 112504	212	50h @ 50 mA cm ⁻²	<i>Chem</i> 6 , 1-15 (2022)
Ru/Co-N-C	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	232	20h @ 10 mA cm ⁻²	⁴ Adv. Mater. 34 , 2110103 (2022)
PtCo-RuO ₂ /C	0.1 M HClO ₄	212.6	$20h @ 10 \text{ mA cm}^{-2}$	⁵ Energy Environ. Sci. 15 , 1119 (2022)
$Ta_{0.1}Tm_{0.1}Ir_{0.8}O_{2\text{-}\delta}$	$0.5 \ M \ H_2 SO_4$	226	500h @ 10 mA cm ⁻²	⁶ Nat. Nanotech. 16 , 1371 (2021)
3R-IrO ₂	0.1 M HClO ₄	188	511h @ 10 mA cm ⁻²	⁷ <i>Joule</i> 5 , 3221 (2021)
Ir-MnO ₂	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	218	$650h @ 10 \text{ mA cm}^{-2}$	⁸ Joule 5 , 2164 (2021)
E-Ru/Fe ONAs/C	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	238	9h @ 5 mA cm ⁻²	⁹ Nano Energy 84 , 105909 (2021)
IrO _x /9R-BaIrO ₃	$0.5 \ M \ H_2 SO_4$	230	48h @10 mA cm ⁻²	¹⁰ J. Am. Chem. Soc. 143 , 18001 (2021)
S-RuFeO _x	0.1 M HClO ₄	187	50h @1 mA cm ⁻²	¹¹ <i>Adv. Funct. Mater.</i> 31 , 2101405 (2021)
Ru/RuS ₂	0.5 M H ₂ SO ₄	201	24h @ 10 mA cm ⁻²	¹² Angew. Chem., Int. Ed. 133 , 12436 (2021)
RuNi ₂ @G	0.5 M H ₂ SO ₄	227	24h @ 10 mA cm ⁻²	¹³ Adv. Mater. 32 , 1908126 (2020)
Ir-NiCo ₂ O ₄	$0.5 \mathrm{~M~H_2SO_4}$	240	70h @ 10 mA cm ⁻²	¹⁴ J. Am. Chem. Soc. 142 , 18378 (2020)
Ru ₁ -Pt ₃ Cu	0.1 M HClO ₄	280	28h @ 10 mA cm ⁻²	¹⁵ Nat. Catal. 2, 304-313 (2019)
Ru@IrO _x	0.05 M H ₂ SO ₄	282	24h @ 1.55 V vs.RHE	¹⁶ <i>Chem</i> 5 , 445-459 (2019)
$Cr_{0.6}Ru_{0.4}O_2$	0.5 M H ₂ SO ₄	178	10h @ 10 mA cm ⁻²	¹⁷ Nat. Commun. 10, 162 (2019)
RuCu nanosheets	0.5 M H ₂ SO ₄	236	13.5h @ 5 mA cm ⁻²	¹⁸ Angew. Chem. Int. Ed. 58 , 13983 (2019)
IrCo@IrO _{x-n} NDs	$0.5 \mathrm{~M~H_2SO_4}$	247	10h @10 mA cm ⁻²	¹⁹ Adv. Mater. 31 , 1903616 (2019)
Ir-based nanocages	0.5 M H ₂ SO ₄	226	15h @ 10 mA cm ⁻²	²⁰ Angew. Chem. Int. Ed. 58 , 7244 (2019)

Supplementary Table 1. Summary of electrocatalytic OER performance of the Ru/TiO_x catalysts and state-of-the-art electrocatalysts in acidic media.

Supplementary Table 2. The mass loading (mg cm⁻²) and weight percent (wt%) of noble metal in different samples (by ICP-MS measurement and EDS) and atomic percent ($_{at}$ %) by XPS measurement.

Noble metal in sample	Mass loading (mg cm ⁻²)	Weight % (_{wt} %) (ICP)	Weight % (wt%) (EDS)	Atomic % (_{at} %) (XPS)
Ru/TiO _x	0.0715	0.075	7.7%	9.3%
Annealed RuO _x /TiO ₂	0.0867	0.083	8.2%	9.2%
Com. RuO ₂ /TiO ₂	0.0992	0.092	-	10.1%
Com. IrO ₂ /TiO ₂	0.1135	0.107	8.8%	7.5%
Ru/TiO _x after OER	0.0695	0.073	6.4%	7.2%
Annealed RuO _x /TiO ₂ after OER	0.0367	0.035	3.3%	4.3%
Com. RuO ₂ /TiO ₂ after OER	0.0201	0.019	-	2.4%

*Note: Since the catalysts are binder-free electrodes, the catalysts are dissolved together with the substrates during the ICP test, while EDS and XPS only detect the surface content, so the wt% obtained through ICP is less than that obtained through EDS and XPS, but the trend is consistent.

		Potential	Mass activity	_
Catalysts	Electrolyte	(V vs. RHE)	$(A g_{noble metal}^{-1})$	Reference
Der/T:O		1.45	2128.2	T1::1-
Ku/110 _x	$0.5 \text{ M H}_2 \text{SO}_4$	1.5	5876.4	I his work
Com Bro /T:O	0.5 M H SO	1.45	462.0	T1::1-
Com. $RuO_2/11O_2$	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	1.5	1062.9	I IIS WORK
Com IrO /TiO	05MH SO	1.45	46.0	This work
$COIII. IIO_2/IIO_2$	$0.3 \text{ WI} \text{ H}_2 \text{SO}_4$	1.5	191.7	THIS WOLK
Dealloyed nanoporous IrNi	0.5 M H ₂ SO ₄	1.5	52.5	²¹ Energy Environ. Sci. 15 , 3449-3461 (2022)
Ir-MnO ₂	$0.5 \ M \ H_2 SO_4$	1.53	766.0	⁸ Joule 8 , 1-8 (2021)
Ru/MnO ₂	0.1 M HClO ₄	1.40	1264.0	²² Nat. Catal. 4 , 1012- 1023 (2021)
RuIr nanosized-coral	0.05 M H ₂ SO ₄	1.45	796.0	²³ Nat Commun. 12 , 1145 (2021)
RuIr@carbon support	0.5 M H ₂ SO ₄	1.53	2041.0	²⁴ ACS Catal. 11 , 3402- 3413 (2021)
IrCuNi deeply concave nanocubes/C	0.1 M HClO ₄	1.53	6600.0	²⁵ Nano Lett. 21 , 2809- 2816 (2021)
Ru@Ir-O	0.5 M H ₂ SO ₄	1.55	1169.0	²⁶ Small 18 , 2108031 (2022)
S-RuFeO _x	0.1 M HClO ₄	1.42	1180.0	¹¹ Adv. Funct. Mater. 31 , 2101405 (2021)
RuO ₂ /(Co,Mn) ₃ O ₄ /CC	0.5 M H ₂ SO ₄	1.53	366.5	²⁷ Appl. Catal., B 31 , 2101405 (2021)
Ir-Ta NPs	0.1 M HClO ₄	1.55	650±150	²⁸ Nat. Energy 7 , 55-64 (2022)
Atomically dispersed hetero-nitrogen Ir	0.5 M H ₂ SO ₄	1.45	2860.0	²⁹ Nat. Commun., 12 , 6118 (2021)
RuO ₂ -nanosheets/carbon fiber	0.5 M H ₂ SO ₄	1.53	115.5	³⁰ Nano Energy 88 , 106276 (2021)
Ni-Ru@RuO _x	0.5 M H ₂ SO ₄	1.45	315.0	³¹ Adv. Energy Mater. 11 , 2003448 (2021)
PdCu/Ir/C	0.1 M HClO ₄	1.51	1190	³² Angew 60 , 8243-8250 (2021)

Supplementary Table 3. OER mass activity comparison between the as-synthesized Ru/TiO_x catalyst and other reported noble metal-based electrocatalysts in acidic media.

Catalysts	Electrolyte	Overpotential (mV)	TOF (s ⁻¹)	Reference
Pu/TiO	0.5 M H-SO	270	1.707	This work
Ku/ 110 _x	0.5 101 112804	300	1.960	
Annealed RuO _x /TiO ₂	$0.5 \ M \ H_2 SO_4$	300	0.820	This work
Com. RuO ₂	$0.5 \ M \ H_2 SO_4$	300	0.322	This work
SnRuO _x	$0.5 \mathrm{~M~H_2SO_4}$	250	0.63	³³ Nat. Commun. 14, 843 (2023)
Rh-RuO ₂ /Graphene	$0.5 \ M \ H_2 SO_4$	300	1.74	³⁴ Nat. Commun. 14 , 1412 (2023)
high-loading Ir single atoms with <i>d</i> -band holes	0.1 M HClO ₄	216	0.599	⁵³ Angew. Chem., Int. Ed. 135 , 202308082 (2023)
$Ru_5W_1O_x$	$0.5 \ M \ H_2 SO_4$	300	0.163	³⁶ Nat. Commun. 13 , 4871 (2022)
Cr-SrIrO ₃	0.1 M HClO ₄	300	0.208	³⁷ Nano Energy 102 , 107680 (2022)
Ru/MnO ₂	0.1 M HClO ₄	165	0.331	³⁸ Nat. Catal. 4, 1012-1023 (2021)
$Ru_1Ir_1O_x$	0.5 M H ₂ SO ₄	300	0.47	³⁹ Adv. Energy Mater. 11 , 2102883 (2021)

Supplementary Table 4. TOF of Ru/TiO_x with previously reported OER catalysts in acid.

Supplementary Table 5. TOF of catalysts using different normalization methods.

Catalysts	Overpotential (mV)	Bulk TOF (s ⁻¹)	ECSA TOF (s ⁻¹)
Ru/TiO _x	270	1.707	1.835
	300	1.960	2.192
Annealed RuO _x /TiO ₂	$d \operatorname{RuO}_{x}/\operatorname{TiO}_{2}$ 300		1.640
Com. RuO ₂	300	0.322	1.520

Supplementary Table 6. Comparison of the PEM electrolyzer performance with those previously reported.

Anode catalysts	Cell voltage (V)	Stability	Reference
Ru/TiO _x	1.71 V @ 1 A cm ⁻²	0.5 A cm^{-2} for 200 h	This work
RuO ₂	1.94 V @ 1 A cm ⁻²	0.5 A cm ⁻² for \leq 50 h	This work
$Nb_{0.1}Ru_{0.9}O_2$	1.69 V @ 1 A cm ⁻²	0.3 A cm ⁻² for 100 h	⁴⁰ Joule 7 , 558-573 (2023)
Y ₂ MnRuO ₇	1.51 V @ 0.2 A cm ⁻²	0.2 A cm ⁻² for 24 h	⁴¹ Nat. Commun. 14 , 2010 (2023)
Nd _{0.1} RuOx	1.595 V @ 0.05 A cm ⁻²	$0.05 \text{ A cm}^{-2} \text{ for } 50 \text{ h}$	⁴² Adv. Funct. Mater. 33 , 2213304 (2023)
IrO _x /Zr ₂ ON ₂	1.927 V at 2.0 A cm ⁻²	$1.0 \text{ A cm}^{-2} \text{ for } 50 \text{ h}$	⁴³ Adv. Funct. Mater. 33 , 2301557 (2023)
RuO ₂ /Defect-TiO ₂	$1.74 \text{ V} @ 1.5 \text{ A cm}^{-2}$	1.0 A cm ⁻² for 6 h	⁴⁴ ACS Catal. 12 , 9437- 9445 (2022)
Strained- RuO ₂ /ATO	1.51 V @ 1 A cm ⁻²	0.5 A cm^{-2} for 40 h	⁴⁵ Adv. Sci. 9 , 2201654 (2022)
$W_{0.2} Er_{0.1} Ru_{0.7} O_{2\text{-}\delta}$	-	0.1 A cm ⁻² for 120 h	⁴⁶ Nat. Commun. 11 , 5368 (2020)

Species	Concentration (ppm)
Cl-	19350
Na ⁺	9685
SO4 ²⁻	2410
Mg^{2+}	870
Ca ²⁺	344

Supplementary Table 7. Concentrations of the major constituents in natural seawater.

Supplementary Table 8. High resolution Ru 3d XPS peak fitting parameters of different samples

before and after OER.

Sample	Core level	Peak position (eV)	Peak area	FWHM (eV) ^{a)}
Ru/TiO _x	D 21	280.6	34594.87	0.68
	Ku 3 <i>a</i> 5/2	281.16	25185.03	1.57
	D 21	284.7	23063.65	0.93
	Ru $3d_{3/2}$	285.25	16790.02	1.81
	C 1 <i>s</i>	284.8	27369.31	1.81
Annealed RuO _x /TiO ₂	5.41	280.62	67103.88	0.98
	Ru $3d_{5/2}$	282.33	55862.16	1.78
	5.41	284.72	44735.92	0.98
	Ru $3d_{3/2}$	286.43	37241.44	1.82
	C 1 <i>s</i>	284.8	34397.01	1.77
Com. RuO ₂ /TiO ₂	5.41	280.65	14552.20	0.92
	Ru $3d_{5/2}$	282.43	15022.85	1.82
	5.41	284.75	9701.47	1.02
	Ru $3d_{3/2}$	286.53	10015.23	1.85
	C 1 <i>s</i>	284.8	6377.99	1.91
Ru/TiOx after OER	5.41	280.61	21619.56	1.41
	Ru $3d_{5/2}$	282.33	15987.43	1.91
		284.72	14413.04	1.58
	Ru $3d_{3/2}$	286.44	10658.29	1.9
	C 1 <i>s</i>	284.8	9130.65	1.98
Annealed RuO _x /TiO ₂ after OER	Ru 3 <i>d</i> 5/2	281.16	14047.01	0.95
	21	282.38	15072.05	1.81
		285.26	9364.67	1.05
	Ru $3d_{3/2}$	286.48	10048.03	1.89
	C 1 <i>s</i>	284.8	28387.34	1.5
Com. RuO2/TiO2 after OER		281.55	12506.05	1.23
	Ru 3 <i>d</i> 5/2	282.71	16144.38	1.47
		285.65	8337.36	1.26
	Ku 3d _{3/2}	286.8	10762.92	1.65
	C 1 <i>s</i>	284.8	56728.58	1.27

^{a)} FWHM: full-width at the half of the maximum.

Supplementary Table 9. High resolution Ru 3d, Ti 2p and O 1s XPS peak fitting parameters of

Sample	Core level	Peak position (eV)	Peak area	FWHM (eV) ^{a)}
Ru/TiO _x -1.0	D 21	280.12	2593.16	1.07
	Ru 3 <i>d</i> 5/2	280.77	1836.78	1.17
	D 21	284.22	1728.77	1.11
	Ru 3 <i>d</i> _{3/2}	284.87	1224.52	1.19
	T : 0	457.90	7399.48	1.20
	$11 2p_{3/2}$	458.51	23726.30	1.14
	T : 0	463.90	3699.74	1.21
	$11 2p_{1/2}$	464.51	11863.15	1.54
	D	460.60	1470.22	1.90
	Ru $3p_{3/2}$	462.96	2533.76	1.48
		529.52	19079.02	1.88
	O 1 <i>s</i>	530.45	9727.79	1.45
		531.47	8456.91	1.79
Ru/TiO _x -1.2		280.13	2734.80	1.05
	Ru 3 <i>d</i> 5/2	280.81	1969.02	1.20
		284.23	1823.20	1.07
	Ru $3d_{3/2}$	284.91	1312.68	1.21
	Ti 2 <i>p</i> _{3/2}	457.90	7001.99	1.23
		458.58	22629.02	1.09
	Ti 2 <i>p</i> _{1/2}	463.90	3500.99	1.23
		464.50	11314.51	1.49
	Ru 3 <i>p</i> _{3/2}	460.60	1591.89	1.89
		462.95	2534.37	1.68
		529.55	19282.80	1.86
	O 1 <i>s</i>	530.40	9066.99	1.51
Ru/TiOx-1.4		531.43	8160.46	1.89
	Ru 3 <i>d</i> _{5/2}	280.15	2678.28	1.07
		280.83	1945.85	1.44
	Ru 3 <i>d</i> _{3/2}	284.25	1785.52	1.08
		284.93	1297.23	1.45
	Ti 2 <i>p</i> _{3/2}	457.90	3294.47	1.16
		458.54	15788.83	1.14
	Ti 2 <i>p</i> 1/2	463.90	1647.24	1.16

Ru/TiO_x at applied potential during 1.0-1.7 V vs. RHE.

		464.54	7894.42	1.54
	D	460.90	1172.22	1.98
	Ru <i>3p</i> _{3/2}	463.08	1976.27	1.67
		529.60	20864.25	1.72
	O 1 <i>s</i>	530.48	9731.28	1.41
		531.49	8407.48	1.98
Ru/TiO _x -1.6	Dec 2 d	280.17	2435.83	1.03
	Ku <i>54</i> 5/2	280.95	1688.01	1.37
		284.27	1557.22	1.05
	Ku 5 <i>a</i> _{3/2}	285.05	1218.68	1.37
	Ti 2 <i>p</i> _{3/2}	457.90	5249.07	0.98
		458.60	29718.37	1.10
	Ti Omer	463.90	2624.53	0.98
	11 <i>2p1/2</i>	464.60	14859.18	1.50
	Du 2m.	460.40	2316.29	1.92
	Ru $3p_{3/2}$	463.15	3039.33	1.52
	O 1 <i>s</i>	529.67	21524.80	1.63
		530.48	9988.22	1.38
		531.52	7457.96	1.89
Ru/TiO _x -1.7	Du 2 den	280.21	2506.04	1.04
	Ku 5 <i>u</i> 5/2	281.00	1826.04	1.35
	Ru 3 <i>d</i> _{3/2}	284.31	1670.69	1.04
		285.10	1217.36	1.35
	Ti 2 <i>p</i> _{3/2}	457.90	5156.78	1.12
		458.63	29558.12	1.07
	Ti 2 <i>p</i> 1/2	463.90	2578.39	1.12
		464.63	14779.06	1.47
	Du 2 mar	460.60	2411.36	1.98
	Ku <i>5p</i> 3/2	463.27	3225.89	1.89
		526.69	23711.47	1.56
	O 1s	526.69 530.46	23711.47 11822.26	1.56 1.27

^{a)}FWHM: full-width at the half of the maximum.

Supplementary Table 10. Summary of Ru *K*-edge adsorption energy (E_{θ}) and valence states for Ru foil, RuO₂, Ru/TiO_x before and after OER.

Sample	Ru K-edge Energy (eV)	Ru Valence State	
Ru foil	22115.01	0	
Ru/TiO _x	22116.21	+0.34	
Ru/TiO _x after OER	22117.36	+0.72	
RuO ₂	22127.98	4	

Supplementary Table 11. Structural parameters obtained from the curve-fitting analysis of the Ru *K*-edge EXAFS spectra.

Sample	Path	$N^{ m a)}$	R (Å) ^{b)}	$\sigma^2 (10^{-3} \text{\AA}^2)^{c)}$	$\varDelta E_{\theta}(\mathrm{eV})^{\mathrm{d})}$	R-factor ^{e)}
Ru foil	Ru-Ru	12	2.67 ± 0.01	3.10 ± 0.2	-5.80±0.7	0.010
RuO ₂	Ru-Ru	2	$3.14\pm\!\!0.01$	$0.80\pm\!\!0.4$	-3.60±0.8	0.011
	Ru-O	6	1.97 ± 0.01	3.30 ± 0.3	-3.60 ± 0.8	0.011
Ru/TiO _x	Ru-Ru	7.8	2.66±0.01	$3.56 \pm \! 1.0$	-5.60±0.6	0.017
	Ru-O	1.8	2.05 ± 0.02	$2.46 \pm \! 0.8$	-6.10±1.0	
Ru/TiO _x after OER	Ru-Ru	7.4	2.68±0.01	$3.55 \pm \! 1.0$	-3.90±1.0	0.010
	Ru-O	2.0	2.02±0.02	$4.50{\pm}0.8$	-5.70 ± 0.8	0.019

^{a)} N: coordination number; ^{b)} R: bond distance; ^{c)} σ^2 : Debye-Waller factor; ^{d)} ΔE_0 : inner potential correction; ^{e)} *R*-factor: goodness of fit.

Supplementary Table 12. Integrated COHP (ICOHP) value for adsorption *O of Ru-O in different models.

Model	-ICOHP
P-RuO _x /TiO ₂	-7.61
V-RuO _x /TiO _x	-7.50

Supplementary References

- 1. Wu, Z.-Y. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. *Nat. Mater.* **22**, 100-108 (2023).
- Li, Y.-P. et al. Arming Ru with oxygen-vacancy-enriched RuO₂ sub-nanometer skin activates superior bifunctionality for pH-universal overall water splitting. *Adv. Mater.* 35, 2206351 (2023).
- 3. Wang, J. et al. Exceptionally active and stable RuO₂ with interstitial carbon for water oxidation in acid. *Chem* **8**, 1673 (2022).
- Rong, C.-L. et al. Electronic structure engineering of single-atom Ru Sites via Co-N₄ Sites for bifunctional pH-universal water splitting. *Adv. Mater.* 34, 2110103 (2022).
- 5. Jin, H. et al. Safeguarding the RuO₂ phase against lattice oxygen oxidation during acidic water electrooxidation. *Energy Environ. Sci.* **15**, 1119-1130 (2022).
- 6. Wang, J. et al. Exceptionally active and stable RuO₂ with interstitial carbon for water oxidation in acid. *Chem* **8**, 1673 (2022).
- Hao, S.-Y. et al. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. *Nat. Nanotech.* 16, 1371-1377 (2021).
- Fan, Z. L. et al. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide. *Joule* 5, 3221-3234 (2021).
- 9. Shi, Z. P. et al. Confined Ir single sites with triggered lattice oxygen redox: toward boosted and sustained water oxidation catalysis. *Joule* **5**, 2164-2176 (2021).
- Yao, Q., Huang B.-L., Xu, Y., Li, L.-G., Shao, Q. & Huang, X.-H. A chemical etching strategy to improve and stabilize RuO₂-based nanoassemblies for acidic oxygen evolution. *Nano Energy* 84, 105909 (2021).
- Li, N. et al. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO₃ electrocatalyst with enhanced iridium mass activity. *J. Am. Chem. Soc.* 143, 18001-18009 (2021).
- Xue, Y.-R. et al. Sulfate-functionalized RuFeO_x as highly efficient oxygen evolution reaction electrocatalyst in acid. *Adv. Funct. Mater.* **31**, 2101405 (2021).
- 13. Zhu, J.-W. et al. Regulative electronic states around ruthenium/ruthenium disulphide

heterointerfaces for efficient water splitting in acidic media. Angew. Chem., Int. Ed. 133, 12436-12442 (2021).

- Cui, X.-J. et al. Robust interface Ru centers for high-performance acidic oxygen evolution. *Adv Mater.* 32, 1908126 (2020).
- 15. Yin, J. et al. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. *J. Am. Chem. Soc.* **142**, 18378-18386 (2020).
- 16. Yao, Y.-C. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. *Nat. Catal.* **2**, 304-313 (2019).
- 17. Shan, J.-Q. et al. Charge-redistribution-enhanced nanocrystalline Ru@IrO_x electrocatalysts for oxygen evolution in acidic media. *Chem* **5**, 445-459 (2019).
- 18. Lin, Y. C. et al. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. *Nat. Commun.* **10**, 162 (2019).
- Yao, Q., Huang, B.-L., Zhang, N., Sun, M.-Z., Shao, Q. & Huang X.-Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. *Angew. Chem., Int. Ed.* 58, 13983-13988 (2019).
- Shan, J. Q., Ling, T., Davey, K., Zheng, Y. & Qiao, S.-Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. *Adv. Mater.* 31, 1903616 (2019).
- Zhu, J. et al. Iridium-based cubic nanocages with 1.1-nm-thick walls: a highly efficient and durable electrocatalyst for water oxidation in an acidic medium. *Angew. Chem., Int. Ed.* 58, 7244 (2019).
- 22. Yeo, K.-R. et al. A highly active and stable 3D dandelion spore-structured self-supporting Irbased electrocatalyst for proton exchange membrane water electrolysis fabricated using structural reconstruction. *Energy Environ. Sci.* **15**, 3449-3461 (2022).
- Lin, C. et al. In-situ reconstructed Ru atom array on α-MnO₂ with enhanced performance for acidic water oxidation. *Nat. Catal.* 4, 1012-1023 (2021).
- 24. Wu, D.-S. et al. Efficient overall water splitting in acid with anisotropic metal nanosheets. *Nat Commun.* **12**, 1145 (2021).
- 25. Xu, J.-Y. et al. Atomic-step enriched ruthenium-iridium nanocrystals anchored homogeneously on MOF-derived support for efficient and stable oxygen evolution in acidic

and neutral media. ACS Catal. 11, 3402-3413 (2021).

- 26. Liu, D. et al. IrCuNi deeply concave nanocubes as highly active oxygen evolution reaction electrocatalyst in acid electrolyte. *Nano Lett.* **21**, 2809-2816 (2021).
- 27. Zhang, J.-H. et al. Core-shell nanostructured Ru@Ir-O electrocatalysts for superb oxygen evolution in acid. *Small* **18**, 2108031 (2022).
- Niu, S.-Q. et al. Low Ru loading RuO₂/(Co,Mn)₃O₄ nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. *Appl. Catal. B* 297, 120442 (2021).
- 29. Zheng, Y.-R. et al. Monitoring oxygen production on mass-selected iridium-tantalum oxide electrocatalysts. *Nat. Energy* 7, 55-64 (2022).
- 30. Su, H. et al. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. *Nat. Commun.*, **12**, 6118 (2021).
- 31. Huang, H.-W. et al. Structure engineering defective and mass transfer-enhanced RuO₂ nanosheets for proton exchange membrane water electrolyzer. *Nano Energy* 88, 106276 (2021).
- 32. Harzandi, A. M. et al. Ruthenium core-shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. *Adv. Energy Mater.* **11**, 2003448 (2021).
- 33. Li, M.-G. et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. *Angew. Chem., Int. Ed.* **60**, 8243-8250 (2021).
- 34. Shi, Z.-P. et al. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers, *Nat. Commun.* **14**, 843 (2023).
- 35. Wang, Y. et al. Unraveling oxygen vacancy site mechanism of Rh-doped RuO₂ catalyst for long-lasting acidic water oxidation, *Nat. Commun.* **14**, 1412 (2023).
- 36. Zhang, X.-X. et al. Fast modulation of *d*-Band Holes Quantity in the Early Reaction Stages for Boosting Acidic Oxygen Evolution, *Angew. Chem., Int. Ed.* **135**, 202308082 (2023).
- 37. Wen, Y.-Z. et al. Introducing Brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation, *Nat. Commun.* **13**, 4871 (2022).
- Zhang, X.-X. et al. Quick evolution of edge-shared metal-oxygen octahedrons for boosting acidic water oxidation. *Nano Energy* 102, 107680 (2022).
- Lin, C. et al. In-situ reconstructed Ru atom array on α-MnO₂ with enhanced performance for acidic water oxidation. *Nat. Catal.* 4, 1012-1023 (2021).

- 40. He J., Zhou X., Xu, P. & Sun, J.-M. Regulating electron redistribution of intermetallic iridium oxide by incorporating Ru for efficient acidic water oxidation. *Adv. Energy Mater.* 11, 2102883 (2021).
- 41. Liu, H. et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media. *Joule* **7**, 558-573 (2023).
- 42. Galyamin, D. et al. Active and durable R₂MnRuO₇ pyrochlores with low Ru content for acidic oxygen evolution. *Nat. Commun.* **14**, 2010 (2023).
- 43. Li, L. et al. Optimizing the electronics structure of ruthenium oxide by neodymium doping for enhanced acidic oxygen evolution catalysis. *Adv. Funct. Mater.* **33**, 2213304 (2023).
- 44. Lee, C.-S. et al. Catalyst-support interactions in Zr₂ON₂-supported IrO_x electrocatalysts to break the trade-Off relationship between the activity and stability in the acidic oxygen evolution reaction, *Adv. Funct. Mater.* **33**, 2301557 (2023).
- 45. Wang, X.-J. et al. Electronic structure modulation of RuO₂ by TiO₂ enriched with oxygen vacancies to boost acidic O₂ evolution, *ACS Catal.* **12**, 9437-9445 (2022).
- 46. Huang, B. et al. Tensile-strained RuO₂ loaded on antimony-tin oxide by fast quenching for proton-exchange membrane water electrolyzer, *Adv. Sci.* **9**, 2201654 (2022).
- 47. Hao, S.-Y. et al. Dopants fixation of ruthenium for boosting acidic oxygen evolution stability and activity, *Nat. Commun.* **11**, 5368 (2020).